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Abstract—We propose a novel, cross-lingual voice conversion
(VC) method using a cyclic variational auto-encoder (CycleVAE).
Voice conversion is the transformation of the voice of one
speaker into the voice of another speaker, while cross-lingual VC
performs voice conversion between speakers who speak different
languages. When using VC methods based on parallel learning, it
is necessary to prepare accented speech uttered by the source or
target speaker, using the pronunciation system of the speaker’s
mother tongue. On the other hand, VC methods which use a
non-parallel learning approach can utilize the natural speech
data of both the source and target speakers, produced in their
own native languages. It then becomes necessary, however, to
deal with the issues of time-alignment and language mismatches.
To address these issues, we apply CycleVAE to cross-lingual
VC as a sophisticated, non-parallel method of VC. We also
apply the WaveNet vocoder in the waveform generation process
of CycleVAE-VC to improve overall conversion quality. Our
objective and subjective experimental results when performing
cross-lingual VC from a native English speaker to a native
Japanese speaker confirm that the proposed method achieves
a higher level of naturalness and speaker similarity than a
conventional RNN-based parallel VC method using accented
speech.

I. INTRODUCTION

Voice conversion (VC) is the process of converting the para-

linguistic and non-linguistic information in the source/input

speech into those of a target speaker, while retaining the

linguistic information contained within the original speech.

This makes it possible to convert a speaker’s voice into

the voice of a famous cartoon character or the voice of

another specific person, for example. Medical applications for

overcoming a speaker’s physical constraints are also possible,

such as providing more natural-sounding vocal expression and

vocalization support for people with speech impairments such

as dysphonia. Parallel VC methods which use the same lan-

guage and the same utterance data sets have been extensively

studied to develop existing VC systems. Proposed methods

include using Gaussian Mixture Models (GMM) [1], [2], deep

neural networks (DNN) [3], [4], frequency warping [5], [6],

case-based modeling [7], [8], etc.

Cross-lingual VC refers to a situation where the source and

target speaker are speaking different languages. This technique

can be applied to various applications, such as dubbing a

foreign language movie using the original actor’s voice, per-

sonalizing translated speech, and pronunciation practice when

learning foreign languages. On the other hand, cross-lingual

VC is more of a challenging task compared to parallel VC,

since parallel data are usually not available in cross-lingual

VC. In parallel VC, spectral mapping can be easily defined

through the alignment of speech using dynamic time warping

(DTW) [9]. However, in cross-lingual VC, finding frame and

segment pairs between speech samples in different languages,

especially languages with largely different phoneme set is

quite a difficult task. Despite this difficulty, various techniques

have been proposed to realize cross-lingual VC until now.

For example, a parallel learning method using synthesized

speech [10] has been proposed in which the training data

is constructed by crudely synthesizing English speech using

a Japanese text-to-speech system. Conversion accuracy when

using this method is lower than when performing conversion

between speakers using the same language, however, because

the generated speech is degraded during synthesis. Another

method of cross-lingual VC involves the use of bilingual

speech [11]. Conversion models are developed separately

using a bilingual speaker’s English and Japanese speech, then

VC is performed using voice data in the language which was

not used for training. Although this method is effective, it is

not realistic for practical use since the number of bilingual

speakers is fairly limited. Another popular approach is the use

of whatever prior information is available when developing the

conversion model. In eigenvoice conversion [12], a speaker-

adaptive conversion model is trained in advance using existing

parallel databases consisting of the speech of multiple speakers

in a single language, then the data is adapted to the target

speaker in another language in an unsupervised manner [13].

Other methods use phoneme information to extract speaker-

independent features, such as phoneme posteriorgrams (PPGs),

using a pre-trained phoneme recognizer [14]. Cross-lingual VC

can also be achieved by developing a target speaker-dependent

decoder which converts speaker-independent features into the

target speaker’s acoustic features. The decoder can be easily

trained through a reconstruction process, using only the target

speaker’s data in an arbitrary language [15]. These methods

are effective for cross-lingual VC, but some limitations remain,

e.g., the need to use parallel databases, or a pre-trained

phoneme recognizer.

Various non-parallel VC techniques have also been pro-

posed, in which fully unsupervised factorization has been

applied to non-parallel VC. These approaches include using

Generative Adversarial Networks (GAN) [16], [17], Boltz-

mann Machines (BM) [18], or variational auto-encoders (VAE)
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[19], [20], [21]. In the latter methods using VAE, a decoder is

trained not only with latent variables, but also using speaker

codes that represent speaker labels. After the VAE learns how

to extract speaker-independent features from speech spectra at

the encoder, VC is then possible by simply inputting speaker

independent features and speaker codes into the decoder after

training. In a method using a cyclic variational auto-encoder

(CycleVAE) [22], the converted spectra are indirectly opti-

mized by re-inputting the converted spectra to the system while

maintaining a cycle-consistent mapping flow [23]. CycleVAE

has been confirmed to achieve higher conversion accuracy than

normal VAE when the source and target speakers speak the

same language, by considering the converted features during

training.

In this paper, we propose a cross-lingual VC method using

CycleVAE. In particular, we use CycleVAE to maintain the

pronunciation of a native speaker’s English speech, and then

convert only the speaker characteristics of the source speaker

into those of the target Japanese speaker. In VC frameworks

using parallel learning, it is necessary to prepare a parallel data

set using the accented, non-native speech of the target speaker.

But when training a CycleVAE, parallel data is no longer

necessary, and it is possible to train the model using only the

speech of each speaker speaking in their native languages, i.e.,

the English speech of the English speaker and the Japanese

speech of the Japanese speaker. In addition, CycleVAE is

trained through the simple reconstruction process without

pre-trained phoneme recognizer or anything pre-trained in

advance, so it is flexible enough for practical use. Furthermore,

we also investigate the effect of using a WaveNet vocoder [24]

in comparison to using a conventional vocoder for CycleVAE-

VC. Conventional vocoders are based only on simplified

assumptions that discard phase information, often causing

significant degradation in conversion quality. In contrast, the

WaveNet vocoder is a deep, auto-regressive, neural vocoder

which learns how to directly map acoustic features to a speech

waveform in a data-driven manner, using a Convolutional

Neural Network (CNN). It has been shown that substituting

a WaveNet vocoder for a conventional vocoder improves the

quality of synthesized speech in existing speech processing

methods, so it has been widely used in research fields related

to speech, including for VC. This approach has not been

applied within existing CycleVAE-VC frameworks, however,

creating an opportunity for the improvement of conversion

quality. Hence, in this study, we combine CycleVAE with the

WaveNet vocoder to observe how it affects conversion quality

in a cross-lingual VC scenario. We also propose a novel fine-

tuning approach of the WaveNet vocoder to properly conjugate

CycleVAE and WaveNet vocoder. We conduct objective and

subjective evaluation experiments to quantitatively evaluate the

conversion accuracy of each method.

II. RELATED WORK

A. CycleVAE-based non-parallel VC

Let Xt = [e
(x)⊤
t , s

(x)⊤
t ]⊤, e

(x)
t =

[e
(x)
t (1), . . . , e

(x)
t (De)]

⊤, s
(x)
t = [s

(x)
t (1), . . . , s

(x)
t (Ds)]

⊤,

c(x) = [c(x)(1), . . . , c(x)(Dc)]
⊤, be the De+Ds, De, Ds, and

Dc-dimensional feature vectors of the input, the excitation,

the spectra, at frame t, and the speaker-code, respectively.

Conditioned on a time-invariant speaker-code feature vector

sequence c(x), the marginal likelihood of an input feature

vector sequence X = [X⊤
1 , . . . ,X

⊤
T ]

⊤ is then given by

pθ(X|c(x)) =

T
∏

t=1

∫

pθ(Xt|zt, c
(x))pθ(zt)dzt, (1)

where zt denotes the Dz-dimensional latent feature vector at

time t. In a VAE-based framework [25], the above intractable

marginal likelihood, and the true posterior pθ(zt|Xt) of the

latent variable zt, are solved by the variational posterior

qφ(zt|Xt) , approximating the true posterior.

Specifically, a VAE-based VC [19] model is optimized by

maximizing the following variational lower bound

L(θ,φ,Xt, c
(x)) =−DKL(qφ(zt|Xt)||pθ(zt))

+ Eqφ(zt|Xt)[log pθ(s
(x)
t |zt, c

(x))], (2)

where DKL(·||·) is the Kullback-Leibler (KL)-divergence be-

tween two probability distributions, and the prior distribution

of the latent space is denoted with pθ(zt). The parameters set

of the encoder and the decoder networks are denoted with φ

and θ, respectively. Given a sampled latent feature vector ẑ
(x)
t

as follows

ẑ
(x)
t = f

(µ)
φ (Xt) + f

(σ)
φ (Xt)⊙ ǫ s.t. ǫ ∼ L(0, I), (3)

where fφ(·) denotes the encoder network and L(0, I) denotes

a standard Laplacian distribution, the reconstructed spectral

feature vectors ŝ
(x)
t and the converted spectral feature vectors

ŝ
(y|x)
t are respectively given by

ŝ
(x)
t = gθ(ẑ

(x)
t , c(x)), (4)

ŝ
(y|x)
t = gθ(ẑ

(x)
t , c(y)), (5)

where gθ(·) denotes the decoder network and c(y) denotes

the Dc-dimensional feature vector of the target speaker-code.

However, the converted spectra is not optimized in this opti-

mization process, hence, the conversion performance of VAE-

based VC is limited.

During the training process of the CycleVAE, given a

sequence of input features X = [X⊤
1 , . . . ,X

⊤
T ]

⊤ and time-

invariant Dc-dimensional source speaker-code features c(x)

and c(y), a set of network parameters {θ,φ} is updated using

the following variational lower bound [25]:

L(θ,φ,Xt, c
(x), c(y)) =

N
∑

n=1

−DKL(qφ(zn,t|Xn,t)||pθ(zn,t))

−DKL(qφ(zn,t|Ŷ n,t)||pθ(zn,t))

+ Eqφ(zn,t|Xn,t)[log pθ(s
(x)
n,t = s

(x)
t |zn,t, c

(x))]

+ E
qφ(zn,t|Ŷ n,t)

[log pθ(s
(x|x)
n,t = s

(x)
t |zn,t, c

(x))],

(6)
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Fig. 1. Training process for the CycleVAE. The process is repeated a specified
number of times.

Here, zt is a Dz-dimensional latent feature vector at time t,

s
(x)
n,t and s

(x|x)
n,t are random variables, and s

(x)
t is an observed

value. Also,

Ŷ n,t = [ê
(y|x)⊤
t , ŝ

(y|x)⊤
n,t ]⊤, (7)

ŝ
(y|x)
n,t = gθ(ẑ

(x)
n,t , c

(y)), (8)

ŝ
(x)
n,t = gθ(ẑ

(x)
n,t , c

(x)), (9)

Xn,t = [e
(x)⊤
t , ŝ

(x|x)⊤
n−1,t ]

⊤, (10)

ŝ
(x|x)
n,t = gθ(ẑ

(y|x)
n,t , c(x)), (11)

ẑ
(y|x)
n,t = f

(µ)
φ (Ŷ n,t) + f

(σ)
φ (Ŷ n,t)⊙ ǫ

s.t. ǫ ∼ L(0, I), (12)

where Ŷ n,t, ê
(y|x)
t and ŝ

(y|x)
n,t are the converted feature vectors

of the input, excitation, and spectra, respectively. ŝ
(x|x)
n,t de-

notes the cyclic reconstructed spectra at the n-th cycle, while

gθ(·) and fφ(·) denote the encoder and decoder networks,

respectively. The index of the n-the cycle is denoted as n,

and the total number of cycles is N . For example, at n = 1,

ŝ
(y|x)
1,t = ŝ

(y|x)
t , ŝ

(x)
1,t = ŝ

(x)
t , ẑ

(x)
1,t = ẑ

(x)
t , and X1,t = Xt.

Fig. 1 shows the training process of the CycleVAE-VC. We

then employ the CycleVAE-based VC framework for the

development of cross-lingual VC.

B. WaveNet vocoder

The WaveNet vocoder is a deep, auto-regressive, neural

vocoder which directly generates speech waveforms from the

given auxiliary features [24]. Given a sequence of auxiliary

features h =
[

h⊤
1 , . . . ,h

⊤
T

]⊤

, the conditional probability

distribution function of the sequence of waveform samples

x = [x1, . . . , xN ]
⊤

is given by:

P (x|h,λ) =

T
∏

t=1

P (xt|x<t,ht,λ) (13)

where x<t denotes the previous waveform samples, with

respect to waveform sample xt at time t, that are proportional

to a number of receptive fields of the WaveNet vocoder

model, and where λ denotes a set of WaveNet vocoder model

parameters. In short, given a data sequence pair (h, x), the

WaveNet vocoder learns to map acoustic features h to time-

domain signals x. The WaveNet vocoder can generate natural-

sounding speech almost identical to human speech when

features from natural speech are provided as the auxiliary

features.

C. Fine-tuning approaches for WaveNet vocoder and their

drawbacks

The WaveNet vocoder has been used in many VC frame-

works in recent years to improve conversion quality. However,

despite its high potential, developing a WaveNet vocoder

usually requires quite a large amount of data in order to obtain

reasonable quality speech samples. In general, developing a

speaker-dependent WaveNet vocoder [24] requires about 1

hour of speech data from the target speaker. Since the amount

of target speaker speech data that is available is usually limited,

this approach is not flexible enough for practical usage.

Therefore, various fine-tuning techniques [26], [27], [28] have

been proposed which use multi-speaker models, including

[29], in which the vocoder is actually trained using multi-

speaker speech data. Although these fine-tuning techniques

are effective when sufficient target speech data is unavailable,

they still suffers from a quality degradation problem since the

characteristics of the natural features used during the training

phase and the converted features used in the conversion phase

differ.

D. Fine-tuning the WaveNet vocoder using the self-

reconstructed features of the CycleVAE

One method that has been used to address the quality degra-

dation issue discussed above is to utilize the self-reconstructed

features of the target speaker generated by the VC model

for fine-tuning [30], [31]. In VAE-VC, for example, self-

reconstructed features have an identical temporal structure

to the original target waveforms, so they can be directly

used for WaveNet vocoder training without time-alignment. In

[30], the self-reconstructed features generated by a VAE-VC

model were shown to be similar to the converted features, and

effective for alleviating the quality mismatch issue. In [31],

a cyclic spectral conversion network is trained, and the self-

predicted features from the network are used for fine-tuning.

Since CycleVAE is also capable of generating these kinds of

features, we hypothesize that the self-reconstructed features

generated by the CycleVAE, as shown in Eq. (9) and Eq. (11),

are also similar to the converted features, and thus are also

useful for alleviating the quality mismatch issue. Specifically,

given a set of self-reconstructed features, generated by the

CycleVAE using either Eq. (9) or Eq. (11), the WaveNet

vocoder learns how to map the features to time-domain signals

during the fine-tuning process using the following equation:

P (x|ĥ, λ̂) =

T
∏

t=1

P (xt|x<t, ĥt, λ̂), (14)

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

522



where ĥt = [e
(x)⊤

t , ŝ
(x)⊤

1,t ]⊤ or ĥt = [e
(x)⊤

t , ŝ
(x|x)⊤

n−1,t ]
⊤,

and λ̂ is a set of pre-trained parameters. Thus, the quality

mismatch issue should be solved since the characteristics of

the features used in training are expected to be more similar

to the converted features than natural features h.

III. PROPOSED METHODS

A. Cross-Lingual VC using a CycleVAE

In this paper, we work on a CycleVAE-based cross-lingual

VC framework for the conversion of speech between an En-

glish speaker and a Japanese speaker. As we mentioned earlier,

we specifically focus on the task of using the CycleVAE to

maintain the pronunciation of the native English speaker, while

converting only the speaker characteristics into those of the

target Japanese speaker.

B. Cross-Lingual VC using a CycleVAE and WaveNet vocoder

We also introduce a WaveNet vocoder in the speech wave-

form generation phase using the converted spectra from the

CycleVAE, in order to further improve conversion quality. To

fine-tune the WaveNet vocoder, we develop a CycleVAE model

that includes additional English speakers besides the source

and target speakers for training, in order to generate additional

self-reconstructed features. These features are expected to act

as regularizing data to prevent the model from over-fitting

during the fine-tuning process, as opposed to using only the

self-reconstructed features of the target speaker. Furthermore,

to maximize the number of self-reconstructed features of the

target speaker that are available, we use various cyclically

reconstructed spectra Eq. (11), which were conditioned us-

ing not only the source speaker’s codes, but also the other

speakers’ codes. This allows us to increase the amount of self-

reconstructed target speaker features that are available. This

process can be summarized as follows:

Step 1: Develop a multi-speaker WaveNet vocoder model

(which includes the target speaker) and a CycleVAE-VC model

(which includes additional speakers).

Step 2: Fine-tune the pre-trained WaveNet vocoder model

with the self-reconstructed features of the target speaker and

the additional speakers.

Step 3: Conduct further fine-tuning of the WaveNet vocoder

model using only the self-reconstructed features of the target

speaker.

Fig. 2 shows the method to generate the cyclically recon-

structed spectra of each target, and Fig. 3 shows the overall

conversion flow between the CycleVAE and WaveNet vocoder.

IV. EXPERIMENTS

We used one male English speaker from the VCC2018

database [32] as our source speaker, one male Japanese speaker

(whose speech samples were recorded separately) as our target

speaker, and 24 other English speakers (12 male and 12 fe-

male) from the VCTK corpus [33] as additional speakers. The

speech data for the source speaker included 81 utterances in

English, while the speech data for the target speaker included

81 utterances in Japanese, 31 American English utterances
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Fig. 2. Generation process for each cyclically reconstructed target spectra.
Each spectra is conditioned using the n-th speaker’s code, except for the
target speaker’s spectra.

ABCDEBFGHCI
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ABCDEBFGHCI
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ZCNMH[EBYNECI

[\CNEBF U
ZCNMH[EBYNECI

[\CNEBF U
ZCNMH[EBYNECI
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ZCNMH[EBYNECI
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def XGHCDEYHCI

JFKCLCE KMNMICB
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def XGHCDEYHGHc

OMHKCBECI

]\CNEBF ^bFBcCEa
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^]MYBNCibFBcCEi_E`CB[a

jFKCXMBk cCHCBFEGMH

Fig. 3. Overview of proposed VC method using a CycleVAE and WaveNet
vocoder.

and 31 Japanese-accented English utterances. The speech data

from the each additional English speaker included 339 English

utterances. The sampling rate for all of the speech data was

24000 Hz.

We used WORLD [34] to extract f0, aperiodicity, and spec-

tral envelope as speech parameters. We used 49-dimensional

Mel-cepstrum coefficients as our spectral envelope parameters.

As excitation features, we used the log-scale of continuous f0,

which included an unvoiced/voiced binary decision feature,

and two-dimensional aperiodicity coding coefficients. The

number of FFT points was 1,024, and the frameshift length

was set to 5 ms.

We used a recurrent neural network (RNN) -based model

for the encoder and decoder of our CycleVAE model. The

details of the model’s architecture are as follows: 2 dilated

convolutional layers with a kernel size of 3, with 1 and 3

dilations, respectively, a gated recurrent unit (GRU) [35] with

1,024 hidden units and 1 hidden layer, and a linear output

layer. The output frame was also fed back into the GRU.

We used fixed normalization and de-normalization layers,

which were determined based on the statistics of the training

data, located before the convolutional layers and after the

output layers, respectively. Dropout [36] layers were used with

0.5 probability after the convolutional and GRU layers. We
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initialized the network parameters using the Glorot method

[37], and optimized them using Adam [38] with a learning

rate of 0.0001. Batch frame size and the total number of cycles

were set to 24 and 2, respectively. The dimensions of latent

features were set to 32.

We adopted the Shallow WaveNet vocoder [39] as our

WaveNet vocoder model since the amount of target speech

data that was available was limited. The multi-speaker vocoder

model was trained in advance using the speech of the addi-

tional speakers and the target speaker, then we applied the

fine-tuning method explained in the previous section. The

details of the model architecture are as follows: The model

for the softmax output was trained. The dilation depth was

set to 3, and the number of dilation sequence repetitions was

2. The numbers of channels for the residual blocks and skip

connections were 192 and 256, respectively. Two convolution

layers with a kernel size of 3 and a dilation size of 2 were

used to capture the context of auxiliary speech parameters.

A noise shaping technique [40] was used to reduce errors in

the higher-frequency region. The dropout rate, initialization,

and optimization methods of the network parameters were the

same as those used during CycleVAE training.

We trained two English-to-Japanese CycleVAE conver-

sion models, which we called Proposed(CycleVAE) and Pro-

posed(CycleVAE+WNV), as well as a baseline parallel learn-

ing VC model, to evaluate the conversion accuracy of the

proposed method. Proposed(CycleVAE) was trained using

speech from the target and source speakers, as well as

speech from the additional 24 English speakers. The training

data from the target speaker included 50 Japanese utter-

ances. Proposed(CycleVAE+WNV) was a combination of the

Proposed(CycleVAE) and the WaveNet vocoder, which was

trained separately and fine-tuned using the method described

above. Fine-tuning was done using all of the training and

test data from the target and additional speakers that was

used when developing the CycleVAE. While performing fine-

tuning, we used 1 sample of self-reconstructed features from

the CycleVAE. For our baseline parallel learning method, we

used a spectral mapping model based on an RNN [31]. In

[31], the WaveNet vocoder is used as the vocoder, but we

used WORLD instead so that we could first simply compare

the performance of the RNN-VC and the CycleVAE-VC.

The baseline model was trained using 50 accented English

utterances from the target speaker.

A. Objective evaluation

For objective evaluation, we used Mel-cepstral distortion

(MCD) [41] to measure the quality of the converted speech.

MCD values were calculated by comparing spectra of the

target speaker’s English utterances with the converted source-

to-target spectra, using DTW alignment [9]. Table I shows

the MCD values of the converted speech for each model.

We can see that our proposed methods outperform the base-

line method, demonstrating that our proposed methods can

generate more accurately converted speech than the baseline

method. However, the distance between our two proposed

TABLE I
OBJECTIVE VOICE CONVERSION ACCURACY FOR BASELINE AND

PROPOSED METHODS, USING MEL-CEPSTRAL DISTORTION FOR

COMPARISON.

MCD [dB]

Baseline(RNN Parallel) 8.47

Proposed(CycleVAE) 7.67

Proposed(CycleVAE+WNV) 7.70

methods was trivial. This is mainly because generated speech

from WaveNet vocoder tends to slightly fluctuate, while a

generated speech from CycleVAE relatively retains the original

shape of the input speech waveform.

B. Subjective evaluation

We conducted a Mean Opinion Score (MOS) test and a

speaker identification test to perceptually quantify the con-

version accuracy of each model. In the MOS test, listeners

rated the naturalness of the converted speech produced by each

model on a scale of 1 (very bad) to 5 (very good). In the

speaker identification test, participants listened to a sample

of the Japanese speaker’s Japanese speech and a sample

of reference speech, and were asked to judge whether the

two speech samples could have been produced by the same

speaker by choosing from among four possible responses; 1

= same speaker (sure), 2 = same speaker (not sure), 3 =

different speaker (not sure), or 4 = different speaker (sure). The

analysis-synthesis of the Japanese speaker’s English speech,

the Japanese speaker’s accented English speech, the source

English speaker’s English speech and the converted speech

using each VC method were used in both experiments. 31

utterances of each type of speech were used in the MOS test,

and 10 utterances of each type of speech, randomly selected

for each subject, were used in the speaker identification test.

The number of subjects who participated in each experiment

was 10.

The results of these subjective evaluations are shown in

Table II. We conducted a t-test between the baseline method

and each of our proposed methods on the results of the MOS

test, and a significant difference was found in each comparison

at p-value<0.01. This result shows that our proposed methods

significantly improved the naturalness of the converted speech

when compared to the baseline method. Moreover, our two

proposed methods were also found to be significantly different

from one another at p-value<0.01. This means that the speech

converted using the CycleVAE-VC becomes even more natural

when it is combined with a fine-tuned WaveNet vocoder.

Having said that, there is still room for improvement in both

cases because neither method achieved the level of naturalness

of the analysis-synthesis speech of the target speaker.

We can confirm that both of our proposed methods achieved

higher speaker similarity to the target speaker than the baseline

method, based on the results of the speaker identification test.

We can also see that the Proposed(CycleVAE+WNV) method

achieved a higher similarity score than Proposed(CycleVAE).

This result means that the speaker similarity of the converted
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TABLE II
SUBJECTIVE VOICE CONVERSION ACCURACY, IN TERMS OF NATURALNESS

AND SPEAKER IDENTIFICATION. MEAN OPINION SCORE VALUES ARE

SHOWN WITH 95% CONFIDENCE INTERVALS. SPEAKER SIMILARITY

SCORES WERE COMPUTED BY COMBINING THE “SAME SPEAKER (SURE)”
AND “SAME SPEAKER (NOT SURE)” RESPONSES.

MOS Correct Rate [%]

Source - 0.00

Baseline(RNN Parallel) 1.44±0.06 44.44

Proposed(CycleVAE) 2.76±0.08 63.33

Proposed(CycleVAE+WNV) 3.21±0.09 67.77

Target(English) 4.33±0.08 70.00

Target(Accented English) 4.45±0.07 91.11

speech from CycleVAE can be improved by using a WaveNet

vocoder. Regarding the target speaker’s analysis-synthesis ac-

cented English speech, they were correctly identified by 20%

of the participants when compared to the English speech with-

out an accent. This is probably because the target speaker’s

English speech had quite a heavy Japanese accent, so that

is almost sounded like Japanese speech. All of the speech

samples are available at: “https://bit.ly/2KSbfIB”

V. CONCLUSIONS

In this paper, we proposed a cross-lingual VC method using

CycleVAE. Our experimental results showed that the pro-

posed method outperformed a conventional, parallel learning

method using an RNN, in terms of the quality, naturalness,

and speaker similarity of the converted speech. We achieved

further improvement in performance by using a WaveNet

vocoder in the waveform generation process, which was also

objectively and subjectively confirmed. As future work, we

plan to explore methods of implementing cross-lingual VC in

real-life applications.
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