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Abstract—Recently, there is an increase in the demand for
Voice Assistants (VAs) due to their convenience in accessing and
controlling the household devices. To make VAs user-friendly,
less strict speaker verification constraints are imposed onto them
which makes VAs highly vulnerable to spoofing attacks. In this
paper, authors propose the design of front-end countermeasure
system against replay spoofing attack for VAs that make use of
microphone array to capture spatial diversity. We exploit this
microphone array information by proposing a novel approach
of the subband channel selection using mathematical structure
of Teager Energy Operator (TEO). These selected subband
channels are used to compute proposed Teager Energy Cepstral
Coefficients (TECC,,,,) feature set. With this approach, we
gain significant improvement in the performance of replay
attack detection task on VAs against the baseline feature set,
i.e., Constant-Q Cepstral Coefficient (CQCC). Results indicate
an absolute reduction in Equal Error Rate (EER) of 4.11%
and 8.66% on development and evaluation set, respectively, of
ReMASC dataset. Authors also performed classifier-level fusion
of GMM, and LCNN-based back end classifiers using proposed
TECC, ... feature set and obtained absolute reduction of 5.98%
and 10.67% on development and evaluation sets, respectively.

Keywords: Teager Energy Operator, TECC, ReMASC.
I. INTRODUCTION

Voice Assistants (VAs) are becoming ubiquitous due to
their ease of operation and controllability of personal and
household appliances. However, their convenience makes them
highly prone to spoofing attacks. Variety of spoofing attacks
are reported in the literature which can cause great threat to
VAs [11, [2], [3], [4], [5], [6]. This issue raises a need to
design robust anti-spoofing technique. In this study, authors
propose a countermeasure system against the replay attacks
on VAs by exploiting the Teager energy-based features. The
experiments are performed on the recently released Realistic
Replay Attack Microphone Array Speech Corpus (ReMASC)
corpus [7]. This corpus is specifically designed for developing
countermeasure system against the replay spoofing attack on
VAs using microphone array.

Earlier, several datasets were released to address the spoof-
ing attacks on Automatic Speaker Verification (ASV) systems
along with countermeasure systems for respective datasets
[8], [9], [10]. However, the design of the countermeasure
systems for VAs is quite different than that used for the
ASV systems. Such differences are illustrated in [7]. Their
simplicity in ASV had made VAs vulnerable to spoofing
attacks. In replay spoof, distortions due to recording, playback
devices, and environments are incorporated along with genuine
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speech sample. Based on this modeling of the speech signal,
several countermeasure systems are designed [11], [12].

In this work, subband filtering and Teager Energy Operator
(TEO) for feature representation, where TEO is energy es-
timating operator. The feature sets derived from TEO have
been successful in many speech applications because of its
capability to capture the nonlinearity in the speech signal, high
temporal resolution, and noise suppression capability [13],
[14], [15]. Due to these desirable properties, TEO has been
used to develop Teager Energy Cepstral Coefficients (TECC)
for speech recognition application [16]. TEO can further be
utilized to estimate the amplitude and frequency modulations
(AM-FM) in the speech signal [17], [18], [19], [20], [21]. This
time resolution property can be used to track rapid changes
in signal’s energy within a glottal cycle [15]. TECC is found
to be most successful feature set to develop whisper speech
recognition system [22]. Many studies reported efficacy of
TEO-based features for SSD task [23], [24], [25], [26], [27],
[28].

TEO has the capability to detect the noise components
present in the signal hence, it is used here for selecting the
most distorted subband channel signal, obtained from the mi-
crophone array which can be used effectively for replay SSD
task. In this paper, we propose to use TECC due to it’s inherent
capability of capturing the acoustic reverberation as discussed
in our recent work [29]. Our key idea involves the extraction
of TECC features based on the subband channel selection.
Here, a channel refers to a speech signal obtained from a
single microphone in given microphone array. Furthermore,
a signal filtered through the bandpass filter in the filterbank
is referred here as subband signal. Availability of microphone
array enables selection of appropriate subband channel to max-
imize the reverberation cues via spatial diversity for the SSD
task. This difference once identified can act as an effective
countermeasure against replay spoofing attack on VAs as in
ReMASC dataset.

II. TECC USING SUBBAND CHANNEL SELECTION
A. Replay Noise Analysis using TEO

In [15], a non-linear differential operator was used to track
energy analogously to a mass-spring system. This energy
operator is known as TEO. Let the discrete-time signal y(n) be
expressed as y(n) = A cos (wn + ), then the running estimate
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Fig. 1. Block diagram of the proposed TECC feature set extraction for replay SSD on VAs.

of energy of the signal using TEO ¢{.} can be written as:

Yly(n)] =y (n) —y(n—1)-y(n+1) = A%sin’ () ~ A%w".
)]
In eq. (1), the approximation used is sin(w) =~ w for
small values of w. Energy Separation Algorithm (ESA) was
developed in order to find the individual contribution by
amplitude and frequency components of the signal. Speech
signal is produced because of pulsatile vortical flow inter-
actions with the boundaries of the vocal tract system [17].
Speech resonances depend upon local vocal tract cavities
that emphasizes certain frequencies and de-emphasizes the
others [19]. As speech signal itself is composed of several
multicomponent resonances and hence, in order to apply ESA,
there is a need to separate resonances by bandpass filtering
using an appropriate filterbank. Therefore, TEO profile of each
of these subband signals is calculated using eq. (1). Let us
assume that 2(n) is composed of original clean speech signal,
s(n), and noise component, r(n), i.e., z(n) = s(n) + r(n).
Then,

Yla(n)] = [s(n) + r(n)]* = [s(n+1) +r(n+1))

[s(n—=1)+r(n—1)]. (2
By definition of average cross-TEO [17], [30]:
Y29 (s(n),r(n)) = s(n)r(n) — 0.5[s(n + 1)r(n — 1)
+r(n+1)s(n—1)]. (3)
Using eq. (2) and eq. (3), we obtain,
Plz(n)] = Pls(n)] + ¢lr(n)] + 2957 (s(n),r(n)). 4

Let additive noise, 7(n), be the zero-mean wide-sense station-
ary (WSS) Gaussian random process. Then, applying expec-
tation operator E{-}, we get,

E{¢[z(n)]} = E{¢[s(n)]} + 2E{¢¢? (s(n), ()}, (5)

since E{¢[r(n)]} = 0 as r(n) is a zero-mean WSS process.
According to the analysis given in [30], eq. (5) can be written
as:

E{[z(n)]} = E{¢[s(n)]} + error. ©)

In eq. (6), the first term in RHS will be constant for each
subband filtered signal, the only varying term will be the error
term which is expected to be responsible for acoustic noise in
replay speech. In SSD task, the error term can be maximized
by selecting the subband channel, which consists of maximum

error, i.e., acoustic noise. Hence, we are selecting the subband
channel having maximum average TEO profile (i.e., LHS of
eq.(5)). This is the key novelty in our proposed work.

B. TECC Feature Extraction Scheme for SSD Task in VAs

The details of feature extraction scheme is depicted in Fig.
1. The input speech signal is recorded via different microphone
arrays, each having different sampling frequencies which is
due to the use of different recording devices. Hence, each
utterance is first resampled to 16 kHz. Due to microphone ar-
ray, speech signal representation consist of N channels, where
N is the number of microphones in microphone array. The
resulting multichannel input is then passed through a linearly-
spaced Gabor filterbank which has optimal time-frequency
resolution, i.e., 0202 = 0.5, where o7 and o2, are variances
or uncertainties in time and frequency domain, respectively
[31]. We have used 40 subband filters (i € [1,40]) for this
purpose. Thus, there will be ¢ subband filtered signals obtained
from each channel. The TEO is then applied on each subband
filtered signal to estimate the subband energy for each channel.
Average subband energy for each channel is estimated to select
the subband signal with maximum average. This is done so as
to maximize the acoustic noise in the selected subband of the
nt" channel. This is followed by framing and averaging opera-
tion. For extracting TECC feature set, we have used a window
length of 20ms, and hopping size of 10ms. This is followed
by logarithmic operation to compress the dynamic range.
Finally, Discrete Cosine Transform (DCT) is applied to obtain
static TECC feature set. Velocity and acceleration features are
appended so as to encapsulate transitional information. The
proposed feature set is abbreviated as TECC,,,, as we chosen
the subband channel having maximum energy. This novel
approch for subband channel selection shows the improvement
in the performance of the countermeasure system over TECC
extracted from the single channel. The performance of this
feature sets is discussed in Section IV.

III. EXPERIMENTAL SETUP
A. Dataset

In this work, ReMASC dataset is used which aims to de-
velop effective countermeasures against replay spoofing attack
on VAs [7]. The details of the dataset collection strategies can
be found in [7]. From the available dataset, ~ 25500 utterances
are used. We partitioned the dataset into 3 subsets, i.e.,
training, development, and evaluation set. Data distribution
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is shown in Table I. This publicly available dataset consists
of recordings from 44 subjects. The data partition in Table I
consists of 22, 17, and 20 speakers in training, development,
and evaluation subset respectively. Most of the speakers in
training and development subset are overlapping. However,
speakers selected in evaluation set are disjoint to that of
training and development subset. The recordings have been
performed in four different environments. The same proportion
of all recording environments is maintained in the all the
subsets.

TABLE I
DESIGN OF REMASC DATABASE. AFTER [7]
Training  Development  Evaluation
Genuine 2820 924 3308
Spoof 7392 1884 9203
Total 10212 2808 12511

B. Feature Sets and Classifiers

We used two classifiers in this study, namely, Gaussian
Mixture Model (GMM), and Light Convolutional Neural
Network (LCNN). The state-of-the-art features for the SSD
task, namely, Constant-Q Cepstral Coefficients (CQCC), and
Linear Frequency Cepstral Coefficients (LFCC) has been used
along with Mel Frequency Cepstral Coefficients (MFCC) for
comparison using GMM classifier [32], [33]. The performance
of our proposed feature set, i.e., TECC,, ., is compared against
these mentioned feature sets. The CQCC, LFCC, MFCC,
and TECC are extracted with 90-D, 60-D, 42-D, and 120-
D, feature vectors, respectively. All the feature sets consists
of static coefficients appended with velocity and acceleration
coefficients. In TECC feature set, we have chosen the subband
channel having maximum energy in order to capture maximum
distortion due to acoustic (replay) noise so that it becomes
highly discriminative feature for SSD task. In order to validate
our key idea, we also performed experiments by choosing the
subband channels having minimum energy. We referred this
feature set as TECC,,;,. Furthermore, experiments are also
performed by extracting the TECC from the single channel
of the microphone array. This experiment can be considered
as random selection of the subband channel. In Table II, this
channel selection scheme is abbreviated as TECC, 4dom.-

GMM is trained with 512 Gaussian mixtures along with
training set with various feature sets. Log-Likelihood scores
(LLk) are obtained by providing the test utterances as in-
put to trained defense models [34]. The Equal Error Rate
(EER) is chosen as the performance measure to evaluate the
countermeasure systems [35]. We employed LCNN as an
alternate classifier or defense model. This deep neural network
architecture uses Max-Feature-Map activation [36], [37]. This
architecture was also used for the replay SSD task in [38].
To train this defense model, CQCC and TECC,,,, feature
sets are used. In ReMASC dataset, duration of the utterances
are of varying size. To train the LCNN network, we require
consistent feature representation. To achieve this, we replicate
the audio samples if their duration is less than 4 seconds.
Otherwise, they are truncated to 4 seconds. We deploy the

7-10 December 2020, Auckland, New Zealand

defense model with a learning rate of 1073, and a batch size
of 32 samples with ADAM optimizer.

We also performed the classifier-level fusion for the like-
lihood scores obtained from different systems to investigate
the possible complementary information contents of different
classifiers. Likelihood scores obtained from two different
systems are fused as:

Lkaused =7 LLksysteml + (1 - 'Y) . LLksystemQa (7)

where LLkgsystem1, and LLkgysiema2 are the log-likelihood
scores obtained by system-1 and system-2, respectively. The
fusion parameter v € [0, 1] decides the relative importance of
the two systems.

IV. EXPERIMENTAL RESULTS
A. Spectrographic Analysis of Genuine vs. Replay Spoof

We analyzed the Constant-Q Transform gram (CQT-gram)
against the TEO-gram, to observe the possible discriminative
capability of these two feature sets. As shown in Fig. 2,
Panel-I and Panel-II shows the TEO-gram, and CQT-gram,
respectively. Fig. 2(a) and Fig. 2(c) shows the TEO-gram
of genuine and spoof speech signals, respectively. Whereas,
Fig. 2(b) and Fig. 2(d) shows the CQT-grams for genuine
and spoof speech signals, respectively. The frequency scale
in TEO-gram is linear, whereas it is non-linear in CQT-gram.
From Fig. 2, considering a typical range of 4KHz to 8KHz, it
can be observed that there is spectral smearing (or blurring)
in the higher frequency regions for both CQCC and TECC
feature sets between genuine signal and its spoof counterpart.
However, it is more clearly (better resolution) observed in
TEO-gram than the CQT-gram which is shown by highlighted
regions in Fig. 2. It can be also observed that CQCC feature
set has high frequency resolution in lower frequency region as
compared to the high frequency region. This discrimination,
however, is not observed in case of TECC feature set as both
low and higher frequency regions are equally highlighted.
This property can act as an effective discriminative feature
for differentiating genuine and spoof utterances on VAs as in
a replay attack AM-FM modulations can occur both in low as
well as in high frequency regions.
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Fig. 2. Spectrogram plot of TECC (Panel I) vs. CQCC (Panel II) feature sets
: (a),(b) for genuine speech signal, and (c),(d) for spoofed speech signal.
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B. Results using Individual vs. Fused Systems

To evaluate the efficacy of our approach of subband channel
selection by Teager energy tracking, we performed experi-
ments using seven individual systems as shown in Table II.
It can be observed that the TECC,,,, feature set performs
significantly better than the other cepstral features using GMM
classifier. In particular, the absolute reduction in EER of 4.11%
and 8.66% is obtained for TECC,,,,-GMM system over
CQCC-GMM system, i.e., the relative improvement in EER
of 37.15% of proposed approach over the baseline system, on
evaluation set. To validate effectiveness of selecting maximum
energy subband channel, we performed experiment on select-
ing minimum energy subband channel to design TECC,,;,.
Furthermore, the performance of the system developed using
TECC, 4ndom 1s obtained in between two extremes, i.e., in
between TECC,,,;,, and TECC,, .. The considerable differ-
ence in the performance is observed between TECC,,,, and
TECC,,;,, frontend. To validate the efficacy of our approach,
we used another classifier, i.e., LCNN along with baseline
feature set CQCC and proposed TECC,,,,. LCNN shows
better performance with TECC,,,,, than the CQCC feature set.
Furthermore, classifier-level fusion of the GMM and LCNN
systems for proposed TECC,,,, feature set reduces an EER
to 14.59% and 12.64% for development and evaluation set,
respectively. Thus, it achieves 45.77% relative improvement
over the baseline system for the evaluation set. It can also
be concluded that energy-based TECC feature (TECC,,;n,
TECC 42, or TECC,4ndom) set encapsulates more effective
information for replay SSD task as compared to the other
feature sets shown in Table II.

TABLE II
RESULTS (IN % EER) ON REMASC DATASET

System Dev Eval
CQCC-GMM (Baseline) | 20.57 | 23.31
LFCC-GMM 28.89 | 26.31
MFCC-GMM 36.43 | 31.53
TECCin-GMM 19.89 | 16.78
TECCrnaz-GMM (A) 16.46 | 14.65
TECC, -4 ndom-GMM 18.57 | 16.61
CQCC-LCNN 2231 | 25.88
TECCq0-LCNN (B) 1798 | 16.84
A+B 14.59 | 12.64

C. Results on Environment-Dependent and Independent Sce-
narios

Experiments are also performed for environment-dependent,
and independent scenario. For environment-dependent case,
target environment is already seen by the defense model. In
this case, each environment is partitioned into two disjoint
and speaker-independent sets of roughly the same size. The
results obtained using CQCC and TECC,,,,, feature sets with
GMM classifier, are reported in Table III. Particularly for
this scenario, we reported the results with application of
the Cepstral Mean Variance Normalization (CMVN) to each
feature utterance as it has shown significant improvement in
the performance for both the feature sets. This needs further
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investigation and is an open problem. It can be observed
that the TECC,,,, performs better than the CQCC for all
environments.

In environment-independent scenario, defense model is
trained on any of the three environments and tested on the
fourth environment. Results in Table III shows that the pro-
posed TECC,,,,, feature set performs better for three unseen
environments, namely, environment-A, B, and C, whereas both
the feature sets shows the poor performance on environment-
D indicating environment-D could not be expressed as linear
combination of the other environments.

TABLE III

RESULTS (IN % EER) FOR ENVIRONMENT-DEPENDENT vs. INDEPENDENT
CASE ON REMASC DATASET ON GMM CLASSIFIER

Env-A
23.27
13.39
35.65
26.76

Env-B
42.62
27.92
40.89
35.43

Env-C
12.96
10.30
35.95
31.79

Env-D
15.85
9.06
49.99
49.98

Feature Set
CQCC
TECCmax
CQCC
TECCax

Env-Dependent

Env-Independent

Env = Environment
D. Results using Detection Error Trade-off (DET) Curves

Analysis is also performed by observing the DET plots
shown in Fig. 3 [39]. It can be observed that the TECC,,, 4,
feature set is consistently performing well. For development
set, all the DET curves for TECC,,,, are inclined towards
the lower indices of miss probability. Whereas, this trend is
observed for TECC,,,,,-LCNN system on the evaluation set.
Having lesser miss probability is desirable attribute for a good
SSD system.

—r
Q
~

“| (b)

—TECC__ -GMM:(1)
‘max
——TECC,_ -GMM(2)
min

TECC,, om-GMM(3)
—-—CQCC-GMM:(4)
~ — LFCC-GMM:(5)
MFCC-GMM:(6) 0s
-TECC,__ -LCNN:(7)

‘max

QCC-LCNN:(8)
01 F|l——Fusion:(1)%(7) s

Miss probability (in %)

“" False Alarm probability (in %) "' False Alarm probability (in %)

Fig. 3. DET curves for the performance of the systems shown in Table III (a)
development set, and (b) evaluation set. Legends of Fig. 3 (b) are similar as
" Fe 3@y SUMMARY AND CONCLUSIONS

In this study, we proposed a novel strategy of selecting
the subband channel based on the maximum noise energy
estimated, via TEO of the signal. Along with genuine speech
signal, the replayed spoof speech signal consists of additional
components, i.e., impulse responses of the recording and
replay environments and devices. The effect of these additional
components are characterized by acoustic noise in the channel.
To make this characteristic of spoof speech signal more dis-
tinct, we have chosen maximum energy subband channel in the
feature representation. Using this strategy of subband channel
selection having maximum energy, a significant improvement
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is obtained in the performance over the baseline CQCC-GMM
system. It also performed well in environment-dependent
scenario. For environment-independent cases, TECC,,,,, per-
forms better than the baseline, however, results are not promis-

ing

for the deployment of the system in practice. This issue

can be addressed in near future.
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