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Abstract—Speaker’s identity is the most crucial information
exploited (implicitly) by an Automatic Speaker Verification (ASV)
system. Numerous attacks can be obliterated simultaneously
if privacy preservation is exercised for a speaker’s identity.
The baseline of the Voice Privacy Challenge 2020 by INTER-
SPEECH uses the Linear Prediction (LP) model of speech, and
McAdam’s coefficient for achieving speaker de-identification. The
baseline approach focuses on altering only the pole angles using
McAdam’s coefficient. However, from speech acoustics and digital
resonator design, the radius of the poles is associated with various
energy losses. The energy losses implicitly carry speaker-specific
information during speech production. To that effect, the authors
have brought fine-tuned changes in both pole angle and pole
radius, resulting in 18.98% higher value of EER for Vctk-test-com
dataset, and 5% lower WER for Libri-test dataset compared to
the baseline. This means privacy-preservation is indeed improved
by our approach. Furthermore, we have exploited the relatively
poor spectral resolution of female speakers to our advantage for
achieving effective anonymization. To that effect, gender-based
analysis of the obtained results reveals that our approach leads
to better speaker anonymization for females as compared to the
male speakers.
Index Terms: Voice Privacy, speaker de-identification,
anonymization, linear prediction, design of digital resonator.

I. INTRODUCTION

An Automatic Speaker Verification (ASV) system is used
to verify claimed identity of a speaker with the help of
machines [1]. The robustness of an ASV system can be viewed
with two perspectives- robustness in terms of functionality
of speaker verification, and robustness in terms of security
(i.e., robustness from spoofing). With the advent of various of
spoofing attacks, such as speech synthesis, voice conversion
[2], [3], replay [4], [5], and mimicry attacks [6], significant
attention to develop countermeasures against spoofing attacks
has been given in the recent years. By these attacks, an attacker
can impersonate and pretend to be a genuine user (speaker).
Hence, the attacker can successfully access sensitive informa-
tion, wherever authentication via ASV is required to access
it. However, it should be noted that we are far away from
designing a versatile Spoofed Speech Detection (SSD) system,
which would alleviate all the types of attacks. This leads to
a serious vulnerability if speech data of users is published
publicly without any privacy preservation [7]. The attacker
(also called an adversary) can have illegal access to this
data, and might further use information related to speakers’
identities to attack the ASV system [8], [9], as shown in Fig.
1. Therefore, it would be impossible to infer any information

Fig. 1. Game Between Attacker and Voice Privacy System.

about users’ identities with anonymized speech data, even if
the attacker gains illegal access to it, [8]. However, aspects of
the speech signal such as naturalness and intelligibility should
remain intact. This can be achieved by designing an effective
Voice Privacy (VP) system [10].

For de-identification, we have considered the signal pro-
cessing based baseline system provided by the voice privacy
challenge organized by INTERSPEECH 2020 [11], [12], [13].
In this paper, the authors have achieved slightly better results
than the baseline system. Furthermore, gender-based analysis
of the obtained results is shown in this paper. It is important to
note that, to achieve voice privacy, cryptography algorithms,
such as homomorphic encryption, and secure-multiparty com-
putation can also be useful. However, they are not used due to
their difficulty in deployment, and their complexity increases
the overall computational cost of implementation [11], [14],
[15], [16], [17].

The baseline system achieves speaker de-identification by
shifting position of the formant frequencies. This is done by
varying the pole angles with the help of McAdam’s coefficient.
However, from speech acoustics (in particular, vocal tract walls
are pliant and can have movements under acoustic pressure),
there are various energy losses (such as wall vibration, thermal
and viscosity, lip radiation, and glottal boundary) that are
mapped to increase in −3dB bandwidths of formants. These
losses contribute implicitly to speakers’ identities. To that
effect, we varied the radius of the complex z-domain poles
also, instead of just varying the pole angle. This leads to the
widening of the peaks in the Linear Prediction (LP) spectrum,
and also shifting the position of those peaks. We have also
included spectrogram analysis of male and female anonymized
speech signals, which shows better anonymization of female as
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compared to the male speakers. In particular spectral resolution
problem associated with female speech is exploited to achieve
better anonymization for female speakers.

The rest of the paper is as follows: Section-II describes
the all-pole model of speech production and hence, LP based
de-identification. Section-III contains the experimental setup
followed by the obtained results of Equal Error Rate(EER) and
Word Error Rate(WER). Furthermore, gender-based analysis
is done on the results. The paper concludes with Section
IV, describing the achievements of the experiment and some
possible future directions.

II. LP-BASED RESONATOR DESIGN

A. Speech Production Model

For voiced speech, the overall transfer function of the speech
production model is H(z) = G(z)V (z)R(z), where G(z) is
the transfer function of the glottal pulse system, V (z) is the
transfer function of the vocal tract system, and R(z) is the lip
radiation [18].
V (z) is the cascading of 2nd order resonators given by (1),

and the overall H(z) is given by (3):

V (z) =
G∏N/2

k=1(1− 2rkcosθkz−1 + r2kz
−2)

, (1)

H(z) =
G

1−
∑p
k=1 akz

−k , (2)

where G is the gain of H(z), rk and θk are the pole radius
and pole angle, respectively, of kth pole-pair in z-domain
[19]. Before moving into LP model analysis, let us discuss
about modelling of vocal tract system using 2nd order digital
resonators. As per original investigations by L. G. Kersta,
who reported one of the first studies in speaker recognition,
resonance is defined as reinforcement of spectral energy at
or around a particular frequency [20]. Vocal tract system is a
cascade of four 2nd order resonators with first four resonant
frequencies. The shape of the vocal tract system can be
specified with resonant frequencies. The spectrum of the vocal
tract system, H(z), consists of peaks located at the formant
frequencies (also called as formants) [21]. Mathematically,
H(z) is given by (3) and (4).

H(z) =

4∏
i=1

Hi(z), (3)

where each Hi(z) is a 2nd order resonator. Transfer function
for 2nd order resonator is given by:

Hi(z) =
1

(1− p1z−1)(1− p2z−1)
, (4)

p1 and p2 are the complex conjugate pole-pair of 2nd order
resonator transfer function.

For resonance, |Hi(e
jω)| → max, therefore,

d|Hi(e
jω)|

dω
= 0, (5)

solving the (5) will give resonant frequency, ωr,

ωr = cos−1[
1 + r2

2r
cosωo]. (6)

Resonant frequency, ωr is approximately equal to the pole
angle, ωo as r → 1. Impulse response of 2nd order digital
resonator is given by taking inverse z-transform of Eq. (4),
i.e.,

hi[n] = Krni sinωoi(n+ 1)u[n], (7)

where ωoi and ri is angle and radius of ith pole-pair, and
K is the overall gain. The quality (Q)-factor is dependent
on the pole radius. This means that −3dB bandwidth of the
formant is inversely proportional to the pole radius. We get the
sharpest resonance with highest quality (i.e., −3dB bandwidth
= 0) when radius = 1. However, in practical cases, a stable
resonator (i.e., r < 1 in Z-plane) is considered, because in
real physical system, such as speech production, series RLC
circuit, mass-spring-damper system, there is mechanism of
energy dissipation via various energy losses. Hence, we cannot
achieve sharpest impulse-like resonances. Thus, we get some
effect of damping factor (rn) in the form of −3dB bandwidth.
Relationship between −3dB bandwidth and pole radius r is
given by invoking impulse invariant transformation (IIT) to
map stable Laplace-domain pole to stable Z-domain pole, i.e.,

r = e−πBT , (8)

where B is the −3dB bandwidth (in Hz), and T is the
sampling interval (in seconds). Therefore, considering our
case, when the radius is more before anonymization, formants
have sharpest peaks. Thus, the gain is concentrated around
their central (resonant) frequency. For anonymization if pole
radius is decreased, the bandwidth will increase and the
sharpest peaks observed earlier will now become more flat, and
therefore, the gain around the central frequency will spread
(i.e., will tend towards resonance breakdown). Hence, the
formant peaks will not be as distinct as in the original speech
signal, which makes speaker identification more difficult.

Now, resuming to LP model analysis, we can say that speech
modelling can be done by considering an all-pole model.
Moreover, LP model which predicts the current sample of
speech, s[n] using the past p samples of the speech is based
on an all-pole model [22]. The LP model is given by

s̃[n] = a1s[n− 1] + a2s[n− 2] + ...+ aps[n− p], (9)

where a1, a2, ..., ap are called as LP coefficients. This means
that a speech sample can be approximated as a linear combi-
nation of the past speech samples [23]. The system function
for pth order predictor is given as

P (z) =

p∑
k=1

αkz
−k. (10)

The prediction error or LP residual sequence is given by (11),
and associated prediction error filter is defined in (12),

e[n] = s[n]− s̃[n] = s[n]−
p∑
k=1

αks[n− k], (11)
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A(z) = 1−
p∑
k=1

αkz
−k = 1− P (z). (12)

When αk ≈ ak, the prediction error filter, A(z) is sometimes
called the inverse filter because we can recover the input
sequence s[n] by passing Aug[n] through 1

A(z) , where Aug[n]
is vocal tract input with gain A. This inverse filtering removes
(or at least suppresses) the formants of the speech signal, and
the remaining error signal is called LP residual. It is used as
excitation source signal to excite a vocal tract filter (repre-
senting formants) for speech generation. In this context, using
system theory we can fine tune the residual or formants (or
corresponding source-filter coupling) to change the resulting
speech signal characteristics.

B. Formants and speaker de-identification

In an all-pole model, a complex pole-pair at r0ejw0 and
r0e
−jw0 corresponds to one peak of the LP spectrum (i.e.,

one vocal tract formant). It is seen that the formant frequencies
are lower if the length of the vocal tract system is longer [24].
Therefore, a male speaker tends to have lower formants than
a female [18].

In a LP model, the LP coefficients a′is are responsible for
pole locations. Pole locations govern the formant frequency
and bandwidth [25]. Mathematically, formant frequency is
given by Fsθ

2π , where θ is the angle of the pole in radians,
given Fs is the sampling frequency in Hz. The formant
bandwidth is given by Fs

π (−log(r)), where r is the radius of
the pole [18]. As per M.R. Schroeder, human beings emit and
perceive sounds by emitting spectral peaks more dominantly
than the spectral valleys [26]. These spectral peaks are related
to formant frequencies of speech signal.

In our experiments, we have considered all the frequencies
corresponding to the poles generated by LP coefficients. This
includes all the formant frequencies also. Shifting of all the
poles locations by changing their respective pole angles is
done using McAdam’s coefficient. Shifting of all the poles
locations by changing their respective pole radius is done
by fine-tuning w.r.t. the EER and WER obtained so that
intelligibility is not lost. Since every complex conjugate pole-
pair corresponds to one formant frequency [27], only one of
the poles in the pair is considered for de-identification [28].
In the given baseline, pole angles are shifted by a McAdam’s
coefficient with a value of 0.8 initially [11], [12], [29].

III. EXPERIMENTAL SETUP AND PERFORMANCE
EVALUATION

This Section describes the baseline system along with
the experimental results and analysis. The objective perfor-
mance is measured in terms of EER, and WER to evaluate
anonymization and speech intelligibility, respectively [30]. The
EER is computed by ASV system, which relies on x-vector
speaker embeddings, and Probabilistic Linear Discriminant
Analysis (PLDA) [31].

A. Corpora Used

For development data, subsets from two corpora, namely,
LibriSpeech-dev-clean and VCTK are provided [32], [33].
These subsets are further divided into trial and enrollment
subsets. There are 40 speakers in LibriSpeech-dev-clean. There
are 29 speakers in enrollment utterances and 40 speakers in
trial utterances. From these 40 speakers of trial subset, 29
speakers are also included in enrollment subset.

In VCTK-dev dataset, there are total 30 speakers which are
the same for both trial and enrollment utterances. Furthermore,
for trial utterances, there are two parts, denoted as common
part and different part. Both the parts are disjoint in terms of
utterances, however, they have the same set of speakers. The
common part of the trials has utterances from #1 to #24 in
the VCTK corpus, which are the same for all the speakers. The
common part of the trials is meant for subjective evaluation
of speaker verifiability/linkability in a text-dependent manner.
#25 onward utterances are distinct and hence, are included in
the different part of the VCTK-dev dataset.

For evaluation data, the structure is the same as that of
development set, except for the number of utterances.

B. The Baseline System and Proposed Improvement

The baseline system uses LP analysis of speech, which
results in frame-by-frame (with 50% overlap) generation of LP
coefficients and LP residual. The LP coefficients are converted
to poles. Anonymization is achieved by considering only one
pole out of the complex pole-pair and shifting the poles
angle φ by a constant known as the McAdam’s coefficient,
α [29]. The new pole angle is φα. To retain the naturalness
and intelligibility, the residuals are unchanged. They are then
used in the reconstruction of the anonymized speech signal.
Depending on the values of φ and α, the pole is shifted either
in clockwise or anti clockwise direction. The effect of pole
shifting by varying only the pole angle in z-plane is shown in
Fig.2.

Furthermore, to evaluate speaker variability, x-vector
speaker embedding-based ASV system is used. To evaluate
the intelligibility, an ASR system baed on a TDNN-F acoustic
model and a tri-gram Language Model (LM) is used. It gives
the intelligibility score in terms of WER for small and large
LMs. Lower value of WER indicates better intelligibility.
Both of these systems are trained on the LibriSpeech-train-
clean-360 dataset using Kaldi speech recognition toolkit [34],
[32], [33]. Fig.3 shows the schematic representation of the
proposed approach for speaker anonymization. The authors
have modified the pole radius along with pole angles to achieve
better anonymization. Furthermore, the residual is kept intact
for retaining naturalness and intelligibility in the anonymized
speech signal.

Our experiments can be categorized in two parts. First,
shifting of the pole locations is done by changing only the
radius of the pole while keeping the pole angle intact. Second,
shifting of the pole locations by changing both the pole radius,
and the pole angle. In the first set of experiments, the radius of
the each pole is decreased by arbitrarily chosen and fine tuned
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TABLE I
ASV RESULTS OF THE APPROACH: SHIFTING RADIUS TO 0.975 TO ITS VALUE AND MCADAM’S COEFFICIENT=0.8 IN TERMS OF EER% FOR

DEVELOPMENT AND TEST DATA (O – ORIGINAL, A – ANONYMIZED SPEECH DATA, F - FEMALE SPEAKER, M - MALE SPEAKER).

# Dev. set EER % Cmin
llr Cllr Enroll Trial Gen Test set EER % Cmin

llr Cllr

1 libri dev 8.665 0.304 42.891 o o f libri test 7.664 0.184 26.812
2 libri dev 32.950 0.807 115.483 o a f libri test 25.730 0.691 119.399
3 libri dev 24.290 0.652 15.379 a a f libri test 15.880 0.511 15.183
4 libri dev 1.242 0.035 14.246 o o m libri test 1.114 0.041 15.340
5 libri dev 19.570 0.579 112.062 o a m libri test 17.370 0.493 110.935
6 libri dev 11.180 0.368 15.765 a a m libri test 8.909 0.275 21.850
7 vctk dev com 2.616 0.089 0.872 o o f vctk test com 2.890 0.092 0.867
8 vctk dev com 33.140 0.864 100.451 o a f vctk test com 29.770 0.797 107.716
9 vctk dev com 10.760 0.349 43.631 a a f vctk test com 17.050 0.502 47.549
10 vctk dev com 1.425 0.049 1.560 o o m vctk test com 1.130 0.036 1.029
11 vctk dev com 24.500 0.666 97.415 o a m vctk test com 27.680 0.723 107.513
12 vctk dev com 12.540 0.393 34.154 a a m vctk test com 12.990 0.389 36.018
13 vctk dev dif 2.864 0.101 1.150 o o f vctk test dif 4.990 0.170 1.499
14 vctk dev dif 33.860 0.897 102.523 o a f vctk test dif 29.420 0.798 103.744
15 vctk dev dif 13.870 0.450 44.237 a a f vctk test dif 18.470 0.580 49.801
16 vctk dev dif 1.390 0.052 1.162 o o m vctk test dif 2.067 0.072 1.826
17 vctk dev dif 26.450 0.732 101.214 o a m vctk test dif 27.150 0.729 111.908
18 vctk dev dif 13.350 0.433 36.581 a a m vctk test dif 12.630 0.425 35.185

TABLE II
ASR RESULTS OF THE APPROACH: SHIFTING RADIUS TO 0.975 TO ITS
VALUE AND MCADAM’S COEFFICIENT=0.8 IN TERMS OF WER% FOR

DEVELOPMENT AND TEST DATA (O-ORIGINAL, A-ANONYMIZED SPEECH, F
- FEMALE SPEAKER, M - MALE SPEAKER) FOR TWO TRIGRAM LMS: LMs

- SMALL, AND LMl - LARGE LM.

# Dev. set WER % Data Test set WER %
LMs LMl LMs LMl

1 libri dev 5.24 3.84 o libri test 5.55 4.17
2 libri dev 11.76 8.60 a libri test 11.37 8.43
3 vctk dev 14.00 10.78 o vctk test 16.38 12.80
4 vctk dev 29.09 24.58 a vctk test 32.26 27.01

amounts of 15%, 5%, and 2.5% of pole radius that is measured
from the original utterances (i.e., before anonymization). In the
second set of experiments, the radius is changed by the amount
of 15%, 5%, and 2.5%, and the angle of the poles is shifted by
McAdam’s coefficient with values of 0.8 and 0.9. The results
are given in the tables I and II. Their detailed analysis is given
in the next sub-Section.

For objective evaluation, the attacker’s model assumes that
the attackers have access to a single anonymized trial utterance
and several enrollment utterances. It is also assumed that
the corresponding pseudo-speakers of trial and enrollment
utterances are different [11], [12]. Therefore, a higher value
of EER indicates better anonymization, and a lower value of
WER is preferred to ensure intelligibility.

C. Experimental Results and Analysis

This Section presents the experimental results w.r.t. the
baseline system given in the evaluation plan of voice Privacy
challenge [11]. The experiments include varying the radius
and/or phase of the poles of the speech signal derived using
LP source-filter model.

Fig. 2. Example of pole-zero plot for original, and two cases of pole
placement.

1) Pole Placement using only Pole Radius: Keeping the
pole angles unchanged, radius (r) was varied for three cases-
0.85r, 0.95r, and 0.975r. It was observed that when the new
radius was 0.85 times the original radius, the EERs obtained
were slightly better (increased by 3%) than the baseline.
However, the performance in terms of WER was degraded
significantly. For the case when the new radius was 0.95
times the actual radius, the EERs obtained were undesirable
(decreased by 7 to 10) for most of the cases when compared
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Fig. 3. Proposed approach for speaker anonymization : α is McAdam’s
coefficient, and φ is the pole angle in radian.

Fig. 4. %EER for development data (o–original, a–anonymized) for radius=
0.975 to its value, and α = 0.8, F-Female, M-male.

Fig. 5. %EER for test data (o–original, a–anonymized) for radius= 0.975 to
its value, and α = 0.8, F-Female, M-male.

to the baseline system. However, the WER values obtained
were better and were less by 15 for vctk dev and vctk test
datasets, when compared with the provided baseline.

2) Pole Placement using Pole Radius and Angle: We
observed that shifting the pole locations by changing only
the radius does not give appreciable results. Hence, the pole
locations were changed by decreasing the pole radius by

Fig. 6. % WER for development data (o–original, a–anonymized) for radius=
0.975 to its value, and α = 0.8, for two trigram LMs : LMs-small, and
LMl-large LM.

Fig. 7. % WER for test data (o–original, a–anonymized) for radius= 0.975
to its value, and α = 0.8, for two trigram LMs : LMs-small, and LMl-large
LM.

2.5% and transforming the pole angle from φ to φα, where
α = 0.8. In this case, improved results were obtained both in
terms of EER and WER (Tables I and II respectively). The
graphical comparison of obtained results with baseline system
is also provided in Figs. 4, 5, 6 and 7. It was also observed
that if the pole radius was decreased by more than 2.5%,
the WER performance degraded drastically. Hence, with a
new radius of 0.975% of the original radius and McAdam’s
coefficient as 0.8, we get relatively best results in terms of
both EER and WER. This increase in EER with the reduction
in pole radius is justified by the relation of formant bandwidth
with the radius of the pole as described in the Section II-B.
Due to the logarithmic relation between pole radius and
formant bandwidth, and the value of r is less than 1, the
formant bandwidth will increase when the radius is decreased.
This increase in formant bandwidth will degrade the quality
factor (Q) of the resonance in speech spectrum. Hence, the
ASV system will not be able to identify the speaker easily,
thereby, giving a high value of EER, which further indicates
the efficient transformation of the speaker’s identity in the
frequency-domain. For improving the anonymization further,
pole angles are shifted using McAdam’s coefficient. Since
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formant frequencies contain speaker-specific information,
shifting the pole angles gives improved results.

3) Gender-Based Analysis for Voice Privacy: Additional
observation which can be inferred from the results is by
comparing the EER scores of the female and male speakers.
We observe that EER% for the female speaker is higher than
the male speaker in almost every case of development and
evaluation set, given that the anonymization technique on the
utterances is the same for both the female and male speakers
as shown in Fig. 4 and Fig. 5. This result suggests that the
privacy preservation of female speakers is more efficient than
the male speakers. This is also be supported by the fact that
the spectral resolution of female speech is relatively lesser
than the spectral resolution of male speech [1] (since the vocal
tract speech spectrum gets uniformly sampled by high pitch
source harmonics for females). Also, a slight variation in the
glottal waveform can result in considerable amount of change
in the voice characteristics. Therefore, due to the larger pitch
duration in male speakers as shown in Fig. 8, they get sufficient
time to perform activity near glottal closure which is not the
scenario for female speakers due to the lower pitch duration
(almost half the pitch duration of the male speakers). This
large variation in the glottal waveform changes the speaker’s
characteristics drastically. The speaker recognition techniques
uses information based on the 1 to 2 ms glottal closure period.
Hence, tracking this large variation in 1 to 2 ms of glottal
closure period becomes difficult for the ASV systems, which
can lead to the higher EER% values. In particular, the poor
spectral resolution of female speech is advantageous to achieve
the voice anonymization by having lesser stricter intermittent
with the other female speakers’ speech [35] (similar to signif-
icance of over-smoothing of Gaussian Mixture Model (GMM)
parameters for iterative combination of a Nearest Neighbour
search step and a Conversion step Alignment (INCA)-based
voice conversion [36]). In addition, we also observed and

Fig. 8. Illustration of periodic glottal flow and its spectrum. (a)-higher pitch
(Female Speaker), (b)-lower pitch (Male speaker).

compared the spectral energy densities using spectrogram for
original and anonymized speech signals. Fig. 9 shows the
comparison of the spectrogram for a female and a male speaker
from the test dataset of Libri-Dev. These original speech
signals are anonymized by the same method for both males and
females which is by decreasing radius by 2.5% and changing

Fig. 9. Panel-I : Analysis for original speech signal. Panel-II: Analysis for
anonymized speech signal. (a) spectrogram and speech signal for a female
speaker, (b) spectrogram and speech signal for a male speaker.

angle of the poles φ to φ0.8. When φ < 1, the formant
will be shifted to a higher value, and vice-versa for φ > 1.
Since for a male speech, the formants are lower, they will
be shifted to a higher value. Similarly, speech spectrum gets
high pitch source harmonics for females. We observe that there
is a denser frequency spectrum because the energy at lower
frequency values increases, and the energy at higher frequency
values decrease. This makes the spectrogram have more energy
gathered below some frequency, here < 6000Hz. It is also
observed that the energy distribution in the male speaker is
more uniform as compared to the female speaker.

IV. CONCLUSIONS

In this paper, we have used LP model and McAdam’s
coefficient to achieve effective speaker anonymization. The
baseline system in [11] attains anonymization by shifting the
pole angles only. However, the pole radius also contributes to
speaker identification (as pole radius contributes to various
energy losses during natural speech production and hence,
−3dB bandwidth). Thus, the authors have varied the pole
radius along with the pole phases to get better anonymization.
In addition, gender-based analysis is done by observing spec-
trograms, and it has been found that, better anonymization of
female speakers is obtained as compared to the male speakers.

In future, better anonymization can be achieved by extract-
ing speaker specific information even from the residual [37].
Furthermore, other signal processing techniques apart from LP
based analysis, can be used for better anonymization, along
with neural network-based approaches as given in baseline-1
of the Voice Privacy challenge 2020. It is based on x-vectors
and neural waveform models which can provide better EER
and WER results [12], but it does so at the cost of complex
and expensive training based method.
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