
Query-By-Example Spoken Term Detection Using
Generative Adversarial Network

Neil Shah∗§, Sreeraj R§, Maulik C Madhavi‡, Nirmesh J. Shah§ and Hemant A. Patil§
§ Dhirubahi Ambani Institute of Information and Communication Technology (DA-IICT), Gandhinagar, India

E-mail: {neilshahnms, srpillai88}@gmail.com, {nirmesh88 shah, hemant patil}@daiict.ac.in
∗ TCS Research, Tata Consultancy Services Pvt. Ltd., Pune, India

‡ Department of Electrical and Computer Engineering, National University of Singapore, Singapore
E-mail: maulik.madhavi@nus.edu.sg

Abstract—Several Neural Network (NN)-based representation
techniques have already been proposed for Query-by-Example
Spoken Term Detection (QbE-STD) task. The recent advance-
ment in Generative Adversarial Network (GAN) for several
speech technology applications, motivated us to explore the
GAN in QbE-STD. In this work, we propose to exploit GAN
with the regularized cross-entropy loss, and develop a frame-
work featuring GAN, trained using Gaussian Mixture Model
(GMM)-based posterior labels. The proposed GAN maps the
speech-specific features to the unsupervised posterior labels. This
mapping represents the speech through an unsupervised GAN
posteriorgram (uGAN-PG), for matching the query (keyword)
with the utterances in the document. The QbE-STD, using the
proposed posteriorgram is performed on the TIMIT database.
We compare the performance of the proposed uGAN-PG with
the unsupervised Deep Neural Network (DNN) posteriorgram
(uDNN-PG) and obtained the relative performance improvement
of 10.32 % Mean Average Precision and 5.6 % Precision by
considering top N queries (p@N) over uDNN-PG.
Index Terms: Query-by-Example, Generative Adversarial
Network, Posteriorgram, Spoken term detection

I. INTRODUCTION

Query-by-Example Spoken Term Detection (QbE-STD) is
the process of retrieving relevant documents from the entire
speech corpus, using an audio query (i.e., keyword is in
spoken audio form) [1]–[4]. The QbE-STD follows acoustic
signal-level matching of speech documents with the audio
query instead of matching the transcribed audio. With an
increase in the availability of online audio that contains multi-
languages and Out-of-Vocabulary (OOV) words, transcribing
entire speech collection cannot offer a generic solution to
the problem of audio search [5], [6]. Hence, improving the
performance of QbE-STD using recent and efficient techniques
is of utmost importance. MediaEval Spoken Web Search 2011
task was initiated to retrieve language-independent spoken
content for low resource languages [1], [5], [7].

One of the main challenges in QbE-STD is to obtain a
speaker-independent representation of audio signals for match-
ing and precise retrieval [8]–[10]. Among the different pro-
posed representations, unsupervised Gaussian Posteriorgrams
and its recent variants, such as Dirchlet Process Gaussian
Mixture Model (DPGMM), have been explored in QbE-STD
task [11], [12]. Furthermore, Gaussian-Bernoulli Restricted

Boltzmann Machine (GBRBM) [13], Unsupervised Bottle-
neck Features (uBNF) [14], Vocal Tract Length Normalized
(VTLN) [15]–[18] and Unsupervised Deep Neural Network-
based posteriorgrams (uDNN-PG) [14] have been proposed
to provide a better representation for the speech. uBNF and
uDNN-PG use labeled posteriorgram as in supervision to
obtain better posteriorgrams, while the Gaussian Posteriorgram
(GP) is unsupervised [14].

The posteriorgram-based methods, such as GMM, DNN,
etc. uses Maximum Likelihood (ML)-based optimization, that
assumes the output variables follows Gaussian distribution.
This prior assumption on the data distribution may prevent
the network from its optimization [19]–[21]. However, Gen-
erative Adversarial Network (GAN) adversarially optimizes
their parameters by not posing any specific prior assumption
on the data. Hence, in this paper, we propose to exploit
GAN as an alternative to the DNN-based posterior feature
representation for the QbE-STD. We present an unsupervised
GAN-based posterior representation (uGAN-PG), which is
trained on unsupervised labeled GMM posteriorgram [14]. The
proposed regularized adversarial network, uGAN performs
better than uDNN, during the objective evaluation on a few
selected feature sets. The proposed system is evaluated using
Mean Average Precision (MAP) and precision at N (p@N)
[22]. To the best of authors’ knowledge, this is the first study,
which proposes to exploit the potential of GAN for the QbE-
STD task.

II. UNSUPERVISED FEATURE REPRESENTATION

A. Unsupervised Posterior Label

Alike [14], in this work, we consider unsupervised GMM
to represent the speech in a predetermined number of clusters.
For N-component GMM, the posteriorgram for a speech
frame, xk, from entire M frames, X = {xi}Mi=1, is given by
pk = (pk,1, pk,2, ..., pk,N ), where pk,n denotes the posterior
probability of the kth speech frame to be generated by the nth

Gaussian component [11], [23]. We follow the same procedure
in labeling the posteriorgram as suggested in [14], [24]. For
a frame xi, the label li is a vector of N elements, similar
to the posteriorgram with its maximum posterior probability
component set to ‘1’, and value of all the other components
set to ‘0’. li is referred as the labelled posteriorgram for xi.
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Fig. 1. Proposed framework of QbE-STD based on unsupervised GAN-based posteriorgram features (uGANs). (a) trains the uGAN for generating posteriorgram
which then can be used for acoustic pattern matching with the user input query as shown in (b).

B. Unsupervised GAN Posteriorgram (uGAN-PG)

GAN is a generative model that learns deep representation
through the adversarial training between a pair of networks
in competition with each other [19], [25]. GAN produces
the samples, resembling the data distribution X , by learning
the mapping function between the samples y from some
prior distribution Y to the samples x belonging to X . Here,
we propose to exploit these characteristics in learning the
posterior-like representation of the audio queries. Here, the
objective of the generator (G) is to generate posterior-like
representation and the objective of the discriminator (D) is
to differentiate between the labeled-GMM posteriorgram and
the output generated by the G network.

Regularization of the adversarial objective function facili-
tates the network in learning the desired representation corre-
sponding to the given input, which otherwise may fail [12],
[20], [21], [26]–[28]. Optimization through cross-entropy (CE)
loss function helps the network to reduce the divergence be-
tween the data distribution and the predicted distribution [29].
The regularized G network objective function (i.e. V (G)))
with the cross-entropy loss can be given by:

min
G

V (G) = −Ey∼Y [log(D(G(y)))] +

Ex∼X ,y∼Y [x logG(y) + (1− x) log(1−G(y))].
(1)

Training a DNN for unsupervised clustering of data is
challenging [30]. However, as suggested in [31], a weak

classifier output can be used as labels for training a strong
classifier network. This provides feasibility to use DNN in
the low resource problem. It has been established in [14] that
the uDNN trained on GMM-based labels mostly outperforms
the conventional GMM approach. In this paper, we compare
the performance of uDNN model, with the proposed uGAN
model. We use GMM-based labels for training both uDNN
and uGAN in the QbE-STD, as suggested in [14].

III. DETAILS OF QBE-STD

The proposed QbE-STD framework is exemplified in Fig.
1. The proposed uGAN-PGs and uDNN-PGs are extracted by
introducing cepstral frame-level features to the uGAN and
uDNN, respectively. This is followed by taking the output
from the last layer of the G network of uGAN and uDNN.
In this study, we use subsequence-DTW (SDTW) along with
symmetric Kullback Leibler (KL) divergence for distance
computation and pattern matching [32], [33]. Let ‘q’ and ‘u’ be
the N component frame-level posteriorgram representation of
query and utterance [2]. The symmetric KL distance between
q and u is given by:

dq,u =

N∑
i=1

[
q(i) log

(
q(i)

u(i)

)
+ u(i) log

(
u(i)

q(i)

)]
. (2)

SDTW is applied to the obtained distance matrix to fetch
the optimal warping path that detects the matching query
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pattern in an utterance, with a minimum distance cost function.
The cost value is equivalent to the dissimilarity between the
frames. Based on the cost calculated for all the utterances
in the speech data collection, the most relevant documents
are retrieved. Traditional evaluation measures, such as mean
Average Precision (MAP), precision at N (p@N) are used as
defined in [2], [22].

IV. EXPERIMENTAL SETUP

A. Dataset Used

The proposed system is evaluated on the TIMIT database
[34]. The training utterances are divided into a training set and
validation set with a ratio of 9:1 [14]. For testing, we have
extracted 503 queries, with 84 unique queries from speakers
that are disjoint from the training set. Average precision
is calculated over all the unique queries and then MAP is
computed for the entire dataset. Experiments are conducted
with, 36-dimension (d) Mel filterbank (FBank) as Feat1, 72-
d FBank+∆ (36-d FBank + 36-d ∆) as Feat2 and 39-d
MFCC+∆+∆∆ (13 each) as Feat3. All the feature sets are
extracted using a 25 ms window, with a 10 ms shift, and are
post-processed by the mean and variance normalization [2].

B. Network Setup

The uDNN and uGAN are trained for all the aforementioned
feature sets along with the varying GMM components and the
context size. Initially, GMM is trained with the 39-d MFCC,
which acts as the baseline weak classifier feature set [14].
A different number of GMM components are extracted from
64, 128, and 256 in the baseline GP system, and the GP is
used as a label (target) for uDNN and uGAN systems. While
the [+/-I] contextual features are passed to the input side,
the labeled central frame posteriorgram is fed to the output
layer of the network for training. In uGAN, the G network
is kept identical to uDNN, for analyzing the performance of
adversarial optimization over the ML-based optimization [21].
The uDNN and G network has four hidden layers. Each layer
has 1024 hidden units, followed by batch normalization and
nonlinear activation (as used in [35]). A significant improve-
ment in the performance is noted by the inclusion of the batch
normalization [36], before applying the nonlinear activation
and the dropout [37]. The output layer has (64,128,256) units,
depending on the number of components, respectively, for all
the three feature sets. At each layer, the dropout rate of 0.5 is
maintained [37]. The output layer uses softmax operation, to
produce posteriorgram-equivalent feature representation, while
all the other layers use sigmoid activation. However, we use
labeled posteriorgram (1-hot) vector representation to use CE
loss during training.

TABLE I
CONFIGURATIONS OF GANS AND DNNS

Inputs Ndim Context DNN and G D
Feat1 36 +/-1,+/-3,+/-5 1024x4,64/128/256 512x3,64
Feat2 72 +/-1,+/-3,+/-5 1024x4,64/128/256 512x3,64
Feat3 39 +/-1,+/-3,+/-5 1024x4,64/128/256 512x3,64

The D network of uGAN has three hidden layers, with 512
hidden units in each layer. The D network also employs batch
normalization, followed by the tanh nonlinear activation. The
output layer has 64 units with sigmoid activation. An Adam
optimizer [38] is used for minimizing the cross-entropy, with
a learning rate of 0.001. All the networks are trained for 150
epochs, with an effective batch size of 1000. The details of
this configuration are shown in Table I.

V. EXPERIMENTAL RESULTS

Fig. 2 compares the posteriorgram for the query ’intelli-
gence’ for uDNN and uGAN models. The red dash-dot circle
represents the ambiguity in posterior probability across the
components in uDNN, which may lead to false detection.
However, the probabilities are more compactly represented by
the proposed uGAN-PGs.

Fig. 2. Posteriorgram representation for the query ’Intelligence’ for (a) uDNN,
and (b) uGAN. More ambiguity in uDNN-PG can be inferred from the regions
shown via dotted circles.

Fig. 3. MAP performance for uGAN-PG and uDNN-PG, along with their 95
% confidence interval, for all the three feature sets, with a specific 256 GMM
components and +/- 1 context length.

The feature-level analysis on both the systems from Fig.
3, shows the better posterior representation captured by the
FBank features (notably 36-d FBank) over MFCC, as also
analyzed in [39]. Moreover, for all the feature sets and with
the selected configuration, uGAN significantly outperforms the
uDNN. Table II shows the performance comparison between
the proposed uGAN-PGs and uDNN-PGs, for all the three
feature sets, with varying GMM components and context size.
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TABLE II
PERFORMANCE COMPARISONS AND THE 95 % CONFIDENCE INTERVAL COMPUTED FOR UGAN-PG AND UDNN-PG FOR ALL THE FEATURE SETS,

DIFFERENT NUMBER OF GMM COMPONENTS AND CONTEXT SIZE

+/-5 +/-3 +/-1
Feature N GAN DNN GAN DNN GAN DNN

set (uGAN-PG) (uDNN-PG) (uGAN-PG) (uDNN-PG) (uGAN-PG) (uDNN-PG)

Feat1 64 27.25±2.11 25.87±1.84 29.33±2.05 31.65±1.84 28.20±2.18 30.78±1.75
(26.07±4.79) (25.95±4.25) (26.48±4.70) (30.31±4.02) (26.45±5.12) (30.13±3.96)

(36-d) 128 30.54±2.08 30.56±1.85 32.20±2.05 34.25±1.92 29.02±2.00 31.36±1.73
(27.83±4.73) (30.53±4.25) (30.52±4.53) (32.67±4.24) (27.71±4.52) (30.90±3.68)

256 31.85±2.06 32.14±1.82 35.15±2.08 34.92±1.84 35.06±2.11 31.78±1.70
(30.72±4.56) (31.60±4.17) (33.81±4.49) (33.73±4.18) (33.48±4.69) (31.70±3.81)

Feat2 64 27.37±2.08 27.31±1.88 29.42±2.06 28.62±1.89 29.47±2.08 30.58±2.01
(26.29±4.94) (26.94±4.33) (26.969±4.74) (28.78±4.40) (27.10±4.74) (28.42±4.60)

(72-d) 128 30.05±2.07 31.26±1.91 32.27±2.01 31.97±1.92 32.59±2.09 32.54±1.91
(28.63±4.90) (30.61±4.28) (30.12±4.49) (30.60±4.22) (31.06±4.60) (31.70±4.39)

256 31.98±2.06 32.08±1.84 34.90±2.07 33.21±1.88 34.93±2.07 34.22±1.87
(31.05±4.61) (31.71±4.09) (33.49±4.47) (32.59±4.28) (32.91±4.53) (32.86±3.96)

Feat3 64 25.91±1.95 25.81±1.76 28.39±1.95 27.48±1.78 27.97±1.97 28.86±1.82
(23.72±4.71) (25.81±4.10) (26.64±4.62) (26.56±4.14) (26.40±4.54) (27.52±4.39)

(39-d) 128 29.19±2.03 30.97±1.87 31.46±2.02 32.10±1.78 31.38±2.02 31.82±1.76
(27.70±4.68) (30.75±4.27) (29.46±4.69) (30.97±4.01) (29.80±4.61) (30.57±4.04)

256 31.17±2.04 31.22±1.78 33.01±2.04 32.48±1.84 33.22±2.02 32.69±1.84
(29.30±4.57) (30.35±4.05) (31.04±4.39) (31.68±4.15) (30.97±4.61) (32.01±4.24)

N indicates the number of GMM components, +/-I indicates I frames to the left and right of the central frame, ’±’ indicates margin of error
corresponding to 95 % CI, the bold content indicates the case, where uGAN outperforms uDNN, and figures in round brackets shows the p@N.

TABLE III
AN ANALYSIS ON RELATIVE PERFORMANCE (IN %) OF UGAN-PG OVER

UDNN-PG FOR 36-D FBANK FEATURES

N +/-5 +/-3 +/- 1
64 5.33 % ↑ 7.9 % ↓ 9.14 % ↓

128 0.6 % ↓ 6.3 % ↓ 8.06 % ↓
256 0.9 % ↓ 0.66 % ↑ 10.32 % ↑

↑ shows performance increment and ↓ shows performance decrement.
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Fig. 4. Performance comparision with 36-d FBank features, with 256 GMM
components and +/-1 context length.

Table III shows the relative improvement (bold figures)
gained by uGAN-PG for 36-d FBank features over uDNN-
PG. The posteriorgram represented by uGAN with +/- 1
context size and 256 GMM components, results in 10.32
% relative increment in MAP over uDNN-PG. On the other
hand, the uGAN-PG with +/- 5 context length and 64 GMM
components, results in 5.33 % of relative improvement in
MAP. These dictate the trade-off in selecting the context length
and GMM labels, while training uGAN. The total number of
English phoneme set in TIMIT is set to 61. However, the
interspeaker and intraspeaker variations in the acoustic pattern
can be captured more effectively by increasing the number

of components, which can be inferred from Table II, for all
the feature sets. On the contrary, when the context length is
increased, the number of parameters to be learned increases,
which leads to overfitting. However, when the Gaussian com-
ponents are further increased to 512, the relative decrement of
11.4 % MAP and 9.8 % p@N is observed for uGAN-PG.

The performance comparison between uGAN and uDNN
(36-D FBank, 256 GMM components, and +/- 1 context
length) shown in Fig. 4 displays the average MAP scores
obtained for random selection of 84 unique queries repeated
10 times for each set. Each set contains an increment of 5
random unique queries. The margin of error corresponding
to the 95 % CI for uGAN-PG and uDNN-PG is 2.11 and
1.70, respectively. The high range of MAP in uGAN over
uDNN, as visible from Fig. 4 accounts for the higher error
margin in uGAN. Moreover, the p@N analysis on the same
feature set demonstrates the relative improvement of 5.61 %
by the uGAN-PGs. This shows the potential of adversarial
optimization as a statistically significant alternative to an ML-
based optimization for the QbE-STD task.

VI. CONCLUSIONS

In this work, we proposed a framework for QbE-STD
using a Generative Adversarial Network (GAN). In particular,
a DNN-based GAN with a cross-entropy regularization is
employed for extracting an unsupervised posterior feature
representation (uGAN-PG), trained on labeled GMM poste-
riorgram. The uGAN-PG extracted using 36-D Mel FBank
features, with 256 GMM components and +/- 1 context length,
generates the posteriorgram with 10.32 % and 5.61 % relative
improvement in MAP and p@N, respectively, over uDNN-PG.
Moreover, the statistical analysis on the selected feature set
reveals the significant improvement in precision, irrespective
of any randomly selected set of queries. Our future work
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will include exploring the recent advancements in the GAN
architecture (such as Wassertian GAN) for the QbE-STD
task. Moreover, the GAN-based adversarial framework can be
regularized with energy-based regularizer which is known to
reduce the redundancy and induces generalization.
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