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Abstract— In daily listening environments, speech is always 

distorted by background noise, room reverberation and 

interference speakers. With the developing of deep learning 

approaches, much progress has been performed on monaural 

multi-speaker speech separation. Nevertheless, most studies in 

this area focus on a simple problem setup of laboratory 

environment, which background noises and room 

reverberations are not considered. In this paper, we develop a 

new objective function named optimal scale-invariant signal-

noise ratio (OSI-SNR), which are better than original SI-SNR at 

any circumstances. In addition, we propose a curriculum 

learning method based on conv-TasNet to deal with the notable 

effects of noises and interference speakers. By jointly using the 

OSI-SNR with curriculum learning method, our algorithm 

outperforms separation baseline substantially. 

Keywords: conv-TasNet, multi-speaker speech separation, 

noisy environment, SI-SNR 

I. INTRODUCTION 

In real world environments, speech is always corrupted by 

background noise, room reverberation and interference speakers. 

The presence of such noise, interference and reverberation has a 

corrupting negative effect on speech intelligibility and speech 

quality. Many applications, such as speaker identification and 

automatic speech recognition, become much more challenging in 

such severe environments, as well as normal hearing and hearing-

impaired listeners [1], [2], [3], [4]. Therefore, better enhancement, 

dereverberation and separation have a significant benefit to not only 

human listeners but also many speech processing missions. 

Over the past few decades, significant efforts have been, and 

still are being devoted to speech enhancement and speech 

dereverberation [5], [6], [7], [8]. However, only limited 

breakthrough has been made in single-channel speaker-independent 

multi-speaker speech separation task. The most severe difficulties 

we faced, label permutation problem, are not solved until last ten 

years.  

More recently, several particular approaches have been 

proposed to deal with the label permutation problem. In [9], [10], 

Permutation Invariant Training (PIT) and utterance-level PIT 

choose the speaker arrangement on the basis of the lowest 

separation error within all possible permutations. In [11], [12], Deep 

Clustering (DPCL) algorithm achieves label assignment using the 

clustering methods in a deep embedding space. In [13], Deep 

Attractor Network (DANet) produces attractors in deep embedding 

space to achieves label assignment. In [14], a time-domain audio 

separation network (TasNet) is proposed. In TasNet, traditional 

short-time Fourier transform (STFT) is replaced with a 

convolutional encoder-decoder architecture. In [15], the fully-

convolutional TasNet (conv-TasNet) is proposed. The use of 

stacked dilated 1-D convolutional blocks to replace the deep LSTM 

networks for the separation step not only significantly reduces the 

model size, but also has a better performance, even surpasses the 

performance of ideal time-frequency magnitude masks. In [16], a 

source-aware context network is designed to address the label 

permutation problem by exploiting temporal dependencies and 

continuity of the same speech source. 

With the astonishing achievements on monaural multi-speaker 

speech separation, only several works considered the robustness of 

speech separation algorithms [17], [18], [19], despite of the 

impressive achievements on clean speech separation. In this paper, 

a baseline of speech separation in the noisy environment is built. 

 With the foundation of noisy speech separation dataset and 

speech separation baseline, we present a novel objective function 

named optimal scale-invariant signal-to-noise ratio (OSI-SNR） . 

We not only derive the formula of OSI-SNR, but also show that 

OSI-SNR is better than original SI-SNR in any circumstances when 

they are used as loss function. Furthermore, we propose a 

curriculum learning method applied to noisy speech separation 

system. We also propose a frequency analysis method to visualize 

and demonstrate the effect of curriculum learning. 

II. ALGORITHM DESCRIPTION 

A. Problem formulation. 

Let xi(t) and n(t) denote speech from speaker i and background 

noise, respectively. The noisy multi-speaker speech y(t) is modeled 

by 

 𝑦(𝑡) = ∑ 𝑥𝑖(𝑡)
𝑁
𝑖=1 + 𝑛(𝑡) (1) 

The goal of monaural robust speech separation is to estimate 

the individual speech signals from a given noisy mixture of speech 

signals and noises. In this work the number of target signals is 

assumed to be known and set to 2. 

B. baselines settings. 

The baselines are based on conv-TasNet [15]. The systems 

consist of three modules: an encoder module, a separation module 

and a decoder module.  

The first baseline system is exactly same as conv-TasNet. The 

noisy mixture y(t) is input to the 1-D convolutional encoder module 

and embedded to a spectrum space. At this paper, we will call this 

embedded space matrix as spectrum, because we considered and 

demonstrated later that this embedded space matrix is quite similar 

to traditional spectrum. The temporal convolutional network (TCN) 

separation module estimates the masks based on the encoder output. 
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The dilate factors in the separation module increase exponentially, 

which guarantee an enough reception field to take advantage of the 

long-range dependencies of the speech signal. The output of the 

separation module multiplied with the output of encoder is passed to 

the decoder module and transferred to clean separated speech signal. 

Since the output of the network are the waveforms of the 

estimated clean signals, here the scale-invariant source-to-noise 

ratio is used and Permutation invariant training (PIT) is applied 

during training to settle the permutation problem. Consequently, the 

loss function of baseline is: 

 𝐿𝑃𝐼𝑇 = min
𝜋∈P

∑ −𝑆𝐼𝑆𝑁𝑅(𝑥𝑐(𝑡), 𝑥𝜋(𝑐)̂(𝑡))𝑐  (2) 

Where P is the set of all possible permutations over the set of 

sources {1, …, C}, 𝑥𝑐(𝑡) denotes the recovery separated speech, 

𝑥𝜋(𝑐)̂(𝑡)  denotes the original clean speech. The definition and 

improvement of SI-SNR will be explained in next section. 

C. optimal SI-SNR. 

The use of Scale-Invariant Source-to-noise ratio (SI-SNR) is a 

remarkable improvement against SNR [21]. The definition of 

frequently used SI-SNR is given as: 

 𝑠𝑡𝑎𝑟𝑔𝑒𝑡 =
〈𝑠̂,𝑠〉𝑠

‖𝑠‖2
 (3) 

 𝑒𝑛𝑜𝑖𝑠𝑒 = 𝑠̂ − 𝑠𝑡𝑎𝑟𝑔𝑒𝑡 (4) 

 𝑆𝐼 − 𝑆𝑁𝑅 ≔ 10𝑙𝑜𝑔10
‖𝑠𝑡𝑎𝑟𝑔𝑒𝑡‖

2

‖𝑒𝑛𝑜𝑖𝑠𝑒‖
2  (5) 

Where 𝑠 represents the original speech signal and 𝑠̂ represents the 

reconstructed speech signal. This method adjusts original speech 

signal to a proper scale, and calculates an adjusted SNR. 

It is obvious that the length of 𝑠𝑡𝑎𝑟𝑔𝑒𝑡  is not relevant of 

original signal 𝑠 . We can calculate that the equal definition of 

𝑠𝑡𝑎𝑟𝑔𝑒𝑡 is as below: 

 𝑠𝑡𝑎𝑟𝑔𝑒𝑡 = |𝑠̂|𝑐𝑜𝑠𝜃𝑠 (6) 

Where  𝑠 is the unit vector at same direction of 𝑠, 𝜃 is the angle 

between 𝑠𝑡𝑎𝑟𝑔𝑒𝑡 and 𝑠. 

While the length of 𝑠𝑡𝑎𝑟𝑔𝑒𝑡  and length of 𝑠 are proportional, 

the SNR after adjusted is not relevant of length of 𝑠𝑡𝑎𝑟𝑔𝑒𝑡 or 𝑠, but 

only relevant of angle 𝜃. The equal definition of SI-SNR is as below: 

 SI − SNR = 10𝑙𝑜𝑔10
1

tan2 𝜃
 (7) 

As [21] explained, we get this formula by finding a point in 𝑠 

which is closest to 𝑠̂, i.e. 𝛼𝑠 ⊥ (𝛼𝑠 − 𝑠̂). The orange brace in Fig.1. 

illustrates this definition of SI-SNR. However, there is no strong 

reason to do so. The source vector and noise vector don’t have to be 

orthogonal. If we adjust 𝑠  to be closest to 𝑠̂ , that will lead to a 

different result, which is also a scale-invariant result. 

In other words, the definition of scale-invariant is not unique. 

A calculating method can be called a scale-invariant SNR as long as 

the scale of 𝑠𝑡𝑎𝑟𝑔𝑒𝑡 is not relevant to the scale of original speech 

signal. 

Table.1 shows different definitions of SI-SNR. But which one 

is better? If we can compute a maximum SI-SNR with a fixed 𝑠 and 

𝑠̂, then this calculating method is easier to optimize and less likely 

to fall into a local best while training.  

 

 

Fig. 1: Illustration of the definitions of SI-SNR and OSI-

SNR 

 

Therefore, let’s find the maximum SI-SNR. 

 𝑆𝐼 − 𝑆𝑁𝑅(𝜆) = 10𝑙𝑜𝑔10(
‖𝜆𝑠‖2

‖𝜆𝑠−𝑠̂‖2
) (8) 

 𝜆 = argmax
𝜆

𝑆𝐼 − 𝑆𝑁𝑅(𝜆) (9) 

Where 𝜆 indicates the scale adjust factor. The derivative of this SI-

SNR is calculated below. 

 𝐹(𝜆) =
‖𝜆𝑠‖2

‖𝜆𝑠−𝑠̂‖2
 (10) 

 𝐹′(𝜆) =
2𝑘𝑠2(𝑠̂2−𝑘𝑠𝑠̂)

|𝑘𝑠−𝑠̂|4
= 0 (11) 

 λ =
|𝑠̂|2

〈𝑠,𝑠̂〉
 (12) 

This maximum SI-SNR will be called optimal SI-SNR (OSI-SNR) 

in this paper. The performance of OSI-SNR will be demonstrated in 

chapter 4.  

Table. 1: The definitions and equal definitions of SI-SNR 

and OSI-SNR. 

SI-SNR OSI-SNR 

𝑠𝑡𝑎𝑟𝑔𝑒𝑡 =
〈𝑠, 𝑠̂〉𝑠

|𝑠|2
 𝑠𝑡𝑎𝑟𝑔𝑒𝑡 =

|𝑠̂|2𝑠

〈𝑠, 𝑠̂〉
 

𝑠𝑡𝑎𝑟𝑔𝑒𝑡 = |𝑠̂|𝑐𝑜𝑠𝜃𝑠 
𝑠𝑡𝑎𝑟𝑔𝑒𝑡 =

|𝑠̂|𝑠

𝑐𝑜𝑠𝜃
 

SNR = 10𝑙𝑜𝑔10
1

tan2 𝜃
 SNR = 10𝑙𝑜𝑔10

1

sin2 𝜃
 

 

Table.1 shows definitions of different SI-SNRs. SI-SNR is the 

commonly used SI-SNR. If we compare the SI-SNR and OSI-SNR, 

we will find they are opposite in many ways. The green brace in 

Fig.1 also demonstrates the differences between SI-SNR and OSI-

SNR. 
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Fig. 2: The illustration of SI-SNR and OSI-SNR. 

Fig.2 shows the numerical values of different SI-SNRs. The 

boundaries of different SI-SNRs is easy to observe from Fig.2 and 

calculate from the equal definitions in Table.1. When 𝜃 ranges from 

0 to 
𝜋

2
, the value of SI-SNR ranges from −∞  to +∞ , while the 

values of OSI-SNR range from 0 to +∞ . The meaning and 

explanation of fig.2 will be shown in section of experimental results. 

Here we made a simple summary of OSI-SNR. 

The original idea behind SI-SNR is using the scale-invariant-

ness of this metric to get a stable gradient to quantify the processed 

speech. But the source vector and noise vector don’t have to be 

orthogonal as original defined. There are all kinds of different SI-

SNRs, which we only mentioned two of them in this paper. The key 

idea of this paper is that if a 𝑆𝐼 − 𝑆𝑁𝑅(𝜃, 𝜆𝑚𝑎𝑥) is larger than any 

other 𝑆𝐼 − 𝑆𝑁𝑅(𝜃, 𝜆), then this 𝑆𝐼 − 𝑆𝑁𝑅(𝜃, 𝜆𝑚𝑎𝑥) is the ridge line 

of metric in high dimension space when we maximize SI-SNR by 

optimize 𝜃. As we derived before and demonstrate later, OSI-SNR 

will be easier to optimize and faster to converge, and not likely to 

fall into a local optimum. 

D. curriculum learning. 

a)  frequency analysis. 

The monaural multi-speaker speech separation system used in 

this work is based on conv-TasNet [15]. The time-domain raw 

waveform was input to a 1-D encoder and become time-frequency 

representations. A TCN processes the representations to complete 

the separation function and output two masks. After multiplied with 

original speech representations, the 1-D decoder recover the both 

single clean speech from the recovered single speech 

representations. 

The encoder is consisting of a finite impulse response filter 

bank and a nonlinear activate function, which is ReLu function in 

this work. This structure of encoder is easy to analyze and visualize. 

The technique of analyze the frequency of encoder is 

demonstrated below. 

The size of kernels in the encoder, which is also the frame 

length of speech signal, is set to 20. This is a pretty small number 

for frame length.  

So, we zero-padding the kernels to a large number, like 800 in 

this work. (512 or 1024 are convenient as well.) After 800-points 

DFT, we take the left 400 points and calculate the absolute value of 

it. That’s how we get the response of each kernel against each 

frequency bin. 

With the same technique, we can visualize the decoder of 

conv-TasNet as well, since the decoder is a deconvolution layer, 

and can be considered as transposition of encoder. 

b)  curriculum learning method 

One of the key ideas of curriculum learning [20] is let the 

network learn easy datasets before hard datasets just like human 

learning everything. This can force the model to get a better local 

optimum and fasten the speed of training. 

In this work, the method of curriculum learning is to train the 

model with the clean dataset first as a pretraining step if we want to 

train a noisy speech separation system.  

Fig. 3 demonstrate visualization of encoders of three systems. 

The top two sub-figures of fig.3 show encoder of clean speech 

separation system. We can see that this encoder does complete 

time-to-frequency transformation. The distribution of filters’ 

frequency matches human cochlear very well. Just like gammatone 

filterbanks or Mel-frequency filterbanks. 

The middle two sub-figures of fig.3 show encoder of noisy 

speech separation system trained without curriculum training, i.e. 

trained with random initial. We can’t say that the filter response 

must be cochlear-like distribution. But absolutely not like sub-

figure middle-right. Many filters have approximately the same 

frequency response, which is a waste of computation and network 

memory. This indicates the noisy speech separation system are hard 

to converge and easy to fall into a local optimum. 

The bottom two sub-figures of fig.3 show encoder of noisy 

speech separation system trained with curriculum learning, i.e. 

trained with model initialed with clean model. This time the results 

perform well and are easy to understand. With curriculum learning, 

the model is initialed with clean model and already got a better 

circumstance, so the model is much likely to fall into a better local 

optimum or even the global optimum relatively. 

By the way, we also tried to transfer the encoder and decoder 

from clean speech separation system directly. It is useful but not as 

good as curriculum learning. The model after transfer still need a 

fine-tune step, which makes it almost the same as method of 

curriculum learning. 

 

 

Fig. 3: the central frequency distribution and frequency response of 

filters in the encoder of clean system (the top two sub-figures), 

noisy system trained without curriculum learning (the middle two 

sub-figures) and noisy system trained with curriculum learning (the 

bottom two sub-figures). 
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III. EXPERIMENTAL SETTINGS 

A. datasets. 

The 2-speaker speech separation dataset we evaluated our 

system on is based on wsj0-2mix [11], which contains 30 hours of 

training data, 10 hours of validation data and 5 hours of evaluation 

data. When generating mixtures, the way of randomly choosing 

speakers and utterances, the SNR adjustment between two speakers 

and other settings are exactly same as wsj0-2mix. However, we add 

some noise after mixing the utterances. The noise file is from 

NoiseX [25] noise sets. The chosen noise type is babble, destroyer 

engine, destroyer ops and factory1. The SNR between clean mixture 

and noise is normally distributed in -5dB to 5dB, i.e. for most noisy 

speech, 20 ∗ 𝑙𝑜𝑔10
|𝑥1(𝑡)+𝑥2(𝑡)|

|𝑛(𝑡)|
≈ 0. 

We also compared and evaluated SI-SNR and OSI-SNR in 

clean speech separation systems. When we test them in clean 

speech separation system, the wsj0-2mix dataset is used. 

B. network settings. 

The networks are trained for 100 epochs on 4-seconds long 

segments. Adam optimizer [22] is used. The learning rate is 

initialed to 1e-3 and halved if the accuracy of validation set is not 

improved in three epochs. The hyperparameters of the network are 

same as conv-TasNet [15]. 

C. criteria for evaluation. 

We use signal-to-distortion ratio improvement (SDRi) as 

objective measures of separation accuracy. The scale-invariant 

signal-to-noise ratio improvement (SI-SNRi) and the optimal scale-

invariant signal-to-noise ratio improvement (OSI-SNRi) is also 

compared afterwards. In addition, we also evaluated the quality of 

the separated speech using both the perceptual evaluation of 

subjective quality (PESQ [23]) and the short-time objective 

intelligibility (STOI [24]). The PESQ scores is between [-0.5, 4.5], 

while the STOI scores range from 0 to 1. Higher values in PESQ 

and STOI are reflection of better speech quality. 

D. EVALUATION RESULTS 

In this study, five objective metrics mentioned before are 

employed to evaluate the performance of separation systems. 

Table 2: performance comparison. 

 PESQ STOI SDRi SI-SNRi OSI-SNRi 

Baseline 2.215 0.800 9.985 11.757 5.744 

OSI-SNR 2.249 0.811 10.010 12.230 6.253 

Curriculum 
learning 

2.235 0.805 10.103 12.047 5.959 

OSI-SNR + 
curriculum 

learning 
2.291 0.817 10.590 12.627 6.494 

 

Table.2 shows performance of different systems trained with 

techniques proposed in this paper. 

From the results demonstrated before, we can see that the use 

of OSI-SNR and curriculum learning can improve the performance 

of noisy speech separation system separately and independently. By 

combine these two methods together, the performance is improved 

substantially. The contribution of OSI-SNR and curriculum learning 

are approximately 70% and 30%, respectively. 

It must be clear that this paper only confirmed that OSI-SNR is 

doubtlessly better than SI-SNR when they are used as the training 

targets. It would be better if we continue use SI-SNRi as criteria of 

evaluation. 

 

Fig. 4: losses comparison between different SI-SNRs while 

trained in noise-free separation system 

Fig.2 shows the curve that SI-SNR and OSI-SNR change with 

difference of angles 𝜃  between original signal and reconstructed 

signal. They are quite the same when 𝜃 is extremely low. That’s 

why the original SI-SNR also have a remarkable performance when 

you deal with the noise-free monaural speech separation task. Still, 

we trained the clean speech separation system with SI-SNR and 

OSI-SNR, separately. Like Fig.5 shows, although they all converge 

to same point and have a same performance eventually, training 

process using OSI-SNR converges more rapidly. Both the training 

losses and validation losses decrease faster. The lines with * 

markers are usually below the lines with diamond markers. 

 As Fig.2 demonstrated, when 𝜃  becomes bigger, the 

difference between SI-SNR and OSI-SNR also grows. So, the 

adoption of OSI-SNR becomes important when we deal with noisy 

monaural speech separation task. The more noise we face, the more 

performance improvement we will observe when using OSI-SNR 

instead of SI-SNR as a training objective function. 

E. CONCLUSION 

In this paper, we have developed a new objective function for 

speech separation systems, which is very easy to adopt in speech 

processing systems. A curriculum learning method is proposed to 

improve training process when tackle the noisy problem. Systematic 

evaluation demonstrated that our OSI-SNR combined with 

curriculum learning improves separation performance substantially 

in terms of all metrics, SDRi, SI-SNRi, OSI-SNRi, PESQ and STOI. 
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