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Abstract—Recently, deep clustering (DPCL) based speaker-
independent speech separation has drawn much attention, since it
needs little speaker prior information. However, it still has much
room of improvement, particularly in reverberant environments.
If the training and test environments mismatch which is a
common case, the embedding vectors produced by DPCL may
contain much noise and many small variations. To deal with the
problem, we propose a variant of DPCL, named MDPCL, by ap-
plying a recent unsupervised deep learning method—multilayer
bootstrap networks (MBN)—to further reduce the noise and
small variations of the embedding vectors in an unsupervised
way in the test stage, which fascinates k-means to produce a
good result. MBN builds a gradually narrowed network from
bottom-up via a stack of k-centroids clustering ensembles, where
the k-centroids clusterings are trained independently by random
sampling and one-nearest-neighbor optimization. To further im-
prove the robustness of MDPCL in reverberant environments,
we take spatial features as part of its input. Experimental results
demonstrate the effectiveness of the proposed method.

I. INTRODUCTION

Speech separation is a task of separating target speech from
interference background [1].Deep-learning-based speaker-
independent speech separation can be roughly categorized into
three classes. The first class is deep clustering (DPCL) [2]–[4].
It generates an embedding vector for each time-frequency unit
of a mixed magnitude spectrum by minimizing the Frobenius
norm between the affinity matrix of the embedding vectors
and the affinity matrix assigned by the ideal speakers. Bi-
directional long short-term memory networks (BLSTM) are
usually adopted as the deep learning toolbox for producing the
embedding vectors. The second class is permutation invariant
training (PIT) [5], [6]. It calculates the local mean squared
errors of all permutations of training speakers at either the
frame-level or the utterance-level, and pick the locally optimal
permutation corresponding to the minimum mean squared
error to train the separation network. The third type is end-
to-end speech separation [7]–[11]. It builds models on time
domain speech directly using an encoder-decoder framework
and performs the source separation on nonnegative encoder
outputs. Although these methods work well in clean environ-
ments, their performance degrades significantly in reverberant
environments.

To improve the performance of speech separation in rever-
berant environments, many multichannel methods based on
DPCL were proposed. They can be mainly categorized into
two classes—beamforming [12] and spatial feature extraction
[13], [14]. The first class predicts a mask for each speaker
at each channel by DPCL, and then conducts beamforming
for each speaker by applying the masks of the speaker to
estimate the beamforming coefficients, where the beamformers
include the maximum signal-to-noise ratio beamformer [12]
and minimum variance-distortion-free response beamformer
[15], [16]. The second class combines spatial features and
spectral features together for the DPCL training. This paper
pursues DPCL, since it demonstrates good performance in
many challenging scenarios. One weakness of DPCL is that it
uses a clustering algorithm to partition the embedding vectors
into different speakers. Because the BLSTM model of DPCL
is trained in a supervised way, the embedding vectors contain
the mismatching information between the training and test,
such as random noise and small variations.

In this paper, we propose to reduce the random noise
and small variations of the embedding vectors from DPCL
by a recently proposed unsupervised deep model, named
multilayer bootstrap networks (MBN). MBN is a simple
nonlinear dimensionality reduction method [17]. It does not
make data and model assumptions, and does not suffer the
weaknesses of neural networks. MBN provides clean data
representations with little random noise and small variations,
which helps the k-means clustering of DPCL suffer less from
its weaknesses. To further deal with reverberant environments,
we extract a spatial feature, named cosine interchannel phase
difference (cosIPD) as part of the input of DPCL. We name the
overall system as MDPCL. Experimental results demonstrate
the effectiveness of the proposed method.

II. SYSTEM DESCRIPTION

Figure 1 shows an overview of the proposed MDPCL
system. It contains three components—feature extractor, deep
clustering, and MBN, which will be presented in Sections 2.1
to 2.3 respectively.
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Fig. 1. Diagram of the proposed MDPCL system.

A. Feature extraction

In the training stage, we first extract 2 short time Fourier
transform STFT spectrograms from each of the two audio
recordings, denoted as {yi,1, yi,2}ni=1, where i is a time-
frequency (T-F) index (t, f) at time t and frequency f , n is
the total number of the T-F units of a STFT spectrogram,
and yi,p denotes the i-th T-F unit of the p-th spectrogram
with p ∈ {1, 2}. Then, we extract a log-magnitude spectrum
log |yi,p| and a spatial feature interchannel phase difference
∠yi,1 − ∠yi,2. To handle the 2π ambiguity, we further trans-
form IPD by a cosine function, i.e. cos(∠yi,1 − ∠yi,2), so as
to unwrap the phase values into a range [−1, 1] [13]. Finally,
the input acoustic feature of the i-th T-F unit is:

zi = [log |yi,1| , log |yi,2| , cos(∠yi,1 − ∠yi,2)]T (1)

B. Deep clustering

MDPCL learns a k-dimensional embedding vector xi for zi
by a BLSTM network g(·): xi = g(zi). The BLSTM network
minimizes the following cost function:

J = ||XTX−BTB||2F (2)

where ∥ · ∥F denotes the Frobenius norm operator, X =
[x1, . . . ,xn] is an n × k embedding matrix, and B =
[b1, . . . ,bn] is an n × U ground-truth indicator matrix with
bi = [bi,1, . . . , bi,u, . . . , bi,U ]

T defined as:

bi,u =

{
1, if the T-F unit is dominated by speaker u.
0, otherwise. .

(3)
In the test stage, suppose O speakers talk simultaneously.

We first use MBN to transform the embedding vectors x to
a new feature representation, named m-vectors m, and then
use the k-means clustering to partition m into O clusters,
which generates O estimated binary masks, each of which
for a speaker:

M̂o(t, f) =

{
1,if the (t, f)-unit is assigned to speaker o.
0,otherwise. ,

∀o = 1, . . . , O. (4)

(a)

(k=6)

(k=3)

(k=2)

1      2      3

Layer 1

Layer 2

Layer 3

PCA

1 2 3

Fig. 2. Network structure of MBN [17]. The dimension of the input data
for this demo network is 4. Each colored square represents a k-centroids
clustering. Each layer contains 3 clusterings. Parameters k at layers 1, 2, and
3 are set to 6, 3, and 2 respectively. The outputs of all clusterings in a layer
are concatenated as the input of their upper layer.

C. Multilayer bootstrap networks

1) Method: MBN is a recently proposed nonlinear di-
mensionality reduction method. As illustrated in Fig. 2, it
has multiple hidden layers and an output layer. Each hidden
layer consists of V independent k-centroids clusterings, where
V ≫ 1. Each k-centroids clustering has k output units, each of
which indicates a cluster. The output units of all k-centroids
clusterings in the same layer are concatenated as the input
of their upper layer. The output layer is principal component
analysis (PCA).

MBN is built layer-by-layer from bottom-up as a gradually
narrowed network. Suppose MBN contains L layers, and the
parameters k from the bottom hidden layer to the top hidden
layer are denoted as k1, . . . , kL respectively. The parameters
k1, . . . , kL are determined by the following criteria:

k1 ≫ O, (5)
kl+1 = δkl, ∀l = 1, . . . , L− 1, (6)

kL: to eusure at least one data point per class in probability(7)

where k1 and δ ∈ [0, 1) are user-defined hyperparameters. It
can be seen that L is determined automatically. Note that the
criterion (7) is usually specified to kL ≥ ⌈1.5O⌉ for class-
balanced problems.

For training each layer given a d-dimensional input data set
X = {x1, . . . ,xn} either from the lower layer or from the
output of the BLSTM model, MBN trains each k-centroids
clustering independently via the following steps [17]:

• Random sampling of features. The first step randomly
selects d̂ dimensions of X (d̂ ≤ d) to form a subset of
X , denoted as X̂ = {x̂1, . . . , x̂n}.

• Random sampling of data. The second step randomly
selects k data points from X̂ as the k centroids of the
clustering, denoted as {w1, . . . ,wk}.

• One-nearest-neighbor learning. The new representation
of an input x̂ produced by the current clustering is an
indicator vector h which indicates the nearest centroid of
x̂. For example, if the third centroid is the nearest one
to x̂, then h = [0, 0, 1, 0, . . . , 0]T . The similarity metric
between the centroids and x̂ at the bottom layer is the
squared Euclidean distance argminki=1 ∥wi − x̂∥2, and
set to argmaxki=1 w

T
i x̂ at all other hidden layers.
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TABLE I
PERFORMANCE COMPARISON BETWEEN DPCL AND MDPCL IN VARIOUS EXPERIMENTAL SETTINGS. THE RESULT OF 1-CHANNEL DPCL WAS

DIRECTLY COPIED FROM [2].

Method Number of speakers Environment Feature SDR (dB) PESQ STOI
1-channel DPCL 2 anechoic Log.mag 6.67 1.70 0.72
1-channel pca-DPCL 2 anechoic Log.mag 7.20 2.12 0.73
1-channel MDPCL 2 anechoic Log.mag 8.52 2.31 0.75
2-channel DPCL 2 anechoic Log.mag+cosIPD 10.92 2.53 0.85
2-channel pca-DPCL 2 anechoic Log.mag+cosIPD 11.30 2.72 0.85
2-channel MDPCL 2 anechoic Log.mag+cosIPD 13.65 2.91 0.87
2-channel DPCL 2 reverberant Log.mag+cosIPD 8.61 2.28 0.73
2-channel pca-DPCL 2 reverberant Log.mag+cosIPD 9.38 2.32 0.75
2-channel MDPCL 2 reverberant Log.mag+cosIPD 10.70 2.51 0.75
2-channel DPCL 3 reverberant Log.mag+cosIPD 4.07 1.05 0.66
2-channel pca-DPCL 3 reverberant Log.mag+cosIPD 5.62 1.35 0.67
2-channel MDPCL 3 reverberant Log.mag+cosIPD 5.93 1.44 0.68

（a）Mixed speech of two speakers 
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(b) Clean speech of speaker 1
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(c) Clean speech of speaker 2
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(d) Separated speeech of speaker 1
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(e) Separated speeech of speaker 2
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Fig. 3. Logarithmic magnitude spectra of a mixed speech signal, its ground-
truth components, and the estimated components produced by MDPCL in
the anechoic environment. (a) Mixed speech. (b) Clean speech of the first
speaker. (c) Clean speech of the second speaker. (d) Estimated speech of the
first speaker. (d) Estimated speech of the second speaker.

III. EXPERIMENTS

Datasets: We used the WSJ0-2mix and WSJ0-3mix corpus
as the speech source [3], [4], [11], [18], and resampled the
speech data to 8 kHz. We focused on 2-speaker and 3-
speaker speech separation problems. For each scenario, we
randomly generated a room that is 5 to 10 meters long, 5
to 10 meters wide, and 3 to 4 meters high. We randomly
generated a spherical microphone array with a radius varying
from 0.075 to 0.125 meter. The microphone array consists
of four microphones, two of which are inside the sphere and
the other two are on the surface of the sphere. Its coordinate
varies from (0.2,0.2,1) to (0.2,0.2,2) meters. We randomly
generated two speakers that are located in a circle centered

at the microphone array with a radius of 1.5 meters. The
distance between the microphone array and the speaker is
at least 0.5 meter. The distance between the two speakers is
at least 1 meter. For the 2-speaker separation problem, we
simulated both an anechoic environment and a reverberant
environment for each mixture. It is worth mentioning that in
this experiment, we only extracted the speech of two channels
as input signals, with a reference microphone and a non-
reference microphone. But the method can achieve channel
expansion by superimposing the pair of channel signals.

For each environment, we generated two datasets for the
model training and test respectively. The training set contains
20000 mixtures, which is enough to draw a reasonable exper-
imental conclusion. To find the optimal hyperparameters, we
further constructed a validation set containing 5000 mixtures.
For each mixture, we generated its anechoic recording by
setting T60 = 0, and its reverberant recording by selecting
T60 from a range of [0.2, 0.6] second [19]. Figures 3a to
3c show the log magnitude spectra of a mixture and its
components in an anechoic environment. For the 3-speaker
separation problem, we generated two test set of 3000 mixtures
in the anechoic and reverberant environments respectively. We
will evaluate the models trained for the 2-speaker separation
problem on the 3-speaker test datasets directly.

Parameter Settings: We set the frame length to 32 mil-
liseconds and the frame shift to 8 milliseconds. We extracted
a 129-dimensional Hamming window weighted STFT feature
from each frame. We adopted a similar network structure of
BLSTM with that in [2]. Specifically, the BLSTM network
consists of four hidden layers with 300 hidden units per layer.
The network was optimized by stochastic gradient descent.
The momentum was set to 0.9, and the learning rate was set
to 10−5. To avoid falling into the local minima of BLSTM, we
also added a Gaussian noise with a mean of 0 and a variance
of 0.6 to the input. We evaluated the performance of the
standard DPCL with the dimensions of the embedding vectors
set to D = {10, 20, 40, 60} respectively, and found that setting
D = 20 produced the best speech separation performance. We
set the hyperparameters of MBN as follows V = 400, a = 0.9,
k1 = 20, and δ = 0.

We compared MDPCL with DPCL [2] given the same
input acoustic features in multi-channel settings. We also
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TABLE II
EFFECT OF HYPERPARAMETER δ ON PERFORMANCE IN THE ANECHOIC

ENVIRONMENT.

δ 0.7 0.5 0.3 ≤ 0.1
SDR (dB) 8.81 10.86 12.57 13.65

constructed a method of combining DPCL and PCA (pca-
DPCL). We set the output dimension of PCA to 2, 3, 5,
10 and 20 respectively. We found in the experiment that
pca-DPCL achieves the best performance when the output
dimension was set to 3 or 5. Therefore, we reported the result
of DPCL+PCA when the output dimension of PCA was set
to 3. The performance evaluation metrics include signal to
distortion ratio (SDR) [20], perceptual evaluation of speech
quality (PESQ) [21], and short-time objective intelligibility
(STOI) [22].

Results: Figures 3d and 3e show the separation result
of Fig. 3a. From the figure, we see that MDPCL produces
a good separation result close to its ground-truth. Table I
summarizes all comparison results. From the table, we see
that MDPCL achieves an SDR score of 2.73 dB higher than
DPCL in the anechoic environment. It also achieves an SDR
of 2.09 and 1.86 dB higher than DPCL in the 2-speaker and
3-speaker separation problems respectively in the reverberant
environment. In addition, the PESQ score of MDPCL is about
0.4 higher than that of DPCL, and the STOI score of MDPCL
is about 0.02 higher than DPCL on average. Although pca-
DPCL effectively improves the separation efficiency of DPCL,
its results are inferior to MDPCL. To summarize, MDPCL
outperforms DPCL and pca-DPCL in all experiments in terms
of all three evaluation metrics.

Effects of hyperparameters on performance: Due to the
length limitation of this paper, we report the important effect
of δ on performance in Table II. Because k1 = 20, MBN
builds a deep architecture when δ > 0.15, and builds a shallow
architecture when δ ≤ 0.15 according to (5) to (7). From Table
II, we see that building a shallow architecture achieves the
best performance, while building a deep model degrades the
performance on the contrary. Hence, the MBN with a single
nonlinear layer not only helps improve the performance of
MDPCL but also saves a lot of computation load.

IV. CONCLUSIONS

In this paper, we have proposed a multi-channel speaker-
independent speech separation system, named MDPCL. It first
produces an embedding vector for each T-F unit from cosIPD
and log magnitude features, then reduces the dimension of
the embedding vectors by MBN, and finally takes the output
of MBN for clustering. The proposed component of MDPCL
is simple and computationally efficient. We have compared
MDPCL with DPCL and pca-DPCL on the 2-speaker and 3-
speaker speech separation problems in both the anechoic and
reverberant environments. Experimental results demonstrates
the effectiveness of MDPCL in all test scenarios.
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