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Abstract—In this paper, we propose using complex generalized
Gaussian mixture distribution with weighted variance for speech
modelling and devise an improved independent vector analysis
(IVA) algorithm for blind speech separation (BSS). Capable of
capturing both non-Gaussianity and non-stationarity, the pro-
posed complex generalized Gaussian mixture model (CGGMM)
allows for a much flexible characterization of practical speech
signals. The majorization minimization (MM) framework is
adopted for the IVA algorithm design. Each iteration of the
algorithm is comprised of the updates of demixing matrices and
mixture model parameters. For demixing matrices, the update
operates in a manner similar to that of the auxiliary function
based IVA (AuxIVA) method, and for mixture parameters, the
expectation maximization (EM) update is performed. As both
updates are in closed form and pre-whitening is not a prerequi-
site, the IVA algorithm under CGGMM is of low complexity and
can be carried out efficiently. Experimental results show that
the proposed algorithm outperforms existing ones in terms of
separation accuracy and also enjoys a fast convergence rate in
both simulated and real environments.

I. INTRODUCTION

Maximizing the independence of the outputs of linear
demixing systems, independent vector analysis (IVA) is an
efficient blind source separation (BSS) technique for extracting
acoustic sources from mixtures [1]. As the IVA algorithms
do not require precise knowledge of the mixing system, their
performance relies heavily on the proper modelling of acoustic
sources. In order to achieve an interference-free separation,
the distribution adopted in IVA should match the exact source
distribution as closely as possible.

In conventional IVA methods [2-6], the spherical distri-
bution is used as the joint distribution of source spectral
coefficients. Simple as it is, the spherical distribution could
be far from sufficient in modelling the variations in complex
speech signals. To remedy the shortcomings of spherical
distribution, various mixture models for IVA have been pro-
posed, which include Gaussian mixture model (GMM) [7] and
Student’s t mixture model (SMM) [8]. With multiple density
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components, IVA methods based on mixture models can cater
for multimodal distributions, which are common for the non-
stationary speech signals. Both mixture model parameters and
demixing matrices can be updated iteratively using the ex-
pectation maximization (EM) algorithm [7]. Nevertheless, for
IVA algorithms based on GMM and SMM, pre-whitening is
needed to stabilize the IVA iterations, and careful initialization
of the EM algorithm for mixture model parameter estimation
is also essential to guarantee the separation performance.
Recently, Gu et al. [9] incorporated an amplitude adjusting
factor into GMM to obtain an amplitude-variable GMM-based
IVA algorithm (AV-GMM-IVA) whose performance is less
affected by the EM initialization. In the AV-GMM-IVA, the
amplitude adjusting factor is used to adapt to the temporal
power fluctuation inherent to the non-stationary speech signals
and then the speech source could be separated efficiently
under the random initialization. Still, AV-GMM-IVA runs on
signals after pre-whitening, whose error due to limited sample
size could cause performance degradation. Besides, there is
a disparity between the Gaussian distribution adopted by AV-
GMM-IVA and the actual distribution of speech, which is in
general non-Gaussian.

Inspired by AV-GMM-IVA, we propose using mixture
model with variable variance in IVA algorithms. But rather
than Gaussian distribution, the complex generalized Gaussian
distribution (CGGD) is employed as mixture component.
As a large family of bivariate symmetric distributions from
super-Gaussian to sub-Gaussian distributions, the CGGD is
mathematically flexible in capturing the statistical behavior
of speech signals [10-12]. Therefore, the proposed speech
model could capture both non-stationarity and non-Gaussianity
of speech signals. Based on the majorization minimization
(MM) framework, the EM algorithm is used to estimate
the mixture parameters and a new cost function using the
inequality from the auxiliary function based IVA (AuxIVA)
[3, 13] is derived to update the demixing matrix. In this way,
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the proposed algorithm does not require the pre-whitening
process of observations, which reduces the computation and
could be implemented online conveniently. The separation
performance of the proposed algorithm is investigated and
compared with the other four well-known IVA methods in the
following experiments.

Notations: Vectors and matrices are boldface italic. [-]' and
[-]! denotes non-conjugate transpose and conjugate transpose,
respectively. E[-] is the expectation operator and det is matrix
determinant.

T

II. PROBABILISTIC MODEL FOR IVA
A. BSS in Frequency Domain

Consider an acoustic scenario where K sources in an
enclosure are captured by K microphones. The short-time
Fourier transform (STFT) representations of multiple source
signals and multichannel microphone observations are de-
noted as sy = [s}t,...,s’}t,...,sﬁT € C and x4y =
[ @y, )T € CF respectively where f e F =
{1,..., F} is the frequency bin index and te T ={1,...,T}
is the frame index. The superscript & € IC = {1,..., K}
denotes the source or channel index. In a noise-free system,
the instantaneous mixing in the frequency domain can be
expressed as [14]:

T = Aypsyy (D

where Ay € CK*K is the linear mixing matrix. The original
sources can be estimated by a matrix multiplication between
the demixing matrix and observed mixtures. Let y;; =

[y}t, . ,y?t, . ,yfft]T € CH4 be the vector of the estimated
source signals and Wy =[w}, ..., wh,. .., wf]T e CF* be

the demixing matrix where 'w’; is the separation filter for the
kth source. The demixing process can be written as:

Yyr=Wixs. 2)
B. The Statistical Model for Source Priors

The statistical model for source priors is proposed in
this section and the index k is omitted for simplicity. The
CGGD is adopted as a source prior at each frequency bin.
Given the shape parameter -+, the variance vector A =
A, A, AR E R and the frame-wise weight p;, the
joint PDF of s;=[s1¢,...,8t,...,sr) € CI is given by:

p(si oA =] | ot

5
1
exp |— 3)
f 7TF<%+1)pt)\f < V PtAf >

where I'(-) is the Gamma function. p; is the time-varying
weight factor of variances over all frequency bins, which par-
tially preserves the dependencies over frequency components
and allows each frame to be treated differently. It acts as the
temporal power compensation between the estimated Ay and
the output signal y¢; and was first proposed in [9]. So the non-
stationarity of speech signals caused by the temporal power
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fluctuation can be captured. For another, the non-Gaussian
statistical properties of speech signals are also considered.
The variable shape parameter ~ determines the decay rate
of the density function, whose smaller value corresponds
to heavier-tailed distribution and vice versa. The CGGD is
mathematically flexible in capturing the statistical behavior
of speech signals [10], from super-Gaussian (y < 2) to sub-
Gaussian (v >2) including specific densities such as Gaussian
(y=2) and Laplacian (y=1) distributions [12].

However, using a single PDF in (3) as source priors can
not adapt to the statistical properties of different sources.
Therefore, as the IVA methods using mixture models [7-9],
we further derive the complex generalized Gaussian mixture
model (CGGMM) with I components as follows:

p(se|) = "mip (se| prifiy) “

3

where Q@ = {my,..., 71, p,1A1, ..., pe, 1 A1, 71,...,7r} and
the subscript ¢ € Z = {1,...,I} indicates the ith mixture
component. 7y, ..., 77 are the mixture coefficients satisfying
m; > 0 and Zﬂi = 1. The proposed statistical model in (4)
generalizes the GMM in the IVA method and is able to capture
both non-Gaussianity and non-stationarity of speech signals.

C. Objective Function of IVA

For the purpose of maximizing the statistical indepen-
dence of sources and avoiding the permutation problem, IVA
measures the independence from the entire spectrogram of
each source signal. Let Y* = {y¥ ... y¥ ... y%} be the
estimated kth source data where ¥ = [yf, ..., 45, ...,y
Pr={ph, ....pF.. ..., p% } are the weights associated with
the ith mixture cofnponent of Y*. Using the Kullback-Leibler
(KL) divergence between p(Y17 ... ,YK) and Hkp(Y’“), the
separated process can be realized by minimizing the objective
function [15]:

J(W,0)=> "E[G(Y")] = log|det Wy| (5)

k !
where W and © represent the sets of demixing
matrices and mixture model parameters respectively,
ie. W = (W, © = ({0, where
ek = {(xF ... 7k PF .. PF A}, .. A%}, Note that

shape parameters {’yf,..,,vf}szl would be set as priors.
G (Y*) is the contrast function with a relationship of
G EY’“; = —logp (Y"). In this research, we consider the
statistical model in (4) for the contrast function and (5) can
then be written as:

1 ,
J(W,8) =~ > Jlog (Z i p(yf pﬂiﬂ?ﬁ!‘))
kot i

—Zlog|dcth|.
!

(6)
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III. OPTIMIZATION BASED ON AUXILIARY FUNCTION

As minimizing (6) is a nonlinear optimization problem,
the majorization minimization (MM) framework is adopted
to find the closed form solutions of mixture model parameters
® and demixing matrices W. The MM algorithm is to find
an auxiliary function @, which satisfies Q(G,é) > J(0)

where the equality sign is satisfied if and only if 6§ = 6.
The alternative updates in terms of @ and 6 guarantee J 0)
monotonically decreases to a stationary value [16].

The mixture parameters are estimated via the EM algorithm
and the upper bound of J(W,®) can first be obtained by
Jensen’s inequality [17]:

QW .0,q)= Z(th log (m; D yt |Pt i »”/zk))
—Zq ;log ¢; L) - Zlog |det Wyl  (7)
f

q,{fi is the posterior probability of the ¢th mixture component
at the tth frame for the kth source, given observations and the
estimated parameters from the last iteration. The calculation
of ¥ is the expectation-step (E-step) and can be derived as:

v Y
qf’z: p(yt|pt7 27) ) (8)
> T (yr | of ;A% AF)
jeT

The expansion of (7) is

QW ,0.9) TZ(

k.t

Sl tow (Flogr( )

i
Vi

\/ P z’\f,
—|—Z q:ﬂ log qf1> +KFlogr —Zlog|deth |

f
&)

Then, in the maximization step (M-step), © is updated by
setting the derivatives of Q(W,0,q) to zero. With some
straightforward mathematical manipulations, the following for-
mulas are obtained for the mixture coefficient, the variance and
the weight, respectively.

+Flog p¥ it Zlog)\k Z+Z
! !

i

1 k
fzqum, (10)
K
bk | vk | o
Vi 2o dr /*fi_
Ak = ! s : (1)
’ 2324
t

and
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12)

To further find the closed form solution of W, an inequality
is derived from the theorem proven in original AuxIVA [3, 13]

and can be stated as:
Y a2 2 .12
+ 219772 (I — 131

where the equality sign is satisfied if and only if |y| = |g|.
Thus, (9) can be modified to a new upper bound in terms of
W and V' by applying (13):

" <19l (13)

Qw(W,V) Z( wa Vy wflogdeth)+R@, (14)
f

}c
thz,yz ptz)\k ﬂl/z|yft ‘ watw?t7 (15)

where g}’]ﬁt is the estimated source signal in the last iteration.
Re contains the constant and the terms with parameters of the
mixture model but independent of W. The auxiliary variable
V represents a series of V; for any f where Vf:{ka},If:l.
Resemblance to the original AuxIVA, the demixing matrix
updates for any f and k can then be expressed as:

-1

wh = (WiVE) ey,

k __ k
“’f—“’f/

where e is the unit vector which has a single non-zero
element 1 in the kth position.

Based on the above auxiliary function approach, @) is
iteratively minimized over q,® and W and still obtains a
monotonic decrease until the convergence. In each iteration,
the mixture parameters are updated based on (8) and (10)~(12)
with a complexity of O(KIFT'), while the demixing matrices
are estimated via (15)~(17) with a complexity of O(K*F).

16)

a7

IV. EXPERIMENTS

In this section, the performance of the proposed algorithm
(CGGMM-IVA) is evaluated and compared with the following
four well-known IVA algorithms: (1) CL-AuxIVA, original
AuxIVA with a time-invariant circular Laplace distribution [3];
(2) SCGG-AuxIVA, AuxIVA with a spherical complex-valued
generalized Gaussian distribution [18]; (3) Independent low-
rank matrix analysis (ILRMA), estimating a spatial model
using IVA and a source model by low-rank decomposition
using the nonnegative matrix factorization (NMF) [19]; (4)
AV-GMM-IVA, a recently proposed algorithm with an ampli-
tude variable Gaussian mixture model using IVA [9].
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Fig. 1. The layout of simulated experimental setup.
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Fig. 2. Box-plots of SIR (left) and SDR (right) improvements for different
shape parameters over 50 mixtures in Exp. 1. The dot shows the mean.

The number of mixture states for both CGGMM-IVA and
AV-GMM-IVA is set to 2, while the number of bases for
ILRMA is set to 10. The shape parameter in SCGG-AuxIVA is
set to 0.4 for each source . For CGGMM-IVA, )\’97 ; 1s initialized
to 1 and {vF}L_, is the same for any k but may set to the
different value for different state . All the algorithms run until
the decrement of the cost function between adjacent iterations
is less than or equal to 10, Moreover, the data pre-whitening
is implemented merely in ILRMA and AV-GMM-IVA. The
minimal distortion principle [20] is utilized in the post-
processing for all the algorithms. A 4096-point FFT, 4096-tab
Hanning window with half-overlap are used in STFT domain.
The results are evaluated by the signal-to-interference ratio
(SIR) and signal-to-distortion ratio (SDR) in decibels using
the BSS EVAL toolbox [21]. Some audio samples are available
online at https://github.com/shelly-tang/CGGMM-IVA.

A. Separation Results in the Simulated Environment

Live-recorded speech segments from SiSEC2018 database
[22] have been used as sources, which are ten-second-long
and sampled at 16 kHz. All source signals are convoluted with
room impulse responses (RIRs) obtained by the image method
[23] and totally 100 mixed speech signals are simulated where
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Fig. 3. Box-plots of SIR (top) and SDR (bottom) improvements for five IVA
models, with 100 sample data for each algorithm. The left column is for Exp.
1 while the right is for Exp. 2. The dot shows the mean.

the target sources have similar energy levels. Fig. 1 depicts the
experimental environment. Reverberation time is set to 130 ms
in a room of size 4.45x 3.55 % 2.5 m. Two omnidirectional
microphones are configured with 10 cm spacing while the
distance between sources and microphones is 1 m. For the 2x2
case, the experiments are conducted using two different source
location settings. Exp. 1: The first simulation mixes speaker
A (from location ‘A’, 45°) and speaker B (from location ‘B’,
135°). Exp. 2: The second simulation mixes speaker A and
speaker C (from location ‘C’, 60°).

As the shape parameter could affect the performance of
the proposed algorithm, we first test algorithm under various
values of ~. Fig. 2 shows the box-plots of SIR and SDR
improvements for different shape parameters in Exp. 1. v
and -, are the shape parameters of two mixture components
for each source, i.e. Y1 =72 =71, 74 =72 =12. In the case of
Y1 =12, the best separation performance is generally achieved
when v, =, =2. It also can be observed that v; =7, =1.8
or 1.6 performs better than 2 in some trials. Additionally, we
evaluate the improvements when using different v; and ~»,
ie., 71 = 1.8 and v = 2. It shows significant superiority
compared with the cases of v; =~5. These results reveal that
the PDF using different shape parameters for different mixture
components matches better with speech signals and y=1.6~2
would be a good choice.

Fig. 3 shows the comparison of separation performance
between the proposed algorithm (77 =1.8,79=2) and the
other four algorithms. The improvements in Exp. 1 and Exp. 2
are presented in the left and right columns, respectively. It can
be found that CGGMM-IVA performs the best of all the men-
tioned algorithms. The performance of the AV-GMM-IVA and
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SCGG-AuxIVA is slightly inferior to that of CGGMM-IVA.
ILRMA shows the excellent performance in music signals
separation [19] but is relatively ineffective in separating some
speech mixtures in this research. As sources get closer, both
SIR and SDR metrics decrease for all algorithms mentioned,
but the proposed CGGMM-IVA still retain the competitive
speech separation performance.

Fig. 4 demonstrates the average SIR convergence over 30
trials mixing speaker A and speaker B. The proposed algorithm
requires approximately 50 iterations to convergence, more
than AV-GMM-IVA but distinctly fewer than CL-AuxIVA and
SCGG-AuxIVA whose iteration numbers are about 115 and
153 respectively. ILRMA has achieved convergence after 56
iterations but the SIR improvement exhibits fluctuations when
the algorithm iterates more than 100 times. Both CGGMM-
IVA and AV-GMM-IVA are more stable than other three
algorithms.

B. Separation Results in the Real Environment

The proposed CGGMM-IVA algorithm has shown com-
petitive speech separation performance in the simulated en-
vironments. In this section, we record speech utterances of
speakers in different directions separately by dual microphones
in a meeting room and then obtain the mixtures of 2 sources
by summing the recorded source signals. The experimental
conditions in the real environment are summarized in Table I.
The real recording of source is used as ground-truth signal.

Table II shows separation performances in averaged SIR
and SDR values over 24 trials (6 trials for each combination
of source direction). The proposed CGGMM-IVA algorithm
is first evaluated under different values of shape parameters
ranging from 1.6 to 2 and the best improvement for each
combination of source directions has been listed. Different
from the experiments in simulated environment where the
setting of 71 = 1.8 and 7, = 2 always attains the best
separation performance, it achieves better improvements to set
~1="72=1.6 for the case of (45°,60°) and v; =~ =2 for the
case of (45°,90°) in this experiment. Overall, though similar
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TABLE I
EXPERIMENTAL CONDITIONS IN THE REAL
ENVIRONMENT

Room size 10.78 X 7.58 X 3 m
Reverberation time 300 ms
Microphone spacing 10 cm

Source-microphone distance 1m

Direction of source 1 45°
Direction of source 2 60°,90°,135°
Signal length 65 s
Sampling frequency 16 kHz
Frame length 4096

Frame shift 2048
Window function Hanning
Iteration number 100 times

to AV-GMM-IVA, the proposed CGGMM-IVA shows the
superior separation performance compared with CL-AuxIVA,
SCGG-AuxIVA and ILRMA. Moreover, the SIR values of all
algorithms are relatively low in the case of (45°,60°), and
even negative SDR values are observed. It is consistent with
the conclusion from simulated results in Fig. 3 that separation
performance could deteriorate when the positions of sources
are close.

Besides, the permutation problem common to IVA algo-
rithms has been observed in this experiment. Fig. 5 shows
the spectrograms of source signals and processed signals
of five IVA algorithms in one trial under the combination
of (45°,135°). In this case, although frequency components
under around 2 kHz can be well separated by all IVA methods,
the obvious permutation problem in high frequency domain
still exists for CL-AuxIVA, AV-GMM-IVA, SCGG-AuxIVA
and ILRMA. In contrast, the permutation problem for the pro-
posed CGGMM-IVA is much alleviated when setting suitable
shape parameter (y; = 1.8 and 2 =2 in this case) to match
the source model.

V. CONCLUSIONS

This paper introduced a complex generalized Gaussian mix-
ture model with weighted variance as source priors for the IVA
method to increase flexibility in modelling various statistical
properties of non-stationary speech signals. The auxiliary
function approach based on the MM framework was effective
to realize optimization and did not require the data pre-
whitening. The experimental results in both simulated and real
environments revealed that the proposed algorithm attained
best performance when the shape parameter was within the
range of 1.6 and 2 and the flexibility in modelling various
statistical properties made the proposed algorithm outperform
conventional IVA ones by setting the suitable shape parameters
to match the source model.
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