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Abstract—In this paper, we propose a type of neural network
with feedback learning in the time domain called FTNet for
monaural speech enhancement, where the proposed network
consists of three principal components. The first part is called
stage recurrent neural network, which is introduced to effectively
aggregate the deep feature dependencies across different stages
with a memory mechanism and also remove the interference
stage by stage. The second part is the convolutional auto-encoder.
The third part consists of a series of concatenated gated linear
units, which are capable of facilitating the information flow and
gradually increasing the receptive fields. Feedback learning is
adopted to improve the parameter efficiency and therefore, the
number of trainable parameters is effectively reduced without
sacrificing its performance. Numerous experiments are conducted
on TIMIT corpus and experimental results demonstrate that the
proposed network can achieve consistently better performance in
terms of both PESQ and STOI scores than two state-of-the-art
time domain-based baselines in different conditions.

I. INTRODUCTION

Speech is often inevitably degraded by background inter-
ference in real environments, which may significantly re-
duce the performance of automatic speech recognition (ASR),
speech communication system and hearing aids. Monaural
speech enhancement is dedicated to effectively extracting
underlying target speech from its degraded version when
only one measurement is available [1]. There are many well-
known unsupervised signal-processing-based approaches, such
as spectral subtraction [2], Wiener filtering [3] and statistical-
based methods [4].

Recent advances in deep neural networks (DNNs) have
facilitated the rapid development of speech enhancement
research, and a great number of DNN models have been
proposed to tackle the nonlinear mapping problem from the
noisy speech to the clean speech (see [5], [6] and refer-
ences therein). A typical DNN-based speech enhancement
framework extracts time-frequency (T-F) features of the noisy
speech and calculates some T-F representation targets of
the clean speech. A model is then trained to establish the
complicated mapping from the input features to the output
targets with some supervised methods. Training targets can be
categorized into two types, where one is the masking-based [7]
and the other is the spectral mapping-based [6], [8].

Different from the research line in the T-F domain [6],
[7], [8], a multitude of approaches based on time domain has
emerged more recently [9], [11], [12], [13], [14]. Compared
with T-F domain based methods, the major advantage of

time domain approaches is that the phase estimation problem
can be mitigated, which is helpful for speech quality [10].
Pandey et al. [13] took the U-Net with fully convolutional
networks (FCNs) to directly model the waveform and utilized
the domain knowledge from the time domain to the frequency
domain to optimize the loss, which was significant for spectral
detail recovery. Pascual et al. first applied the generative
adversarial network (GAN) into the speech enhancement task
in the time domain, where the generator was trained to produce
a cleaner waveform whilst the discriminator was enforced
to distinguish between the fake and clean versions. Luo et
al. [9] utilized a learned encoder and decoder to project the
speech waveform into a latent space, and superior performance
was observed than short-time Fourier transform (STFT) based
approaches in the speech separation task.

Despite the success of time-domain based approaches in the
speech enhancement task [11], [12], [13], [14], these process-
ing systems require a large number of trainable parameters,
which may increase the computational complexity for practical
applications. More recently, progressive learning (PL) has been
applied in various tasks like single image deraining [15] and
speech enhancement [16], where the whole mapping proce-
dure is decomposed into multiple stages. In our preliminary
work, we propose a PL-based convolutional recurrent network
(PL-CRN) [17], where the noise components are gradually
attenuated with a light-weight convolutional recurrent network
(CRN) in each stage. We attribute the success of PL to the
accumulation of prior information with the increase of the
stages, i.e., all the outputs in the previous stages actually
serve as the prior information to facilitate the execution of
subsequent stages. Motivated by these studies, we propose a
novel time-domain-based network with a feedback mechanism
called FTNet, which needs much fewer trainable parameters. It
works by recursively incorporating the estimated output from
the last stage along with the original noisy feature back to
the network, where each temporary output can be regarded as
a type of state among different stages and thus trained with
a recurrent approach. By doing so, the feature dependencies
across different stages can be fully exploited and the output
estimation can be refined stage by stage.

The remainder of this paper is structured as follows. Sec-
tion II formulates the problem and briefly introduces the
principal modules of the network. The proposed architecture
is described in Section III. Section IV presents the experi-
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Fig. 1. The internal detail of SRNN module. It includes a 1-D Conv block
and a Conv-RNN block. The module is operated with double input and single
output (DISO).

mental settings. Experimental results and analysis are given in
Section V. Some conclusions are drawn in Section VI.

II. NETWORK MODULE

In the time domain, a mixture signal is usually formulated
as x(k) = s(k)+ d(k), where k denotes the time index, s(k),
d(k), and x(k) are the clean speech, the noise, and the noisy
speech, respectively. The network aims to estimate the time-
domain clean speech. For notation convenience, we denote the
frame vector of the noisy signal, estimation in lth stage, and
the final output in the time domain as x ∈ RK , s̃l ∈ RK ,
s̃ ∈ RK , respectively, where K is the frame length and l is
the stage index. The proposed architecture is in essence a type
of multi-stage network, where the output speech is estimated
and refined stage by stage. Assuming the number of training
stages is denoted as Q, in each stage, the estimated output
from the last stage and the original noisy input are combined
and sent back to the network. For the lth stage, the mapping
process can be formulated as:

s̃l = gθ(x, s̃
l−1), (1)

where gθ(.) represents the network function. As seen from
Eq. 1, both the estimation from the last stage and original noisy
input are connected to update the estimation in the current
stage.

A. Stage recurrent neural network

Theoretically, the learning process from the noisy feature to
the clean target can be viewed as a type of sequence learning,
where each state represents the intermediate output in one
stage. To this end, we propose a type of recurrent convolutional
structure named stage recurrent neural network (SRNN) to
explore the time dependencies of different stages in this study.
As a result, the network can be trained following a recurrent
learning paradigm. As shown in Fig. 1, SRNN contains two
parts, namely 1-D Conv block and convolutional-RNN (Conv-
RNN). Assuming the inputs are x and s̃l−1, and the output of
the 1-D Conv block is denoted as ĥl. Then ĥl along with the
hidden state vector from the last stage hl−1 is sent to Conv-
RNN to obtain a updated hidden state, i.e., hl. As a result, the
inference of hl can be formulated as

ĥl = fconv(x, s̃
l−1), (2)

hl = fconv rnn(ĥ
l,hl−1), (3)

where fconv(·) and fconv rnn(·) represent the functions of 1-D
Conv block and Conv-RNN block, respectively.

In this study, ConvGRU [18] is adopted as the unit for Conv-
RNN, given as follows:

zl = σ
(
Wl

z ~ ĥl +Ul
z ~ hl−1

)
, (4)

rl = σ
(
Wl

r ~ ĥl +Ul
r ~ hl−1

)
, (5)

nl = tanh
(
Wl

n ~ ĥl +Ul
n ~

(
rl � hl−1

))
, (6)

hl =
(
1− zl

)
� ĥl + zl � nl, (7)

where σ(·) and tanh(·), respectively, denote the sigmoid and
the tanh activation functions. W and U refer to the weight
matrices of the cell. ~ represents the convolutional operator
and � is the element-wise multiplication. Note that all the
biases are neglected for notation simplicity.

B. Gated linear unit

Gated convolutional layer is first introduced in [19] to model
complicated interactions in the form of a gating mechanism
which is beneficial to performance and its modified version
named GLU is utilized in [20] by replacing the tanh nonlinear-
ity with a linear unit and residual learning is also incorporated
to mitigate gradient vanishing problem when learning deep
features [21]. In this study, we stack multiple GLU modules to
explore the sequence correlations among neighboring points.
As shown in Fig. 2-(b), two additional branches are introduced
compared with the conventional CNN block, where one is the
gated operation that is controlled with the sigmoid function to
adjust the information flow percentage and the other is residual
connection. Dilated convolution is applied to increase the
receptive field, which is beneficial to capture more sequence
correlations. We use parametric ReLU (PReLU) [22] as the
activation function and the kernel size is set to 11 herein.

III. PROPOSED ARCHITECTURE

The architecture of FTNet is illustrated in Fig. 2-(a),
which includes three parts, namely SRNN, convolutional auto-
encoder (CAE) [23] and a series of GLUs. SRNN consists of
a 1-D Conv block and a ConvRNN block. 1-D Conv takes
the concatenation of both noisy speech vector and the output
estimation vector from the last stage along the channel axis.
Therefore, the size of network input is (2,K), where 2 refers
to channels. After SRNN, the output is sent to the subsequent
modules. CAE consists of the convolutional encoder and the
decoder. The encoder consists of four 1-D Conv blocks, which
compresses and establishes the deep representation of the
features by halving the feature length with strided operation
while consecutively doubling the channels. The decoder is the
symmetric representation compared with the encoder, where
the length of the feature is successively expanded through
a number of deconvolutional layers [24]. Both encoder and
decoder adopt PReLU as the activation nonlinearity except the
output layer, where tanh is used to normalize the value range
into [−1, 1]. Additionally, skip connections are adopted to
connect each encoding layer to its homologous decoding layer,
which compensates for the feature loss during the encoding
process. To model the time correlations, six concatenated
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Fig. 2. The framework of proposed network FTNet with feedback learning. (a) The overview of FTNet. x, s̃l−1, h̃l and s̃ denote the input feature, the
estimation output in stage l− 1, the state in stage l and the final estimation output, respectively. (b) The detail of GLU adopted in this study, where PReLU
is adopted and the kernel size is set to 11.

TABLE I
DETAILED PARAMETER SETUP OF THE PROPOSED ARCHITECTURE.

layer name input size hyperparameters output size
conv1d 1 2 × 2048 (11, 2, 16) 16 × 1024
conv rnn 16 × 1024 (11, 1, 16) 16 × 1024
conv1d 2 16 × 1024 (11, 1, 16) 16 × 1024
conv1d 3 16 × 1024 (11, 2, 32) 32 × 512
conv1d 4 32 × 512 (11, 2, 64) 64 × 256
conv1d 5 64 × 256 (11, 2, 128) 128 × 128

GLUs 128 × 128

(
1, 1, 64
11,1, 64
1, 1, 128

)
(

1, 1, 64
11,2, 64
1, 1, 128

)
(

1, 1, 64
11,4, 64
1, 1, 128

)
(

1, 1, 64
11,8, 64
1, 1, 128

)
(

1, 1, 64
11,16, 64
1, 1, 128

)
(

1, 1, 64
11,32, 64
1, 1, 128

)

128 × 128

skip 1 128 × 128 - 256 × 128
deconv1d 1 256 × 128 (11, 2, 64) 64 × 256

skip 2 64 × 256 - 128 × 256
deconv1d 2 128 × 256 (11, 2, 32) 32 × 512

skip 3 32 × 512 - 64 × 512
deconv1d 3 64 × 512 (11, 2, 16) 16 × 1024

skip 4 16 × 1024 - 32 × 1024
deconv1d 4 32 × 1024 (11, 2, 1) 1 × 2048

GLUs are inserted between the encoder and decoder, where
the dilated rates are (1, 2, 4, 8, 16, 32).

When the estimation output of the lth stage is obtained, i.e.,
s̃l, it is fed back and concatenated with the noisy input x along
channel axis to execute the next stage. Here we only impose
supervision on the final output s̃, which is consistent with the
setting in [15].

A more detailed parameter configuration of the
proposed network is summarized in Table I, where the
input and output sizes of 2-D tensor representation
are specified with (Channels× Framesize) format.

The hyperparameters of the layers except GLUs are
specified with (KernelSize, Strided, Channels) format.
The hyperparameters of GLUs are specified with
(KernelSize,DilatedRate, Channels) format. Bold
numbers refer to the dilated rate.

IV. EXPERIMENTS

A. Datasets

Experiments are conducted on TIMIT corpus [25], which
includes 630 speakers of eight major dialects of American
English with each reading ten utterances. 1000, 200 and 100
clean utterances are randomly selected for training, validation
and testing, respectively. Training and validation dataset are
mixed under different SNR levels ranging from -5dB to 10dB
with the interval 1dB while the testing datasets are mixed
under -5dB and -2dB conditions. For training and validation,
we use 130 types of noises, including 115 types used in [17], 9
types from [26], 3 types from NOISEX92 [27] and 3 common
environmental noise, i.e. aircraft, bus and cafeteria. Another
5 types of noises from NOISEX92, including babble, f16,
factory2, m109 and white, are chosen to test the network
generalization capacity.

Various noises are first concatenated into a long vector.
During each mixed process, the cutting point is randomly
generated, which is subsequently mixed with a clean utterance
under one SNR condition. As a result, totally 10,000, 2000
and 400 noisy-clean utterance pairs are created for training,
validation, and testing, respectively.

B. Baselines

In this study, two advanced time-domain-based networks
are selected as the baselines, namely AECNN [13] and RHR-
Net [14]. AECNN is a typical 1-D Conv based auto-encoder
architecture with a large number of trainable parameters. The
number of channels in consecutive layers are {64, 64, 64, 128,
128, 128, 256, 256, 256, 512, 512, 256, 256, 256, 128, 128,
128, 1}, with 11 and PReLU being the filter size and activation

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

771



TABLE II
EXPERIMENTAL RESULTS UNDER SEEN NOISE CONDITIONS FOR PESQ

AND STOI. BOLD INDICATES THE BEST RESULT FOR EACH CASE. THE
NUMBER OF STAGES Q ARE SET TO 3, 4 AND 5 FOR MODEL COMPARISONS.

Metrics PESQ STOI (in %)

SNR -5dB -2dB Avg. -5dB -2dB Avg.

Noisy 1.47 1.66 1.57 63.03 68.20 65.62
AECNN 2.25 2.49 2.37 82.70 87.51 85.11
RHR-Net 2.32 2.55 2.44 83.13 87.90 85.51

FTNet (Q = 3) 2.36 2.59 2.48 83.18 87.92 85.55
FTNet (Q = 4) 2.35 2.59 2.47 83.75 88.39 86.07
FTNet (Q = 5) 2.37 2.60 2.48 84.03 88.54 86.28

TABLE III
EXPERIMENTAL RESULTS UNDER UNSEEN NOISE CONDITIONS FOR PESQ

AND STOI. BOLD INDICATES THE BEST RESULT FOR EACH CASE. THE
NUMBER OF STAGES Q ARE SET TO 3, 4 AND 5 FOR MODEL COMPARISONS.

Metrics PESQ STOI (in %)

SNR -5dB -2dB Avg. -5dB -2dB Avg.

Noisy 1.44 1.67 1.56 59.64 67.45 63.55
AECNN 1.88 2.20 2.04 77.37 85.10 81.24
RHR-Net 2.06 2.35 2.21 78.13 85.82 81.98

FTNet (Q = 3) 2.10 2.37 2.23 78.59 85.68 82.13
FTNet (Q = 4) 2.06 2.35 2.21 79.31 86.20 82.76
FTNet (Q = 5) 2.09 2.35 2.22 79.48 86.54 83.01

nonlinearity, respectively. RHR-Net has also the form of
auto-encoder framework except all the convolutional layers
are replaced by bidirectional GRU (BiGRU). In addition,
direct skip connections are replaced by PReLU based residual
connections. It achieves state-of-the-art metric performance
among several advanced speech enhancement models with
limited trainable parameters (see [14]). The number of units
per layer are {1, 32, 64, 128, 256, 128, 64, 32, 1} and
three residual skip connections are introduced. Note that the
last layer is a single-directional GRU to output the enhanced
signal.

C. Experimental settings

We sample all the utterances at 16kHz. Each frame has a
size of 2048 samples (128 ms) with 256 samples (16 ms)
offset between adjacent frames. All the models are trained
with mean absolute error (MAE) criterion, optimized by Adam
algorithm [28]. The learning rate is initialized at 0.0002. We
halve the learning rate only if consecutive three validation
loss increment arises and the training process is early-stopped
only if ten validation loss increment happens. We train all the
models for 50 epochs. Within each epoch, the minibatch is
set to 2 at the utterance level, where all the utterances are
randomly chunked to 4 seconds if they exceed 4 seconds and
zero-padded on the contrary.

V. RESULTS AND ANALYSIS

We evaluate the performance of different models in terms
of perceptual evaluation of speech quality (PESQ) [29] and
short-time objective intelligibility (STOI) [30].

A. Objective results comparison

The objective results are presented in Tables II and III. One
can observe the following phenomena. Firstly, all the models

1 2 3 4 5
The number of the stages Q

0.5
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0.6

0.65

(a)

1 2 3 4 5
The number of the stages Q
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17.5

18

18.5

19

19.5

(b)

Fig. 3. PESQ and STOI improvements with the increase of the number of the
stages Q. The values are averaged over unseen dataset. Here five values are
explored, i.e., Q = 1, 2, 3, 4, 5.

significantly improve the scores in terms of PESQ and STOI
for both seen and unseen cases, whilst the proposed FTNet
achieves the best performance among the three models. For
example, for seen cases, when Q = 3, FTNet improves PESQ
by 0.11 and 0.04, and improves STOI by 0.44% and 0.04%
over AECNN and RHR-Net, respectively. This is because the
memory mechanism is utilized to refine the network with a
stage-wise manner and improve the parameter efficiency. A
similar tendency is also observed for unseen cases. Secondly,
when comparing between two baselines, RHR-Net obtains
consistently better performance than AECNN. This is because
BiGRU is adopted as the basic component for both encoding
and decoding process, which facilitates better temporal capture
capability for long sequences than 1-D Conv, whose perfor-
mance is limited by kernel size and dilation rate. This can also
partly explain the limited advantages of FTNet over RHR-Net.

B. The influence of stage number Q

In this study, we explore the influence of the number of the
stages Q, and it takes the values from 1 to 5. Note that Q = 1
means that only one stage is applied and no memory mech-
anism is adopted to bridge the relationship between neigh-
boring stages. The metric improvements are given in Fig. 3.
One can observe the following phenomena. Firstly, when Q
≤ 3, both PESQ and STOI scores are consistently improved
with the increase of Q, indicating that both metrics can be
effectively refined with feedback learning. Nonetheless, when
Q takes from 3 to 5, PESQ falls into saturation even slightly
attenuation while STOI is further improved. This is because
MAE is adopted as the loss criterion, whose optimization
target is inconsistent with the objective evaluation criterion
and can not further refine both metrics simultaneously [31].
This phenomenon reveals that further optimization of MAE
can improve STOI but may slightly reduce PESQ.

C. Insights into feedback learning

In this subsection, we attempt to analyze the effect of
feedback learning. To avoid illustration confusion, we fix the
number of stages as 5 herein, i.e., Q = 5. First, we give the
metric scores in the intermediate stages, and the results are
shown in Fig. 4. One can see that when the first stage is
finished, the estimation has similar metric scores over the noisy
input in both PESQ and STOI. However, when the network is
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Fig. 4. The metric scores in terms of PESQ and STOI for different intermediate
stages given Q = 5. The results are averaged over both seen and unseen
conditions. Noisy scores are also presented for comparison.

Fig. 5. Spectral visualization for different intermediate stages given Q = 5.
(a) Noisy spectrogram under -5dB, PESQ=0.98. (b) Enhanced spectrogram
in the first stage, PESQ=1.06. (c) Enhanced spectrogram in the third stage,
PESQ=1.61. (d) Enhanced spectrogram in the fifth stage, PESQ=1.83.

recursed for more stages, a notable improvement is observed.
This indicates that when the estimation from the previous
stage is sent back to the network as the feedback component,
more prior information can be accumulated and the network
is guided to generate cleaner speech estimation. The spectral
visualization of the intermediate stages is also presented in
Fig. 5. We only give the first, third, and fifth stage herein
for convenience. One can see that compared with the input
spectrogram, the estimation in the first stage is also relatively
noisy. Nevertheless, when more feedback is applied, the noise
components are gradually suppressed, which emphasizes the
effectiveness of feedback learning.

As Section II-A states, SRNN is utilized to aggregate the

Fig. 6. Visualization of hidden state h within SRNN. The size of h is
(16, 1024), where 16 and 1024 refer to the channel and feature axis,
respectively. We only plot the first 4 channels for convenience. (a) state
visualization in the first stage. (b) state visualization in the third stage. (c)
visualization in the fifth stage.

TABLE IV
THE NUMBER OF TRAINABLE PARAMETERS AMONG DIFFERENT MODELS.

THE UNIT IS MILLION. BOLD INDICATES THE LOWEST TRAINABLE
PARAMETERS.

Model AECNN RHR-Net FTNet
Para. (million) 6.31 1.95 1.02

feature information across different stages with a memory
mechanism. As such, the hidden state hl (we omit superscript
for simplicity hereafter) is updated in each feedback stage. To
emphasize that, we visualize h in three intermediate stages
given Q = 5, which is presented in Fig. 6. As the size of
h is (16, 1024) (see Table I), we only extract the first four
channels for convenience. One can observe that, for the first
stage, SRNN has yet learned clear prior information, leading
to blurring feature representation in the hidden state, as shown
in Fig. 6 (a), the red box area. When more stages are applied,
the SRNN begins to accumulate more prior information about
clean speech. As a result, the representation of h becomes
clearer stage by stage, as shown in Fig. 6 (c), the black box
area.

D. Trainable parameters and ideal network depth

The number of trainable parameters for the baselines and
proposed FTNet is presented in Table IV. One can see
that compared with AECNN and RHR-Net, FTNet further
decreases the number of trainable parameters, which demon-
strates the high parameter efficiency of feedback learning.

To improve network performance, a deeper network is
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needed, which usually results in more trainable parameters.
With feedback learning, the network is reused for multiple
stages, and we can explore a deeper network without additional
parameters. In this paper, considering the gradient flow, the
number of the ideal layers for FTNet is 28×Q, where 28
represents the number of layers for the feedforward gradient
flow. Therefore, a deeper network can be explored by recursing
the network for more stages.

VI. CONCLUSIONS

In this study, we propose a type of feedback network in the
time domain named FTNet for monaural speech enhancement.
Stage RNN is proposed to effectively aggregate the deep fea-
tures across different stages. In addition, concatenated GLUs
are adopted to increase the receptive field while controlling
the information flow. Experimental results demonstrate that
FTNet achieves consistently better performance than the other
two advanced time-domain baselines and effectively reduces
the number of trainable parameters simultaneously.
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