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Abstract—Conventionally, speech separation (SS) and voice
activity detection (VAD) have been investigated separately with
a different criteria. In natural dialogue systems such as con-
versational robots, however, it is critical to accurately separate
and detect user utterances even while system’s speaking. This
study addresses the integration of semi-blind source separation
(SS) and voice activity detection (VAD) using a single recurrent
neural network under the condition that the speech source and
voice activity of the system are given. This study investigates
three methods of integrated networks where SS and VAD are
processed simultaneously or sequentially prioritizing each. The
proposed methods input a single-channel microphone observation
spectrum, a speech source spectrum, and voice activity of the
system, and then output a speech source spectrum and voice
activity of the user. Each network adopts long short-term memory
(LSTM) to take the dependency of speech into account. An
experimental evaluation using a dataset of recorded dialogues
between a user and the android ERICA shows the proposed
method that conducts two tasks sequentially with SS first achieves
the best performance for both SS and VAD.

I. INTRODUCTION

The use of smartphones, smart speakers, and robots are be-
coming widespread for voice conversations with users. These
systems suppose a situation where one is speaking and the
other is not. Thus, users need to tap a screen or speak a
specific “magic” word when they make an utternace. On
the other hand, in a natural dialogue between humans, there
are no restrictions on who can speak, therefore both utterances
may overlap. To enable a user and the system to have smooth
voice conversations as humans usually do, source separation
(SS) [1], [2], [3] and voice activity detection (VAD) [4], [5]
are required. SS enables the system to correctly recognize a
user’s speech even when the user and system speak at the same
time. VAD enables the system to correctly identify when the
user starts speaking and to immediately stop speaking itself.

In this paper, we propose a method that integrates semi-
blind SS and VAD and processes them using a single re-
current neural network (RNN). In a spoken dialogue system,
the system’s speech signal and voice activity can be easily
obtained. This known information leads to semi-blind setting
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Fig. 1. The process flow of the proposed method

for SS and VAD, therefore overall performance improvement
is expected compared with blind setting that does not use
such information. The proposed method also uses multi-task
learning [6] that processes both SS and VAD in a single neural
network. SS and VAD should extract the common feature
of a user’s speech from microphone observation. Processing
these tasks in a single network can improve each of their
performances by mutually helping each other. This paper
is outlined as follows. Section 2 describes related studies
on SS and VAD. Section 3 describes the proposed method,
which integrates SS and VAD. Section 4 reports the evaluation
experiment. Section 5 presents our conclusion and future tasks.

II. RELATED STUDIES

A. Semi-blind source separation

This section describes the related methods of semi-blind
SS using a known speech source in addition to microphone
observation.

1) Independent component analysis: Takeda et al. [7] pro-
posed a method that processes semi-blind SS and dereverber-
ation by extending the independent component analysis (ICA)
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[8]. Given an M-channel microphone observation and a given
sound source, the target speech source is obtained assuming
that the user’s speech and the system’s speech are statistically
independent.

2) Neural network: Wake et al. [9] proposed a method that
processes semi-blind SS and dereverberation using an RNN.
By adopting multi-task learning [6] that processes the SS and
dereverberation in a single neural network and employing two
modules for them in the network, the performance of each
process is improved.

B. Voice activity detection

This section describes the related VAD methods.
1) Sohn’s method: For a robust VAD under high noise,

Sohn et al. [10] proposed a method that uses the likelihood
ratio by modeling speech and noise. This method assumes
that the spectra of the speech and noise follow a Gaussian
distribution, and determines the voice activity by calculating
the likelihood ratio between the speech and noise. This method
enables a robust VAD performance, even when the signal-
to-noise ratio (SNR) is low, if the variance of the Gaussian
distribution can be correctly estimated.

2) Neural network: Recently, methods for VAD using neu-
ral networks have also been proposed [5], [11], [12], [13].
VAD is conducted without setting a threshold or estimating
a source model. These methods adopt a number of neural
network types such as RNNs [5], [11], [12] and convolutional
neural networks (CNNs) [13].

III. PROPOSED METHOD

A. Problem setting

In a voice dialogue between a user and a system whose
speech source and voice activity are known, the proposed
method estimates the user’s speech source and voice activ-
ity using single-channel microphone observations and known
information. The problem is formulated below (See Figure 1).

• Inputs
X(MIC): Power spectrum of the observation,
X(SYS): Power spectrum of the system’s speech,
V (SYS): Voice activity of the system’s speech

• Outputs
Ỹ

(USR)
: Estimated power spectrum of the user’s speech,

Ṽ
(USR)

: Estimated voice activity of the user’s speech
The proposed method does not directly estimate the power

spectrum of the user’s speech source, but estimates the SS
mask m̃ to process the SS by calculating the element product
of the microphone observation and estimated mask.

B. Designing network

This section describes the design of a single neural net-
work for the SS and VAD. Three types of network can be
considered, depending on whether to process the SS and VAD
simultaneously or sequentially, and also depending on whether
to process first.
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Fig. 2. Outline of sequential type (SS-VAD)

1) Sequential type (SS-VAD): The sequential type (SS-
VAD) is designed to process the SS module followed by the
VAD module. Figure 2 shows an outline of this neural network.

The SS module parameters are expressed as θSS and the
VAD module parameters are expressed as θVAD. The network
described in this subsection can be expressed as follows:

m̃ = DNNθSS

(
X(MIC),X(SYS)

)
Ỹ

(USR)
= m̃⊙X(MIC)

Ṽ
(USR)

= DNNθVAD

(
Ỹ

(USR)
,V (SYS)

)
When training this network, the loss between the output and

ground-truth of the VAD module propagates to the SS module,
while the loss between the output and the ground-truth of the
SS module does not propagate to the VAD module. Therefore,
it is considered that the SS module assists the function of the
VAD module.

2) Sequential type (VAD-SS): The sequential type (VAD-
SS) is designed to process the VAD module followed by the
SS module. Figure 3 shows an outline of this neural network.

Using θSS and θVAD described previously, the network
described in this subsection can be expressed as follows:

Ṽ
(USR)

= DNNθVAD

(
X(MIC),V (SYS)

)
m̃ = DNNθSS

(
Ṽ

(USR)
,X(MIC),X(SYS)

)
Ỹ

(USR)
= m̃⊙X(MIC)

When training this network, the loss between the output
and the ground-truth of the SS module propagates to the VAD
module, while the loss between the output and the ground-truth
of the VAD module does not propagate to the SS module.
Therefore, it is considered that the VAD module assists the
function of the SS module.
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Fig. 3. Outline of sequential type (VAD-SS)
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Fig. 4. Outline of Simultaneous type

3) Simultaneous type: The simultaneous type is designed to
process the VAD and SS modules simultaneously in the whole
network. Figure 4 shows an outline of this neural network.

The parameters of the network are expressed as θSV and
the network described in this subsection can be expressed as
follows:

[
m̃, Ṽ

(USR)
]

= DNNθSV

(
X(MIC),X(SYS),V (SYS)

)
Ỹ

(USR)
= m̃⊙X(MIC)

When training this network, the loss between the output and
the ground-truth of both the SS and VAD modules propagates
to the whole network. Therefore, the parameters that can
simultaneously process the SS and VAD modules are trained.

C. Designing loss function

In the proposed method, a loss function for the SS and
VAD modules is designed since both are performed in a single
network.

In this study, the loss function of the network L is divided
into the following:

TABLE I
NUMBER OF DATASET FOR TRAINING AND EVALUATION

# of dialogue Time
Training 31 5.3 hrs.

Evaluation 8 1.4 hrs.

• LSS: Loss of SS
• LVAD: Loss of VAD
For the LSS, the square error of the logarithmic spectrum

is used to consider the scale of the power of the speech and
to perform well even in low power frames. For the LVAD, the
cross-entropy is used since the VAD output is the probability
of speech for a certain frame. Weighting these losses with
λVAD, the loss L to train a neural network is designed as
follows.

LSS =
∑
t,f

(
logX

(USR)
tf − log X̃

(USR)
tf

)2

LVAD = −
∑
t,l

(
V

(USR)
tl log Ṽ

(USR)
tl

)
L = LSS + λVADLVAD

In this formula, t is the time bin, f is the frequency bin and
l is the VAD label.

D. Pre-training

For the sequential types, pre-training each module as an
independent network before training the whole network is
considered. Pre-training is expected to be more efficient than
training the parameters of the entire network from initial
random values.

IV. EVALUATION EXPERIMENT

This section describes the experiment conducted to evaluate
the performance of the proposed method.

A. Experiment setting

The recorded dialogues between a user and the android
ERICA [15] were used as the dataset of this experiment. 39
users in their 20s to 60s had a dialogue with ERICA under
the task of speed dating, interviewing, or attentive listening.
The role of ERICA was performed by using the Wizard of
Oz method, with a female operator speaking remotely. The
speech of ERICA was recorded with a close-up microphone
and played using speakers installed at its ear and waist. A 16-
channel microphone array was placed on the desk between the
user and ERICA and a directional single-channel gun micro-
phone was placed at the user’s feet to record the dialogue.

Figure 5 shows the positional relationship between the user,
ERICA, and the microphones. Transcripts with timestamps
were also created for the speech of the user and ERICA.

The dataset was divided into training data and evaluation
data as shown in Table I. In this experiment, a randomly
selected single-channel signal among the 16-channel micro-
phone observation was used from the microphone array as a
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Fig. 5. Positional relationship between user, ERICA and microphones

TABLE II
HYPER PARAMETERS

Sample rate 16000Hz
STFT window size 1024 samples (64msec.)

STFT shift size 256 samples (16msec.)
Input length 3750 frames (Approx. 60sec.)

# of units in LSTM 512
Weight LVAD 1.0

Learning rate α 0.001
Size for a minibatch 16

single-channel microphone observation, and a single-channel
signal from the directional gun microphone was used as a
ground-truth user speech source. The power spectrum input
to the neural network is calculated by a short-time Fourier
transform (STFT) using a Hamming window. Timestamps of
the transcript are used as ground-truths for VAD.

In constructing the network, long short-term memory
(LSTM), which can represent the long-term dependence of
speech in the time axis, was adopted. The number of the
hidden layers are 3 LSTM + 1 dense for the SS module and
1 LSTM + 1 dense for the VAD module for the sequential
types, and 4 LSTM + 1 dense for the SS module and 1 fully-
connected for the VAD module for the simultaneous type.

In this experiment, Adam [16] was adopted as the optimiza-
tion algorithm, which can stabilize training more efficiently
compared with the stochastic gradient descent (SGD) by using
past gradient information. Other hyperparameters used in the
experiment are shown in Table II.

Figure 6 shows an outline of each examined network. The
numbers in parentheses in Figure 6 match the numbers in the
experimental results. The logarithmic spectral distance (LSD)
and the accuracy rate of voice activity are used as evaluation
measures for SS and VAD, respectively.

B. Experimental results

Table III shows the experimental results.
Comparing the sequential type (SS-VAD), sequential type

(VAD-SS), and simultaneous type at the top of Table III,
the sequential type (SS-VAD) shows the highest performance

!"#$%&'!&()$)*+",
-"+%&'.%*+/+*0'1&*&%*+",

!"

#
$%&

#
'('

) *+$,
- +'.,

)
'('

2345

!"#$%& !&()$)*+",

#
$%&

#
'('

2645'2745

-"+%& .%*+/+*0 1&*&%*+",

) *+$,

)
'('

!"

- +'., !"#$%&'!&()$)*+",

#
$%&

#
'('

2845'2945

-"+%&'.%*+/+*0'1&*&%*+",

!"

- +'.,

) *+$,

#
$%&

)
'('

!"#$%&'!&()$)*+",

#
$%&

2:45

-"+%&'.%*+/+*0'1&*&%*+",

) *+$,

!"

- +'., !"#$%&'!&()$)*+",

#
$%&

2;45

-"+%&'.%*+/+*0'1&*&%*+",

!"

- +'.,

) *+$,

#
$%&

!"#$%&'!&()$)*+",
-"+%&'.%*+/+*0'1&*&%*+",

!"

#
$%&

) *+$,
- +'.,

2<45

!"#$%&'!&()$)*+",

#
$%&

#
'('

2=45

-"+%&'.%*+/+*0'1&*&%*+",

) *+$,

)
'('

!"

- +'.,

- +'.,

!"#$%&'!&()$)*+",

#
$%&

#
'('

26>45

!"

- +'.,

#
$%&

26645

-"+%&'.%*+/+*0'1&*&%*+",

) *+$,

)
'('

?,@&(&,@&,*

!&A+BCD+,@'?,*&E$)*&@ 2F$"("G&@5

HD+,@'?,*&E$)*&@

!&A+BCD+,@'I",B+,*&E$)*&@

#
$%& J'!F"K&$'G(&%*$#A'"L'*M&'A+%$"(M",&'"CG&$/)*+",

#
'(' J'!F"K&$'G(&%*$#A'"L'*M&'G0G*&ANG'G(&&%M

-
+'. J'!F"K&$'G(&%*$#A'"L'*M&'#G&$NG'G(&&%M

)
'(' J'!-"+%&')%*+/+*0'"L'*M&'G0G*&ANG'G(&&%M

)
+'. J'!-"+%&')%*+/+*0'"L'*M&'#G&$OG'G(&&%M

!J'!!"#$%&'G&()$)*+",'A)GP

Fig. 6. Outline of compared networks

regardless of the presence or absence of pre-training. When
the input to the VAD module is a microphone observation
spectrum that is not separated, it is necessary to estimate the
number of speakers in the sequential type (VAD-SS) and to
train the parameters for both the SS and VAD modules jointly
in the simultaneous type. These factors make training them
more difficult than the sequential type (SS-VAD).

Comparing the methods with and without pre-training, those
with pre-training show better performance in both sequential
types (SS-VAD) and (VAD-SS). Training both the SS and VAD
modules before they are integrated has a positive effect on the
performance of training compared with the case where the
whole network is trained from random values.

Comparing the semi-blind and blind methods with those in
the middle of Table III, the proposed semi-blind methods show
better performance in both SS and VAD in the sequential type
(SS-VAD), sequential type (VAD-SS), and simultaneous type.
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TABLE III
EXPERIMENTAL RESULT

VAD
Setting LSD Acc.

Semi-blind Integrated Training (Proposed)
(1) Semi-blind Integrated Seq. (SS-VAD) 1.953 93.6
(2) Semi-blind Integrated Seq. (SS-VAD) + Pre-training 1.953 94.0
(3) Semi-blind Integrated Seq. (VAD-SS) 1.953 93.0
(4) Semi-blind Integrated Seq. (VAD-SS) + Pre-training 1.953 93.3
(5) Semi-blind Integrated Simul. 1.953 92.6
Blind Integrated Training
(6) Blind Integrated Seq. (SS-VAD) 1.981 92.5
(7) Blind Integrated Seq. (VAD-SS) 1.967 87.6
(8) Blind Integrated Simul. 2.050 46.1
Semi-blind Non-Integrated Training
(9) Semi-blind Non-Integrated Seq. (SS-VAD) 1.953 93.3
(10) Only source separation 1.953 —
(11) Only voice activity detection — 91.0

This result shows that using a known speech source and voice
activity of the system is reasonable.

Comparing the integrated methods and non-integrated ones
with those at the bottom of Table III, we can observe the effect
of integration in the VAD accuracy.

Figures 7 and 8 show the results of the LSD and accuracy
rate of VAD, by the sequential type (SS-VAD) for each value
of λVAD. The LSD exceeded 1.96 by λVAD = 104, and
thereafter the performance of the SS module declined as λVAD

increased. On the other hand, the accuracy rate of VAD was
not significantly different depending on the value of λVAD.

Figure 9 shows an example of voice activity estimation with
the sequential type (SS-VAD) + pre-training. It shows the voice
activity of the system robot, ground-truth data of the voice
activity of the user, and estimated voice activity of the user
from the top. The area surrounded by the dotted line in Figure
9 is the section where the user and the system speak at the
same time, and the figure shows that the voice activity of the
user are correctly estimated even in these sections.

V. CONCLUSION

This report proposed a method that integrates SS and VAD
modules and trains them with a single neural network to enable
a smooth speech dialogue between a user and system. Three
types of networks were investigated in accordance with the
order of the SS and VAD, and multi-task learning is adopted.
Moreover, since the speech source and voice activity of the
system can be acquired in the system, the proposed methods
adopt this information appropriately to train the network
efficiently in an end-to-end manner. Experimental results have
shown that the proposed method improves the performance of
SS and VAD compared with the methods of training the SS
and VAD networks independently.

Future work includes adding labels called social signals [17]
such as backchannels and fillers to the outputs of VAD and
estimating these labels by the neural network to estimate the
emotions and interests of the user.

Fig. 7. Logarithmic spectral distance (LSD) comparison by λVAD

Fig. 8. Accuracy rate of VAD comparison by λVAD

Fig. 9. Example output of semi-blind integrated seq. type (SS-VAD)
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