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Abstract—Despite recent advances in speech separation tech-
nology, there is much to be explored in this field, especially in
the presence of noise and reverberation. One of the significant
difficulties is that locations where relevant context information
is incorporated vary in the time, frequency, and channel di-
rections. To overcome this problem, we investigated the use
of self-attention for multi-channel speech separation with time-
frequency masking. Our base model is a temporal convolutional
network that is the same as Conv-TasNet, except it works in the
frequency domain with the short-time Fourier transformation
and its inverse. We combined this basis with a self-attention net-
work. We explored nine different types of self-attention network
for this purpose. To investigate the effects of the self-attention
networks, we evaluated the performance of the proposed model,
which we refer to as a confluent self-attention convolutional
temporal audio separator network (CACTasNet), on a noisy and
reverberant version of the wsj0-2mix dataset. We found that
several different self-attention networks substantially improved
the performance measured by scale-invariant signal-to-noise ratio
and signal-to-distortion ratio. The results indicate that a self-
attention mechanism can efficiently locate context information
relevant to speech separation.

I. INTRODUCTION

Speech separation aims to isolate each source’s signal from

given recordings in which all sources are overlapped. In

recent years, many deep learning models for speech separation

have been proposed and achieved significant progress. One of

the most successful approaches is time-frequency masking,

such as deep clustering [1][2], deep attractor [3][4], and

permutation-invariant training [5][6]. More recently, “time do-

main” separation networks have been explored [7][8][9]. These

methods perform masking in a latent space to/from which a

waveform is transformed with a trainable encoder/decoder.

Despite the considerable progress made in recent years,

speech separation is still challenging, especially in environ-

ments with background noise and reverberation. One of the

significant difficulties is when context information relevant

to separation exists in mixed speech signals. In estimating a

mask at a certain time-frequency point, spectra far in time

might play an essential role in some cases. In other cases,

inter-channel intensity differences close in time might include

crucial information. Moreover, relative locations of relevant

information might be different for each time-frequency point.

For efficient speech separation, relevant information must

be located in the time, frequency, and channel directions.

However, neither recurrent nor convolutional networks, which

were used in previous studies, have successfully dealt with

this problem.

To overcome this difficulty, we investigated the usage of

a self-attention mechanism in this study. This mechanism

was introduced for machine translation [10], where it enabled

the network to pay attention to input words at different

positions relevant to each translated output word. Self-attention

mechanisms have also been used to estimate the importance

of each frame in speech for emotion recognition [11] and

speaker recognition [12][13][14]. Our aim of using self-

attention is to enable an audio separator network to discover

relevant context information to mask estimation at different

locations in the time, frequency, and channel dimensions.

A few previous studies have investigated self-attention for

speech separation. For example, [15] used self-attention to

process inter-channel information, while [16] utilized self-

attention along the time direction for single-channel speech

separation. However, these previous studies did not focus on

how to apply the self-attention mechanism and how effectively

it works for speech separation. This study explored nine types

of self-attention networks for multi-channel speech separation

under reverberant and noisy conditions: (1) time-wise atten-

tion, (2) channel-varying time-wise attention, (3) frequency-

varying time-wise attention, (4) frequency-wise attention, (5)

time-varying frequency-wise attention, (6) channel-varying

frequency-wise attention, (7) channel-wise attention, (8) time-

varying channel-wise attention, and (9) frequency-varying

channel-wise attention.

To assess self-attention networks under realistic conditions,

we simulated noisy and reverberant speech mixtures. Specif-

ically, we mixed utterances from the WSJ0 corpus [17] with

simulated room impulse responses (RIRs) and added noise

from the MUSAN corpus [18]. We evaluated our models’

performances measured using scale-invariant signal-to-noise

ratio improvement (SI-SNRi) and signal-to-distortion ratio

improvement (SDRi) to find which types of self-attention

networks provide significant improvement.

The remainder of this paper is organized as follows. Sec-

tion II presents the self-attention networks and proposed

method. The experimental setup and results are described in

Section III. Finally, Section IV concludes the paper.

II. METHODS

We suppose that the number of speakers S and number of

microphones C are known and shared by all utterances in the

training, evaluation, and testing.
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A. Self-attention

In this section, we formulate the self-attention networks

explored in this study. A self-attention mechanism attempts

to guide a neural network to score the importance of input

features in a sequence. Fig. 1 shows the structure of self-

attention network proposed in [10]. After choosing an axis

along which attention should be paid, we can reshape an input

feature X of a data sample to have the shape of (du, da), where

da and du denote the sizes of X in the attended and remaining

dimensions, respectively. In other words, we assume

dimX = (du, da). (1)

In a self-attention network, an input feature is passed to three

parallel layers: query, key, and value. These layers map an

input features to a query Q, a key K, and a value V . We

suppose that Q and K share the size in the embed space.

Then, without loss of generality we can write

dimQ = (de, da)

dimK = (de, da)

dimV = (dv, da).

(2)

In other words, we map X to Q, K, and V as follows:

query layer :X ∈ R
du×da 7→ Q ∈ R

de×da

key layer: :X ∈ R
du×da 7→ K ∈ R

de×da

value layer :X ∈ R
du×da 7→ V ∈ R

dv×da .

(3)

We consider that each of a query layer, a key layer, and a value

layer consists of a single fully-connected or convolutional

layer. In the case of a fully-connected layer, we can represent

Q, K, and V as

Q = WQX

K = WKX

V = WV X,

(4)

where WQ,WK , and WV denote the respective weight matri-

ces. In the case of a convolutional layer, Q, K, and V can be

represented as

Q = ConvQ (X)

K = ConvK (X)

V = ConvV (X),

(5)

where ConvQ,ConvK , and ConvV denote respective one-

dimensional convolutions applied along the first axis of X .

Calculating the similarity between the query and key, we get

an attention map A, which represents the importance of the

input feature in the attended dimension. In this study, we used

the scaled dot-product attention [10]:

A = softmax

(

QTK√
de

)

. (6)

Note that the shape of the attention map is given by

dimA = (da, da). (7)

X

Q

K

V

A

O

X̃

Fig. 1. Structure of a self-attention network.

Multiplying the attention map A by the value V , we get a

weighted feature OT :

OT = V AT ∈ R
dv×da . (8)

If we set dv = du, we can introduce a residual connection to

fuse the input feature and weighted feature. Consequently, we

get the following output:

X̃ = X +OT . (9)

In this study, we used a magnitude spectrogram as an input

feature. Hence, X can be represented as follows:

X = {Xftc | 1 ≤ f ≤ F, 1 ≤ t ≤ T, 1 ≤ c ≤ C}, (10)

where F , T , and C denote the numbers of frequency bins,

frames, and channels, respectively. There are many variants of

attention networks depending on how the input feature space

is decomposed and the choices of the query, key, and value

layers. In this study, we explored nine types of self-attention

networks for multiple-channel audio data, which are listed in

Table I. Note that we set de = dv = du although other options

are possible. We refer to an attention network that estimates

the importance of an input feature in the time direction as time-

wise. In other words, a time-wise attention map is a square

matrix of size T . Frequency-wise and channel-wise attention

are analogously defined. If we deal with the input features as a

function of the time frames, the query, key, value, and attention

map can be considered as functions of the time frames. In

contrast, the layers are time-independent. In other words,

attention is performed at each time frame independently. We

refer to such an attention network as time-varying. Frequency-

varying and channel-varying are analogously defined. Note

that the value of T is different between utterances. Therefore,

if du depends on T , we must use convolution to fix the layer

sizes.

Here, we explain some of the self-attention types in detail.

The first example we consider is the time-varying channel-

wise self-attention network. This network pays attention to

the channel directions, i.e., microphones. Hence, the attention

map is a square matrix of size C. The attention map is

calculated using the spectra at each time frame independently.

Therefore, the attention map can be considered as a function

of a time frame. In other words, we can say that time-varying

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

795



channel-wise self-attention enables a network to estimate the

importance of the channels at each time based on the spectra

in all frequency bands. In the second example, we consider

the frequency-varying time-wise self-attention network. This

network pays attention to locations in the time direction, i.e.,

time frames. Hence, the attention map is a square matrix of

size T . The attention map is calculated independently for each

frequency bin using the spectral amplitudes stacked along

the channel direction. Therefore, the attention map can be

considered as a function of a frequency bin. In other words, we

can say that frequency-varying time-wise self-attention enables

a network to find relevant time frames based on the spectral

amplitude of all channels for each frequency bin.

B. Model Structure

In this section, we describe the structure of our model. First,

the base model is introduced. Then, we explain how the base

model is harnessed by self-attention.

The base model used in this study is time-frequency

masking with a temporal convolutional network (TCN). The

network consists of the short-time Fourier transform (STFT),

a TCN-based separator, and the inverse short-time Fourier

transform (ISTFT). Both STFT and ISTFT can be imple-

mented as a one-dimensional convolution layer with a fixed

kernel function. The separator has the same structure as

that of Conv-TasNet [8], except the STFT and ISTFT layers

replace the encoder and decoder, respectively. It consists of

R repetitions of M stacked one-dimensional convolutional

blocks with dilaton factors 1, . . . , 2M−1. In other words, the

base model is a time-frequency version of Conv-TasNet, which

was also investigated in [19] and [20]. As we use the global

layer normalization, the separator lacks causality. However, it

is possible to make the model causal by using cumulative layer

normalization. Moreover, we use the SI-SDR loss in the time

domain instead of the mean square error (MSE) loss in the

frequency domain, as investigated in [19] and [20]. Note that

while the “time-domain” models, such as TasNet [7], Conv-

TasNet [8], and FurcaNext [9], perform separation in a latent

space, our model does it in the time-frequency domain.

We added different self-attention networks to the base

model, as illustrated in Fig. 2. We refer to the proposed model

as a confluent self-attention convolutional temporal audio

separator network (CACTasNet). The separator is divided

into two paths. While the first path is not equipped with

a self-attention network, the second path is at the entrance.

We pass a single-channel spectrogram optionally along with

inter-channel phase differences (IPDs) to the first path and

a multi-channel spectrogram to the second path. Both paths

consist of R − r repetitions of M stacked one-dimensional

convolution blocks. After the confluence of two paths with and

without the self-attention network, r repetitions of M stacked

one-dimensional convolution blocks follow. Then, all residual

connections branched from the main paths are merged. Finally,

the separator network outputs time-frequency masks. In this

study, we set R = 4, r = 2, and M = 8.

We did not use a residual connection in the self-attention

layer because it was not effective in our preliminary exper-

iments. This can be understood as follows. In the proposed

model, the flow of information extracted from an input feature

and that extracted from the attention map join together inside

the network. Therefore, introducing a residual connection in

the self-attention layer is considered redundant.

III. EXPERIMENTS

A. Experimental Setup

The number of speakers S and number of microphones C

were supposed to be known and fixed. Explicitly, we set S = 2
and C = 8 in our experiments. Moreover, we assumed the

arrangement of the microphones was fixed during an utterance

but different between utterances.

We set the STFT window length and shift to 512 and

256, or equivalently 32 ms and 16 ms, respectively, while all

remaining parameters were set to the same values provided in

[8]. We picked up five microphone pairs to calculate sinIPD

and cosIPD features. To reduce the computational complexity,

we used only four microphones in the case of channel-

wise self-attention. For the self-attention network, each of the

convolutional layers had a filter of size 257.

B. Data

To assess the self-attention networks under realistic con-

ditions, we simulated a noisy and reverberant version of the

wsj0-2mix dataset [1]. We mixed utterances from the WSJ0

corpus [17] with background noise and reverberation. First,

we generated RIRs with the image method [21]. The length,

width, and height of a rectangular room were chosen from

a uniform distribution from 5.0 m to 10.0 m, 5.0 m to 10.0

m, and 3.0 m to 4.0 m, respectively. The center of a virtual

sphere whose radius was chosen from a uniform distribution

from 0.075 m to 0.125 m was randomly placed within 0.2

m of the room center. Eight microphones were put on the

surface so that any pair is no closer than 0.05 m. Each of two

speakers, whose height was chosen from a uniform distribution

from 1.5 m to 2.0 m, was randomly located more than 0.5

m away from the sphere center. We chose the speakers’

locations so that their distances were each larger than 1.0

m. The reverberation time (T60) was chosen from a uniform

distribution from 0.2 s to 0.6 s. Secondly, we chose a random

pair of anechoic speech recordings by different speakers from

WSJ0 and convolved them with a randomly chosen RIR to

obtain a multi-channel reverberated audio mixture. We fixed

the microphone arrangement during an utterance, while we

used different ones for each utterance. Finally, we randomly

added noise from the MUSAN dataset [18] as additive noise.

The signal-to-noise ratio (SNR) was randomly chosen from

a uniform distribution from 10 dB to 15 dB. Note that the

noise we added did not include intelligible speech or music.

In total, we generated 20,000, 5,000, and 3,000 multi-channel

utterances for training, validation, and testing, respectively.

The sampling rate of all data was 16 kHz.
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TABLE I
NINE TYPES OF SELF-ATTENTION.

“FC” AND “CONV” REPRESENT FULLY-CONNECTED AND CONVOLUTIONAL LAYERS, RESPECTIVELY.

Type Input
Dimension Layer

du = de = dv da Query Key Value

time-wise X F · C T FC FC FC
channel-varying time-wise X(c) F T FC FC FC

frequency-varying time-wise X(f) C T FC FC FC
frequency-wise X T · C F Conv Conv Conv

channel-varying frequency-wise X(c) T F Conv Conv Conv
time-varying frequency-wise X(t) C F FC FC FC

channel-wise X F · T C Conv Conv Conv
time-varying channel-wise X(t) F C FC FC FC

frequency-varying channel-wise X(f) T C Conv Conv Conv

1x1 Conv

Layer 
Normalization

1x1 Conv

1-D Conv

1-D Conv

1-D Conv

1-D Conv

Layer 
Normalization

1x1 Conv

1-D Conv

1-D Conv

1-D Conv

1-D Conv

Attention

1-D Conv

1-D Conv

PReLU

1x1 Conv

sigmoid

Masks

Multi-ch Spectrogram1-ch Spectrogram
+

IPDs

Fig. 2. Structure of the proposed CACTasNet model. “Attention” represents the self-attention network. “1x1 Conv” is a convolutional layer with kernel size
1, also known as point-wise convolution. “1-D Conv” denotes the one-dimensional convolutional block described in [8]. “PReLU” represents a parametric
rectified linear unit.

C. Results

We conducted speech separation experiments with the pro-

posed model on the noisy and reverberant dataset. Table II

and III show the result without and with the IPD features,

respectively. According to the experimental results, we found

that several types of self-attention improve the performance

substantially.

As shown in Table II, the time-varying channel-wise self-

attention network showed the most significant improvement

without the IPD features. Although the magnitude of the

improvement was relatively small with the IPD features, the

proposed model with several types of self-attention performed

better than the base model. The frequency-varying time-wise

self-attention network improved the performance most with

the IPD features, as shown in Table III.

TABLE II
THE PERFORMANCE OF SPEECH SEPARATION WITHOUT IPDS

Model Self-Attention Type SI-SNRi SDRi

base - 5.8 6.5

proposed

time-wise 5.9 6.5
channel-varying time-wise 6.6 7.2

frequency-varying time-wise 6.7 7.3
frequency-wise 6.1 6.7

channel-varying frequency-wise 5.3 6.0
time-varying frequency-wise 6.4 7.0

channel-wise 5.8 6.5
time-varying channel-wise 6.8 7.4

frequency-varying channel-wise 6.4 7.0

D. Analysis

To further understand the self-attention mechanism for

speech separation, we took an example utterance and analyzed
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TABLE III
THE PERFORMANCE OF SPEECH SEPARATION WITH IPDS

Model Self-Attention Type SI-SNRi SDRi

base - 9.0 9.6

proposed

time-wise 9.2 9.7
channel-varying time-wise 9.1 9.7

frequency-varying time-wise 9.3 9.9
frequency-wise 9.1 9.7

channel-varying frequency-wise 9.2 9.7
time-varying frequency-wise 9.2 9.8

channel-wise 9.1 9.7
time-varying channel-wise 9.2 9.8

frequency-varying channel-wise 9.2 9.8

the attention maps. Fig. 3 shows the spectrograms of two clean

speech utterances and background noise with a duration of 3.2

s, or 200 frames, at the head. In the following, we focus on the

time-varying channel-wise attention, which achieved the best

performance without the IPD features, and frequency-varying

time-wise attention, which achieved the best performance with

the IPD features.

Fig. 3. Spectrogram of an example utterance. The upper panel shows speech
by the first speaker. The middle panel shows speech by the second speaker.
The bottom panel shows noise.

The time-varying channel-wise self-attention network uti-

lizes inter-channel information, which is considered to be es-

sential for multi-channel speech separation. Notably, this type

of self-attention outperformed the channel-wise and frequency-

varying channel-wise self-attention, as shown in Table II.

Fig. 4 illustrates the attention map for the example utterance

mentioned above. This superiority indicates that the time

development of inter-channel information plays a significant

role. In support of this, we found dynamical changes of the

attention map for the example utterance mentioned above.

Moreover, we did not observe non-trivial structure in the

attention map during non-speech segments at the head of the

utterance. The improvement of performance by the channel-

wise self-attention became less significant but still remained

with the IPD features, as shown in Table III. This change can

be interpreted as follows: while the channel-wise self-attention

contributes to speech separation in a similar manner to the

IPDs, it can extract relatively more beneficial information.

The frequency-varying time-wise self-attention guides a

network to find time frames where relevant information is

incorporated. This type of self-attention outperformed the

other types, as shown in Table III. Fig. 5 illustrates the

attention map for the example utterance mentioned above. The

attention maps showed different patterns in each frequency

bin. This can be understood as different frequency bins putting

weight on different points in the time direction. Further to that,

we observed that some frames far in time were paid much

attention. This means information located not only close in

time but also far in time can be beneficial to speech separation.

It is notable that this type of self-attention utilizes the spectral

amplitude stacked along the channel direction. In other words,

it utilizes inter-channel information in a different way from

channel-wise attention networks to pay attention to the time

direction.

To summarize, the proposed model with an appropriate

type of self-attention outperformed the base model. This result

indicates that the self-attention mechanism enables a network

to find the locations where information relevant to speech

separation is incorporated.

Fig. 4. Time-varying channel-wise attention map. At each time frame, a
matrix of size (4, 4) representing the channel-wise attention map is visualized
as a 16-dimensional vector.

IV. CONCLUSIONS

In this study, we explored the use of self-attention for

multi-channel speech separation. We proposed CACTasNet, a

confluent self-attention extension of a convolutional temporal

audio separator, and evaluated it with nine types of self-

attention networks in a noisy and reverberant environment.

Our experiments showed that several types of self-attention

improved the performance of the base model significantly.
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Fig. 5. Frequency-varying time-wise attention map at different frequency
bins.

Specifically, time-varying channel-wise self-attention achieved

the best performance without IPDs, while frequency-varying

time-wise self-attention achieved the best performance with

IPDs. The results indicate that a self-attention mechanism is

beneficial to multi-channel speech separation in noisy and

reverberant environments by giving audio separator networks

the capability of discovering relevant context information in

multi-channel mixed signals.

Finally, we discuss some of the future directions for this

research. Future work will include the investigation of an

online version of the proposed model. By using the cumulative

layer normalization along with dropping future information

in the self-attention network, the audio separator network is

able to perform speech separation in a streaming manner. An-

other direction for future work is evaluating the performance

measured by word error rate when combined with automatic

speech recognition (ASR) systems. Studies in this direction

would include training the audio separator network and an

ASR network jointly. Further to that, many other ways to apply

the self-attention mechanism for speech separation remain

unexplored. This study should open an avenue to explore

a wide variety of ways to utilize self-attention for speech

separation and recognition of overlapping speech.
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