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Abstract—This paper proposes an adaptive noise suppression
method for wake-word detection by a temporal-difference gen-
eralized eigenvalue (TDGEV) beamformer. To emphasize wake-
word utterances, which are leading phrases with short duration,
the proposed method is based on a generalized eigenvalue beam-
former regarding current and past spatial covariance matrices for
speech and noise, respectively. It can emphasize wake-words with
small distortion and suppress any noises regardless of directions
of arrival (DoAs) and noise sources. We perform experiments of
wake-word detection with and without beamformers using test
data including wake-word utterances from various DoAs. The
results show that the proposed TDGEV method reduces false
rejects with 32.9% relative error rate reduction.

Index Terms: keyword spotting, wake-word detection, mi-
crophone array, adaptive beamforming, generalized eigenvalue
beamformer

I. INTRODUCTION

Speech-controlled devices, such as smart speakers and car
navigation systems, are gaining popularity in daily life. These
devices use keyword spotting (KWS) methods to initiate
speech recognition or directly execute commands. Because
speech-controlled devices are often distant from users and can
be located in noisy environments, noise robustness is crucial
for KWS methods.

Introducing a beamformer with a microphone array for
front-end KWS processing is an effective approach to im-
proving noise robustness. Many adaptive beamforming meth-
ods have been proposed for noise suppression [1], with the
generalized sidelobe canceller (GSC) being one well-known
method [2], [3]. GSC passes signals from predetermined target
directions of arrival (DoAs) and suppresses those from other
DoAs. Its algorithm is based on an adaptive filter whose coef-
ficients are updated to minimize filter output under a constraint
to pass target DoAs. GSC achieves better signal-to-noise ratio
(SNR) improvement than does fixed beamformers, but it is not
suited to applications such as smart speakers, where keyword
utterance DoAs are unknown and thus impossible to set as a
target DoA beforehand.

Mask-based beamformers supported by neural networks
(NNs) [4], [5], [6] have been proposed to emphasize speech
signals under conditions in which DoAs are unknown. These
methods use max-SNR beamformers such as a generalized
eigenvalue (GEV) beamformer [7] or a minimum variance
distortionless response beamformer [8]. These beamformers
are calculated based on speech and noise spectra estimated
from input signals. The NN is trained to separate speech and
noise from input spectra, so speech signals can be empha-
sized under blind conditions. However, these methods cannot

suppress undesired speech signals from televisions in home
environments and other common noise sources, making them
unsuited to applications such as smart speakers.

Hotword cleaner (HC) [9], [10] overcomes such problems
by focusing on wake-word detection applications. In contrast
to KWS applications, which attempt keyword detection in
continuous speech, HC limits its detection to wake-words,
which are leading phrases with short durations (typically less
than 1 s). In the HC method, an adaptive filter is updated
to minimize power output. Filter coefficients are stored in a
buffer for a short term, corresponding to wake-word lengths.
Beamforming is performed using the filter coefficients read
from the buffer. When a wake-word is observed, the filter can
suppress only noise signals, because the wake-word is not used
to adapt the filter. As a result, HC emphasizes a wake-word
against any noises, including television speech noise. However,
wake-word signal distortion can be problematic, because the
adaptive filter is optimized using only noise signals, and thus
does not guarantee a response from wake-word signals.

To improve accuracy of wake-word detection by blind
beamforming with low distortion against various noise sources,
including speech noise, we propose an adaptive noise suppres-
sion method for wake-word detection by a temporal-difference
generalized eigenvalue (TDGEV) beamformer. Because the
proposed method is based on the assumption of a wake-
word, its target is wake-word detection as a special application
of KWS. We introduce a GEV beamformer whose spatial
covariance matrices for speech and noise are respectively
calculated using current observation signals and those from
a short preceding term. When a wake-word is observed, the
beamformer is adapted to form a beam pattern that maximizes
output SNR. Thus, the proposed method effectively suppresses
all noise types under blind conditions, preventing wake-word
distortion.

A related work [11] proposed a multi-channel KWS method
using multiple fixed beamformers. In this method, the in-
put signal for KWS is the weighted sum of output signals
from four fixed beamformers using a 4-ch microphone array.
Weights are predicted by a NN trained with another NN
for KWS in an end-to-end manner. The fixed beamformers
need more microphones to form a sufficient beam pattern
and the weights for the beamformers depend on the following
KWS module. In this paper, we evaluate 2-ch versions of the
proposed TDGEV method and the HC method to compare the
beamforming methods independent of KWS methods.

We use a DNN-based KWS method [12] to evaluate both
beamforming methods. Experimental results show that the
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Fig. 1. Hotword Cleaner process flow: (a) overview, (b) adaptive filter,
(c) beamformer.

proposed method suppresses noise, including television noise,
and reduces false rejects of wake-word detection by 35.7%
relative to the HC method.

The reminder of this paper is organized as follows. Sec-
tion II reviews the conventional HC method. Section III pro-
poses the TDGEV method. Section IV introduces our keyword
detection method. Section V describes experiments for wake-
word detection to evaluate the beamforming methods, and
Section VI concludes this paper.

II. HOTWORD CLEANER

This section briefly reviews the 2-ch version of the con-
ventional HC method [9], shown in Fig. 1. The inputs are
short-time Fourier transform (STFT) domain signals rep-
resented by x1(n, f) and x2(n, f), where n and f are
respectively time-frame and frequency-bin indexes. Beam-
forming is independently applied to each frequency bin.
Figs. 1(b) and (c) respectively show structures of the adap-
tive filter and the beamformer where the number of fil-
ter taps L = 3. The adaptive filter updates coefficients
h(n, f) = [h0(n, f), h1(n, f), · · · , hL−1(n, f)]

T to minimize
output power using a fast recursive least squares (RLS) algo-
rithm. The filter coefficient buffer delays the filter coefficients
by D frames. The beamformer with coefficients h(n−D, f)
generates output y(n, f) from the input signals. Because the
parameter D is set to be larger than the wake-word duration,
when microphones observe a wake-word, the beamformer has
been adapted using noise signals from up to the previous
D frames. Therefore, assuming a stationary DoA for noise
during those D frames, the beamformer suppresses noise but
not wake-words. As a result, HC emphasizes wake-words and
suppresses any noise with stationary DoA. However, beam-
former gain for wake-words depends on wake-word DoAs and
frequency bins, because it is adapted using only noise signals.
This can suppress or degrade wake-words by gain dispersion
for each frequency bin.

III. TDGEV
This section presents the proposed TDGEV method. Fig. 2

shows the 2-ch version of TDGEV method. Like HC, this
is a STFT-domain beamformer. Unlike HC, however, the
beamformer in the proposed method is adapted using both
past noise signals and currently observed wake-word signals
to maximize output SNR.
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Fig. 2. Process flow of the proposed TDGEV method.

First, a spatial covariance matrix Φ(n, f) is calculated using
the exponential moving average as

Φ(n, f) = αΦ(n− 1, f) + (1− α)x(n, f)xH(n, f), (1)

where x(n, f) = [x1(n, f), x2(n, f)]
T is a vector of input

STFT spectra and α is a forgetting factor. Then, a matrix
buffer delays Φ(n, f) for D frames. The delay parameter D
is set to be larger than the wake-word duration. Coefficients
of the beamformer F (n, f) are obtained using the current and
past spatial covariance matrices Φ(n, f) and Φ(n − D, f).
The beamformer F (n, f) is composed of a GEV beamformer
FGEV (n, f) and a post filter g(n, f) based on blind analytical
normalization (BAN) as

F (n, f) = g(n, f)FGEV (n, f) (2)
g(n, f) =√
FH

GEV (n, f)Φ(n−D, f)Φ(n−D, f)FGEV (n, f)/2

FH
GEV (n, f)Φ(n−D, f)FGEV (n, f)

,(3)

where the GEV beamformer FGEV (n, f) is the eigenvector
corresponding to the largest eigenvalue of a matrix Φ−1(n−
D, f)Φ(n, f). Finally, the output y(n, f) is obtained by the
beamforming

y(n, f) = FH(n, f)x(n, f). (4)

In the proposed method, the current and past spatial covari-
ance matrices Φ(n, f) and Φ(n − D, f) are for speech and
noise, respectively. When a wake-word is observed, Φ(n, f)
indicates the wake-word DoA and Φ(n − D, f) indicates
the noise DoA. Thus, supposing Φ(n − D, f) approximates
the current spatial covariance matrix for noise, the proposed
method maximize the output SNR regardless of the wake-word
DoAs. Moreover, the BAN post-filter normalizes the gain of
each frequency bin, thus reducing distortion of emphasized
wake-words. However, the proposed method does not suppress
stationary noise when no wake-word is observed. The method
as described above is a 2-ch version, but it can be easily
expanded to more channels.

IV. KEYWORD DETECTION

This section describes our keyword detection method [12]
as used for evaluation of the beamforming methods. This
keyword detection method is designed for both wake-word de-
tection tasks and general keyword-spotting tasks. This method
comprises a NN to calculate phoneme-state probability and
a keyword detector based on a customized Viterbi algorithm.
The method can detect arbitrary keywords by specifying their
phoneme sequences, because the NN supports a full set of
phonemes. The NN, which comprises feed-forward layers, is
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trained with a large speech corpus, including various utter-
ances independent of keywords. In the following experiments,
we use a NN having 4 hidden layers with 256 nodes each.

Keywords are represented as a left-to-right Hidden Markov
model state sequence {s1, s2, · · · , sN}, where N is the total
number of states. The NN predicts score(xτ , sj) between an
input speech feature vector xτ and a phoneme state sj in the
keyword, where τ and j denote time frame and state indexes,
respectively. The keyword score S(b, e) corresponding to a
segment from a start frame b to an end frame e is

S(b, e) =
1

e− b+ 1
max
Q

e∑
τ=b

score(xτ , sqτ ), (5)

where qτ indicates a state number mapped to xτ , and Q is a
set of possible state number sequences {qb, qb+1, · · · , qe}. A
keyword is detected when a speech segment with S(b, e) > θ
exists, where θ is a predefined threshold. The calculation for
finding the segment [b, e] in all observed speech segments with
length T is

max
1≤b<e≤T

1

e− b+ 1
max
Q

e∑
τ=b

score(xτ , sqτ ) > θ. (6)

The computational cost when using the conventional Viterbi
algorithm to search for the segment is O(NT 3). To reduce
computations, we restate (6) as

max
1≤b<e≤T

max
Q

e∑
τ=b

{score(xτ , sqτ )− θ} > 0. (7)

This equation does not have a normalization term (e−b+1), so
intermediate scores can be determined independent of e and
b. Therefore, (7) can be efficiently solved by a Viterbi-like
algorithm, and the computational cost is drastically reduced
to O(NT ) without any accuracy degradation.

V. EXPERIMENTS

To evaluate the performance of the proposed TDGEV
method versus the conventional HC method, we conducted
experiments using test data including wake-word utterances
from various DoAs. The test data are made by adding wake-
word data over noise data. False accepts and false rejects are
measured by applying the keyword detection method to the test
data with and without beamformers. Performance of a wake-
word detection method is illustrated by a receiver operating
characteristic (ROC) curve, which is drawn by plotting false
rejects and false accepts for various values of the threshold
parameter θ. Beamformer performance can be evaluated by
comparing ROC curves. Because some beamformer parame-
ters depend on the test data, we performed parameter tuning
for both HC and TDGEV using the test data before comparing
the two methods.

A. Test data
Wake-word data were recorded in a soundproof room

using a 2-ch microphone array of omni-directional
microelectromechanical-systems microphones with 2 cm
distance. Fig. 3 shows a layout of the recording. Source data
for wake-words were played back from one of the 7 DoAs
(−90◦,−60◦,−30◦, 0◦,+30◦,+60◦, and +90◦) in a mouth
simulator. Wake-word source data comprise 15 Japanese full

-90°

-60°

-30°

0°

90°

60°

30°

1
 m

2 cm

Fig. 3. Recording layout for wake-word data.

Fig. 4. Histogram of wake-word utterance durations.

names uttered twice by each of 12 speakers (5 female, 7
male). Fig. 4 shows a histogram of durations for all 360
wake-word utterances. Numbers of syllables in the Japanese
names ranged from 5 to 10, so duration variance exceeded
that for a single wake-word task.

Noise data were recorded in actual environments. Each
60 min noise data segment was recorded in the five environ-
ments listed in Table I using the microphone array described
above.

Test data were generated by adding a set of the 360 wake-
word data over each noise dataset. Wake-word directions were
selected at random from among the seven DoAs. Timings
at which wake-words were added to noise data were also
randomized. SNR was controlled by adjusting the power of
wake-word data versus that of the overlapping noise data
segment. We generated five test datasets with SNRs of 20, 15,
10, 5, and 0 dB. Test data were saved as 16 kHz samplings
of 16-bit linear PCM.

TABLE I
RECORDING CONDITIONS FOR NOISE DATA.

Place Predominant noise

Living room Ambient noise
Living room Speech from a television
Living room Music from stereo speakers

Kitchen Cooking and splashing noises
Office Noise from keyboards, printers, and speech
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TABLE II
FALSE REJECTS IN WAKE-WORD DETECTION USING HC AND TDGEV FOR

COMBINATIONS OF STFT PARAMETERS WITH FAh = 0.1.

STFT parameters forgetting factor False Rejects [%]
LFFT Lshift λ(HC) α(TDGEV) HC TDGEV

2048 1024 0.993 0.923 11.1 7.3
2048 512 0.997 0.961 10.7 6.8
1024 512 0.997 0.961 10.9 7.4
1024 256 0.998 0.980 10.3 6.9
512 256 0.998 0.980 10.9 6.4
512 128 0.999 0.990 10.9 7.0
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Fig. 5. False rejects of wake-word detection using HC and TDGEV for D
values with FAh = 0.1.

B. Experimental results

We optimized the STFT parameters (FFT window length
LFFT and frame shift Lshift) and the delay parameter D, because
they are common parameters for TDGEV and HC. Other HC
parameters were set following Ref. [9] as follows: filter length
L = 3, initial parameter δ = 0.1, and forgetting factor λ =
0.993 for Lshift = 1024. Based on a preliminary experiment,
the forgetting factor for TDGEV was set as α = 0.990 for
Lshift = 128.

We first evaluated both methods using the LFFT and Lshift
combinations listed in Table II with D = 1280 ms. Be-
cause forgetting factors depend on Lshift, these were set as
α(2Lshift) = α(Lshift)

2 and λ(Lshift/2) =
√

λ(Lshift) using
the initial values α(128) = 0.990 and λ(1024) = 0.993.
False rejects in Table II show the values for the following
FAh = 0.1:

FAh =
#FA

Ttest ∗#words
, (8)

where #FA is the number of false accepts, Ttest is the
duration of test data in hours, and #words is the number of
wake-word types. As Table II shows, the best combinations
of (LFFT, Lshift) for HC and TDGEV are (1024, 256) and
(512, 256), respectively.

We next searched for the best D parameter for both methods
using the best (LFFT, Lshift) combinations derived above. Fig. 5
shows false reject values for FAh = 0.1 corresponding to D
values ranging from 160 to 2080 ms. The best values for D
were 960 for HC and 1440 for TDGEV.

Finally, we compared the ROC curves in Fig. 6 for HC,
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Fig. 6. ROC curves of wake-word detection for HC, TDGEV, and without
beamformers.
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Fig. 7. False rejects of wake-word detection with FAh = 0.1 for DoAs of
wake-word utterances.

TDGEV, and the baseline, which is the average of the results
for each of the left and right channels without beamformers.
The value of false rejects for the proposed TDGEV method
is remarkably reduced from the baseline. A relative error rate
reduction (RERR) for TDGEV at FAh = 0.1 was 32.9%
versus the baseline. False rejects for the conventional HC
method is not reduced from the baseline. Fig. 7 shows the
value of false rejects at FAh = 0.1 for DoAs of wake-
word data. HC reduces false rejects from the baseline for the
DoAs of −90◦,−60◦,+60◦, and +90◦ but not for other DoAs.
TDGEV reduces false rejects for all the DoAs in contrast to
HC. Fig. 8 shows examples of the final results.

C. Discussion

Figs. 8(c) and (d) indicate that HC is better in terms of
noise suppression, and TDGEV is better in terms of low
distortion of wake-words. This result supports the theoretical
advantages and disadvantages of the two methods. Fig. 6 and
7 show that the proposed TDGEV method is superior to the
conventional HC method in terms of wake-word detection per-
formance because TDGEV is robust for wake-words’ DoAs.
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(a) (b)

(c) (d)

Fig. 8. Examples of waveforms and spectrograms: (a) wake-word source data, (b) test data generated from the wake-word data with DoA=−30◦ and television
noise under 5 dB SNR, (c) test data processed by HC, and (d) test data processed by TDGEV.

This result suggests that low-distortion beamforming by the
proposed GEV-based method improves wake-word detection
performance.

Table II shows that TDGEV can perform with smaller
FFT window lengths. Thus, additional latency by TDGEV is
32 ms with the best parameter and that of HC is 64 ms. This
insensitivity to FFT window length is another advantage. A
keyword detection module can be connected to the TDGEV
beamformer in the STFT domain without converting to the
time domain by adopting a FFT window length common
between the two modules, thereby reducing computation times
and latency.

VI. CONCLUSION

We proposed the TDGEV method for adaptive noise sup-
pression in wake-word detection. The proposed method is
based on a GEV beamformer that regards current and previous
spatial covariance matrices as those for speech and noise,
respectively. It emphasizes a wake-word utterance, which is a
leading phrase with short duration, and suppresses any noises
with stable DoA regardless of DoA and noise source. Experi-
mental results showed that the proposed TDGEV method im-
proved wake-word detection performance with 32.9% RERR
for test data including wake-word utterances from various
DoAs versus the baseline without beamformers.
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