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Abstract—In this paper, we propose ExcitGlow, a vocoder
that incorporates the source-filter model of voice production
theory into a flow-based deep generative model. By targeting
the distribution of the excitation signal instead of the speech
waveform itself, we significantly reduce the size of the flow-based
generative model. To further reduce the number of parameters,
we apply a parameter sharing technique in which a single
affine coupling layer is used for several flow layers. To avoid
quality degradation, we also introduce a closed-loop training
framework to optimize the flow model for both the speech and
excitation signal generation processes. Specifically, we choose
negative log-likelihood (NLL) loss for the excitation signal and
multi-resolution spectral distance for the speech signal. As a
result, we are able to reduce the model size from 87.73M to
15.60M parameters while maintaining the perceptual quality of
synthesized speech.

Index Terms—Neural vocoder, speech synthesis, excitation
modeling, WaveGlow

I. INTRODUCTION

Neural vocoders that directly generate raw speech wave-
form with deep generative models have been successfully
applied in speech synthesis systems [1], [2], [3]. For example,
WaveNet [1], which is an autoregressive model, is able to
reliably estimate speech samples by conditioning the samples
generated at previous time steps. However, its generation speed
is very slow due to the sample-by-sample generation method.
To accelerate generation speed, probability distillation-based
non-autoregressive models have been proposed, such as par-
allel WaveNet [4] and ClariNet [5]. By adopting a teacher-
student framework to improve the training efficiency of the
inverse autoregressive flow (IAF) [6], these methods were able
to parallelize the generation process in the inference phase.
However, training process of these models is not easy, because
it requires a well-trained teacher network and a sophisticated
distillation process between the teacher and student networks.

Subsequently, motivated by the success of bipartite normal-
izing flow models [7], [8], [9], the WaveGlow vocoder [3],
which can generate speech signals of reasonable quality in
parallel with each other, was proposed. In this framework, an
invertible neural network is trained to model the relationship
between the probability distribution of a simple prior (e.g.
isotropic Gaussian) and the complex probability distribution

of a speech waveform. However, due to the weak modeling
power of the bipartite structure, a large number of transforms
is required in order to estimate the distribution of complex
speech waveforms compared to the AF or IAF models [3],
[10]. In addition, since the WaveGlow model adopts WaveNet-
like affine coupling layers, each of which is comparable in
size to WaveNet itself, it is much larger than any other neural
vocoder.

To address this problem, we propose ExcitGlow, a vocoder
that incorporates the source-filter model of voice production
theory into a flow-based neural vocoding model. ExcitGlow
consists of a WaveGlow-based excitation generator and a
parallel spectral filtering module that replaces a linear pre-
diction (LP) synthesis filter. In the training step, the excitation
generator learns the relationship between the distribution of
excitation signals and Gaussian random variables. To further
improve the effectiveness of the model, we apply a weighting
filter to the excitation signal for clearer fundamental frequency
(F0) trajectory modeling. Additionally, we propose a closed-
loop framework in the flow model training process, which
uses joint optimization criteria for both the excitation signal
and speech. For the excitation signal, negative log-likelihood
(NLL) loss is used for training. For the speech signal, a multi-
resolution spectral distance metric between the frequency
domain representation of the target and that of the generated
speech signal is used. At the inference step, we first generate
a weighted excitation signal from a Gaussian prior, using the
ExcitGlow model, and then synthesize a speech waveform by
passing the weighted excitation signal through post and LP
synthesis filters.

The ExcitGlow vocoder can be trained more easily than the
WaveGlow model because the statistical behavior of an excita-
tion signal is simpler than that of a speech signal [11], [12]. By
exploiting this behavior, the network size can be significantly
reduced without degrading the quality of synthesized speech.

We summarize our contributions as follows: (1) we in-
corporate an LP structure into the WaveGlow model. Thus,
the network size, especially the dimension of the condition
features, can be significantly reduced; (2) we address the
limitation of F0 modeling in targeting the excitation by adding
a weighting filter; (3) we verify that using a low dimensional
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mel-spectrogram is sufficient for conditioning the ExcitGlow
model; (4) we successfully combine two loss functions (NLL
loss and multi-resolution spectral distance) that are needed
to represent the characteristics of the excitation and speech
signals, respectively. Experimental results show that our frame-
work enables the model size to be reduced to 17.78% of the
original size, while achieving a mean opinion score (MOS) of
3.67.

II. RELATED WORKS

There have been several attempts to incorporate the source-
filter model of voice production theory into neural vocoding
systems. For instance, GlotNet, ExcitNet, and LP-WaveNet
[13], [11], [12] improved the quality of WaveNet-based neural
vocoders by introducing an LP synthesis filter to the waveform
generation phase. By dividing a unified speech synthesis model
into excitation and spectral modeling parts, noise artifacts
that existed in vanilla WaveNet could be alleviated. LPC-
Net and iLPCNet [14], [15] used the LP-based source-filter
model to reduce the complexity of the WaveRNN-based neural
vocoding model. By these methods, synthesized speech of
reasonable quality was obtained, even with a smaller condition
vector dimension, which helped to accelerate synthesis speed
and reduced the number of model parameters. In the GELP
vocoder [16], a generative adversarial network (GAN)-based
parallel waveform generation model was proposed with a
parallelized LP synthesis process. In addition to the adversarial
loss of GAN, a short-time Fourier transform (STFT) loss-
based spectral distance measure was successfully merged into
a single framework.

The main objective of this paper is to extend the usage of a
source-filter model to the flow-based parallel waveform gen-
eration model. Combining a flow-based model with a source-
filter model provides several advantages. First, the waveform
generation speed is much faster than that of a sample-wise
autogressive generative model, because the model structure al-
lows for the adoption of a flow-based parallelized framework.
Second, due to the relatively simple probability distribution
of excitation signals, the model’s memory efficiency can be
improved by reducing the conditioning parameters for the
flow model. Finally, quality degradation can be minimized by
incorporating an LP synthesis process into closed-loop training
with effective optimization criteria.

III. WAVEGLOW

WaveGlow [3] is a type of neural vocoder that uses a flow
model. The idea behind WaveGlow is to create a complex
target data distribution from a simple distribution prior, such
as a Gaussian prior. Using the change of variables formula
between two arbitrary distributions, as shown in Eq. (1), it
can directly estimate the likelihood of observed data.

pX(x) = pZ(f(x))

∣∣∣∣∂f(x)∂x

∣∣∣∣ . (1)

Since WaveGlow is trained solely to minimize NLL loss,
the training process is more stable than those of other types

Fig. 1. Overall block diagram of ExcitGlow

of generative models. To reduce the complexity required to
compute the determinant of the Jacobian matrix, a bipartite
flow is introduced, where half of the samples are updated by
scaling, and adding factors predicted by the coupling layer
output from the other half of the samples [7]. The WaveGlow
model adopts a trainable invertible 1 × 1 convolution in the
coupling layer, to shuffle efficiently the information of each
squeezed channel. Its performance is higher than those of fixed
or random permutation methods [9]. The model was extended
to a multi-scale architecture through a squeezing operation,
and a criterion was introduced to widen the receptive field
size of the coupling function [8].

WaveGlow is able to synthesize speech dozens of times
faster than real time. However, since there can be only one
transformation (i.e. multiplication and addition) in a single
flow chain, a large number of flow chains is required to
estimate accurately the complex distribution of the target
signals. In addition, each flow chain requires a coupling layer
of a size comparable to WaveNet itself. As a result, WaveGlow
has a very large number of parameters. The dimension of the
condition vector also affects to the model size, because of its
effects on the transposed convolution layer.

IV. PROPOSED METHOD

To reduce the model complexity of WaveGlow, we propose
ExcitGlow, a model that changes the target signal from speech
to excitation signals. The rationale is as follows. Firstly, the
transformation from a Gaussian prior to a probability distri-
bution of excitation signals is simpler than a transformation
to speech signals. Secondly, we can reduce the dimension
of the condition vector by using a smaller dimensional mel-
spectrogram. We also introduce a closed-loop structure for
training that simultaneously uses the optimization criteria in
both the excitation and speech signal domains.

Fig. 1 is the overall block diagram of the proposed vocoder
system. To prepare features for training, we need to estimate
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linear prediction coefficients (LPCs) to represent the spectral
information of the speech signal and extract an excitation
signal. An additional weighting filter is applied to the extracted
excitation signal for better F0 modeling in the Waveglow-
based excitation generator. Furthermore, the condition vectors
for the flow model, (i.e. the mel-spectrogram) also need to be
estimated. In the training step, the weighted excitation signal is
used as the target of the generator and the extracted excitation
features as a conditioning vector for the excitation generator.
Since the generator is an invertible model, the random variable
ẑ is sampled from a Gaussian distribution to simulate the
inference stage. It is transformed into ê by passing through
the excitation generator in the reverse direction. The estimated
excitation signal then goes through the post and a parallel LP
synthesis filter to synthesize the speech signal. We use two
kinds of loss functions for training: NLL and spectral distance.
In the inference phase, the excitation and speech samples are
generated in the same way as in the simulation scenario used
for the training steps.

A. Weighting filter for F0 modeling

The excitation signal is obtained by subtracting the output
of the LP filter from the reference speech, as follows:

e[n] = s[n]−
p∑

k=1

aks[n− k], (2)

where p and ak represent the LPC order and the k-th order
LPC, respectively.

Since the LP filter uses only short-term (20-40 samples)
relationships within input speech, long-term information such
as the F0 trajectory tends to remain in the excitation signal.
However, in some voiced regions with a simple periodic
form, excitation signals approach to nearly zero because of
too accurate linear prediction results. In those regions, the
target excitation barely contains any F0 information, so the
excitation generator fails to generate a clear F0 trajectory. To
solve this problem, we apply a perceptual weighting filter to
the excitation signal; it emphasizes the null regions and de-
emphasizes the formant regions. With this filter, we can obtain
the prominent F0 trajectory in weighted excitation signals.
The weighting filter of the t-th frame, Qt, can be obtained
as follows:

Qt =
1

1−
∑p

k=1 akα
−kz−k

, (3)

where α is the perceptual weight coefficient.

B. Closed-loop training with parallel LP synthesis filter

There are two reasons to use closed-loop training with a
parallel LP synthesis filter in our model. First, due to the au-
toregressive nature of the LP synthesis filter, we cannot make
full use of the fast generation speed of WaveGlow. Second,
if the flow model is trained to estimate only the excitation
signal, without considering the LP synthesis step (i.e. open-
loop training), unavoidable errors in excitation estimation can
be amplified due to the feedback nature of the AR filtering
process.

To address this problem, we use the parallel filtering method
proposed in the GELP vocoder [16] that includes the LP
filtering part in the training framework. In the parallel LP filter,
speech samples are synthesized in the frequency domain by
using an element-wise multiplication. The frequency response
of the t-th frame, Ht, is retrieved from the LPC as follows:

Ht =
1

1−
∑p

k=1 akz
−k
. (4)

By including this parallel filter in the proposed framework, it is
possible to create a closed-loop training scheme that eventually
targets a speech signal.

Before performing the filtering step, we compute and
concatenate the frequency response of each analysis frame,
denoted as H = [H1, H2, ...,HL]. The excitation signals, esti-
mated from the WaveGlow-based generator, are then converted
into the frequency domain using an STFT. Finally, two 2-D
vectors are multiplied element-wise in the frequency domain
and transformed into the time domain by an inverse STFT
(ISTFT) to obtain the final speech output, as follows:

x̂ = ISTFT{STFT{ê} �H} (5)

C. Dimensional reduction of condition features

In order to efficiently reduce the dimension of the condition
vector of the WaveGlow-based excitation model, we devise
a method to extract the condition vector by considering the
signal characteristics. In the low-frequency band of the exci-
tation signal, a relatively high frequency resolution is required
to represent F0 information. Conversely, high-frequency infor-
mation is relatively unimportant because the LP synthesis filter
employed after the excitation generator can reconstruct this
information. For this reason, we can reduce the dimension of
the weighted excitation’s mel-spectrogram while maintaining
the frequency resolution by changing the maximum frequency
of the mel-filterbanks.

With this approach, we are able to reduce the number
of mel-spectrogram channels, compared to the conventional
WaveGlow model. This also has the effect of significantly
reducing the number of parameters without severe quality
degradation. We conducted experiments to find the optimal
setting for determining the maximum frequency and the di-
mension of the mel-spectrogram; the results are provided in
Section V.

D. Loss functions

Two loss terms are used in the proposed framework as
follows:

Ltotal = LNLL + λLSD, (6)

where LNLL denotes NLL loss, which is used to train the
WaveGlow-based weighted excitation generator. LSD is the
multi-resolution spectral distance loss between the reference
and target speech. The total loss of the entire framework is a
weighted sum of the two loss terms, where λ is the weighting
factor determined by experiments.
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1) Negative log-likelihood loss: LNLL is measured by the
change of variables theorem, as follows:

LNLL = − log pz(f(e))− log

∣∣∣∣∂f(e)∂e

∣∣∣∣ , (7)

where e is the reference weighted excitation signal and pz is
a Gaussian prior.

2) Multi-resolution spectral distance loss: We use STFT
loss, which measures the logarithmic difference between the
STFT magnitudes of the ground truth and the estimated speech
signal, to improve the perceptual quality of synthesized speech.
Additionally, we apply multi-resolution STFT loss to comple-
ment the trade-off between time and frequency resolutions, as
follows:

LSD =
1

N

N∑
k=1

(log |STFTk{x}| − log |STFTk{x̂}|)2, (8)

where N denotes the number of STFT loss terms and k
represents the index of the STFT loss.

V. EXPERIMENTS

A. Experimental settings

1) Database: We used the LJ Speech Dataset [17] to
evaluate the performance of the proposed framework. The
data was recorded by a professional female English speaker
at a sampling rate of 22.05 kHz. There are a total of 13,100
utterances, totaling approximately 24 hours of speech. We used
13,000 utterances for training and the remainder for testing. In
every iteration, a randomly segmented set of 16,384 samples
from each utterance were cropped for training.

To prepare the weighted excitation signals, training ut-
terances were passed through an LP analysis filter and a
perceptual weighting filter. In our experiments, we used 24th
order LP filter coefficients and set the perceptual weight α to
0.8. To prepare the mel-spectrogram needed for conditioning
the flow model, we first applied a STFT to the weighted exci-
tation signals. We used 1024/256 samples for analysis frame
and shift length for STFT computation, which approximately
correspond to 50/12.5 ms in 22.05 kHz sampling rate. As
explained in Section IV, we extracted mel-spectrograms by
changing the maximum frequency and the number of mel-
filterbanks. Specifically, the maximum frequency was set to
2000, 4000, or 8000 Hz, and the dimension of the mel-
spectrogram was reduced to 24.

2) Model: We used the conventional WaveGlow model with
12 flow chains as our baseline. Additionally, we trained a
WaveGlow model with 8 flow chains to make the number of
parameters comparable to ExcitGlow, in an effort to validate
the effectiveness of the ExcitGlow model. We also examined
the efficiency of the parameter sharing model, which has one-
quarter of the number of parameters of the ExcitGlow model,
by comparing the synthesized signal quality of each system.

These models were trained using a Gaussian distribution
with a standard deviation of 1.0, which follows the vanilla
WaveGlow setup. As an affine coupling layer, we adopted a
non-autoregressive WaveNet-like architecture with 8 dilated

TABLE I
STFT SETTINGS FOR MULTI-RESOLUTION SPECTRAL DISTANCE LOSS

STFT index FFT size Window size Shift size
STFT1 1024 550 (25ms) 110 (5ms)
STFT2 2048 1100 (50ms) 220 (10ms)
STFT3 512 220 (10ms) 44 (2ms)

TABLE II
CONVENTIONAL WAVEGLOW SYSTEMS

Model Vocoder
# of # of

MOS
flows params.

A WaveGlow 12 87.73M 3.72 ± 0.09
B WaveGlow 8 60.68M 2.85 ± 0.14

- Reference - - 4.99 ± 0.02

convolutions and 256/512 channels of skip/residual connec-
tions. At every 4 flow layers, the early output technique
was applied to directly connect the two input channels to
the network output. 80-dimensional mel-spectrograms, which
contained the speech signal’s information under 8000 Hz, were
used for the condition features.

Besides reducing the dimension of the condition features,
we also implemented a parameter sharing method to further
reduce our model size without significant quality degradation.
Unlike the baseline model, we trained the ExcitGlow vocoder
by using a Gaussian distribution with a standard deviation
of 0.1 to reflect the smaller magnitude range of excitation
signals. We pre-trained the model with only a NLL loss for
the first 100,000 iterations, to maintain stability in the training
process. After pre-training, the STFT loss was included in the
training criteria. For multi-resolution spectral distance loss,
three window and shift length settings were used. They are
summarized in Table I.

All neural vocoders were trained for 400,000 iterations with
a batch size of 8 and a learning rate of 10−4. The weights were
normalized with a weight normalization method [18] and the
Adam optimizer [19] was used for training. We performed a
MOS test to evaluate all models. Specifically, we employed
15 participants to score the perceptual quality of 15 randomly
chosen test sentences from each model.

B. Effect of maximum frequency in reduced mel-spectrograms

To reduce the number of model parameters, we reduced
the dimension of the mel-spectrograms from 80 to 24. We
also tried 16 and 32 dimensions; but, quality degradation was
severe in the 16 dimension case and there were only minimal
differences between the 24 and 32 dimensions. The MOS
test results of synthesized speech from the two conventional
WaveGlow systems and reference speech are summarized in
Table II. Model A, and B denote the baseline WaveGlow model
with 12 and 8 flow layers, respectively. Model B resulted in a
significantly lower MOS than model A (2.85 vs. 3.72), which
implies that simply reducing the number of flow layers results
in severe quality degradation.
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TABLE III
COMPARISON OF SYSTEM COMPLEXITY AND MOS DEPENDING

ON THE MAXIMUM FREQUENCY OF CONDITION FEATURES

Model Vocoder
Maximum # of

MOS
frequency params.

C WaveGlow 8000 Hz 59.75M 3.22 ± 0.12
D WaveGlow 4000 Hz 59.75M 3.15 ± 0.19
E WaveGlow 2000 Hz 59.75M 2.28 ± 0.18

F ExcitGlow 8000 Hz 59.75M 3.43 ± 0.15
G ExcitGlow 4000 Hz 59.75M 3.85 ± 0.18
H ExcitGlow 2000 Hz 59.75M 3.45 ± 0.21

TABLE IV
COMPARISON OF SYSTEM COMPLEXITY AND MOS

DEPENDING ON THE TYPE OF STFT LOSS

Model Vocoder
# of

MOS Remarks
params.

I ExcitGlow 15.60M 3.67 ± 0.16 Single resolution
J ExcitGlow 15.60M 3.66 ± 0.22 Multi-resolution

TABLE V
COMPARISON OF INFERENCE SPEED

Model Vocoder Real time factor
A 12-WaveGlow 0.024

I, J Shared ExcitGlow 0.023 (exc) / 0.12 (total)

Models C-H were tested to analyze the effects of varying the
maximum frequency of the mel-spectrogram under both the
WaveGlow and ExcitGlow frameworks. All parameter settings
without the type of condition vector were set to be the same as
for baseline model A. The results are summarized in Table III.
Model C shows the effect of reducing the dimension of the
mel-spectrograms; due to a less informative condition features,
MOS decreases to 3.22. In WaveGlow models with lower
maximum frequencies (models C-E), synthesized speech qual-
ity degrades significantly because high-frequency information
cannot be retrieved from the condition features. However, in
the ExcitGlow cases (models F-H), quality degradation is not
as severe because the LP synthesis filter can represent the
formant structure of full-band speech.

When we reduced the dimension of the mel-spectrograms
without maximum frequency reduction, the pitch contours
became unrecognizable in many regions, as shown in Fig. 2(a).
By decreasing the maximum frequency of the mel-filterbanks
while keeping the order, the F0 trajectory is more clearly
observed due to the increased frequency resolution of the
filterbanks. However, when the maximum frequency is set to
2000 Hz, the condition vector cannot provide proper informa-
tion for signal generation because high order harmonics still
exist in frequency regions higher than 2000 Hz. We therefore,
set the maximum frequency to 4000 Hz in the ExcitGlow
model because it maintained the best performance. With the
maximum frequency reduction, ExcitGlow does not show
harmonic artifacts that are present in WaveGlow. Because of
this, we see that model G achieves better performance than

Fig. 2. Mel-spectrogram depending on the maximum frequency

the conventional WaveGlow model (model A).

C. Parameter sharing & multi-resolution STFT Loss

To further reduce the number of model parameters, we
applied a parameter sharing technique to the affine coupling
layer of the flow model. To prevent severe modeling power
degradation, sharing was applied at every 4 flow layers, where
early stopping occurs. With parameter sharing, the number
of model parameters is reduced to one-fourth of that of the
reduced condition feature case and one-sixth of the original
model. Even with the smaller number of parameters, we were
able to obtain MOS of 3.67, which is comparable to the
original WaveGlow model.

To verify the effectiveness of the multi-resolution STFT
loss, we compared the performances of models I, and J.
Model J was trained with multi-resolution STFT loss, depicted
in Table I. On the other hand, model I was trained only
with single resolution STFT loss, using the STFT2 setting
in Table I. The efficiency of applying multi-resolution STFT
loss to training criteria was proved by [20], [21] when the
model targets speech signals. However, the synthesized quality
did not dramatically improve in ExcitGlow because the LP
synthesis filter reliably provides spectrum-related information.

D. Inference speed

We also measured the real time factor (RTF), which repre-
sents the ratio between the amount of time to process the input
and the duration of the input [22]. For the generation process,
an NVIDIA TITAN RTX was used; the results are summarized
in Table V. When considering only the excitation generation
part, models I, and J generate faster than model A due to
their smaller model size. But if we take the LP synthesis part
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into account, the generation speed becomes slower than the
baseline WaveGlow model. Nevertheless, our proposed model
is still able to generate speech much faster than real time.

VI. CONCLUSION

We proposed ExcitGlow, a vocoder designed to reduce the
model complexity of WaveGlow. To improve the effective-
ness of the conventional WaveGlow model, we targeted the
excitation signal instead of the speech signal. By represent-
ing complicated speech spectrum information through an LP
synthesis filter, we were able to reduce the dimension and
the maximum frequency of the mel-spectrogram, which was
necessary to condition the WaveGlow-based excitation genera-
tor. In addition, we proposed a closed-loop training framework
with multi-resolution loss to prevent quality degradation in the
proposed model. As a result, we were able to synthesize speech
signals of comparable quality while using only one-sixth of the
number of parameters of the conventional WaveGlow model.
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