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Abstract—In this paper, we propose the model generalization
of a fast version of multichannel nonnegative matrix factorization
(FastMNMF). FastMNMF is a blind source separation (BSS)
method under the assumption that the spatial covariance matrices
of multiple sources are jointly diagonalizable. To further improve
its source-separation performance, we introduce a multivariate
complex Student’s t-distribution as a generative model, which
includes a multivariate complex Gaussian distribution used in
conventional FastMNMF. We derive a new parameter update rule
using the auxiliary-function-based method and show the validity
of the proposed method on the basis of BSS experiments using
music sources.

I. INTRODUCTION

Blind source separation (BSS) [1] is a technique of sep-
arating each sound source from observed mixtures without
any prior information about the sources or the mixing sys-
tem. In previous studies, various BSS methods have been
proposed to improve the performance under the determined or
overdetermined situation, such as frequency-domain indepen-
dent component analysis [2], [3], independent vector analysis
(IVA) [4]–[6], and independent low-rank matrix analysis (IL-
RMA) [7], [8]. These methods assume that the mixing system
is instantaneous mixing in the time-frequency domain (referred
to as the rank-1 spatial model) and invertible, and estimate
the demixing system. In particular, ILRMA is the state-of-
the-art BSS method that can efficiently and stably estimate
the demixing system under the above assumptions. However,
the rank-1 spatial model does not hold in the case of spatially
spread sources or strong reverberation.

Multichannel nonnegative matrix factorization (MNMF) [9],
[10] is an extension of nonnegative matrix factorization
(NMF) [11] to multichannel cases, which estimates the spatial
covariance matrices (SCMs) of each source. MNMF employs
full-rank SCMs [12], and this model can simulate situations
where, e.g., the reverberation is longer than the length of
time-frequency analysis. However, it has been reported that
MNMF has a huge computational cost and its performance
strongly depends on the initial values of parameters [7].
To accelerate the parameter optimization, FastMNMF [13]
has been proposed. FastMNMF is an improved algorithm of
MNMF under the assumption of jointly diagonalizable SCMs,

and this assumption contributes to the considerable reduction
of computation time. However, it has been reported that its
source-separation performance is still almost the same as that
of original MNMF [14].

Recently, to achieve further improvement of the source-
separation performance of BSS methods, the generative model
generalization from a Gaussian distribution to a Student’s t-
distribution has been proposed, e.g., t-MNMF [15] and t-
ILRMA [16]. Since the Student’s t-distribution is less sensitive
to outliers than the Gaussian distribution, it is expected to
model source or observed signals well. It has been reported
that this model generalization improves their performance in
some cases [15]–[18].

In this paper, we generalize the generative model of FastM-
NMF from the multivariate complex Gaussian distribution
to the multivariate complex Student’s t-distribution; this is
hereafter referred to as t-FastMNMF. By generalizing the
generative model to the multivariate complex Student’s t-
distribution, we can change the shape of the distribution
parametrically, which is expected to be applicable to various
types of sources and further improve the source-separation
accuracy. Next, we derive the update rules of the proposed
method using the auxiliary function technique [19] that guar-
antees the monotonic nonincrease in the cost function. Finally,
we conduct BSS experiments under reverberant conditions,
showing that proposed t-FastMNMF outperforms conventional
methods in source-separation accuracy.

II. CONVENTIONAL METHODS

A. Auxiliary function technique [19]

The auxiliary function technique is a type of iterative
method for minimizing a function. This optimization method
has been used in the derivation of update rules for conventional
methods, e.g., MNMF or FastMNMF, and is also used in the
proposed method.

Here is an overview of the auxiliary function technique. Let
Θ be the parameter space and consider finding a solution θ̂
that minimizes the cost function J (θ).

θ̂ = arg minθ∈ΘJ (θ) (1)
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The auxiliary function technique is effective for cases in which
it is difficult to optimize J (θ) for this parameter θ. In this
technique, the following auxiliary function J + is designed
and optimized.
• J (θ) ≤ J +(θ|θ̃) holds for any θ ∈ Θ, θ̃ ∈ Θ̃.
• For any θ ∈ Θ, a θ̃ ∈ Θ̃ exists and J (θ) = J +(θ|θ̃)

holds.
Here, θ̃ is an auxiliary variable. θ and θ̃ in the auxiliary
function J +(θ|θ̃) are alternatively optimized instead of θ in
J (θ). Thus, the parameter is updated as follows. First, let θ(l)

be the parameter of the lth iteration, and θ(0) is initialized by
a random point. Then, the following operations are performed
on l = 0, 1, 2 . . . to update the parameters:

θ̃(l+1) ← arg minθ̃∈Θ̃J
+(θ(l)|θ̃), (2)

θ(l+1) ← arg minθ∈ΘJ +(θ|θ̃(l+1)). (3)

This update rule of parameters θ and θ̃ is an optimization
method that guarantees a monotonic nonincrease in the cost
function.

B. MNMF [9], [10]

MNMF unifies the NMF-based source model and the full-
rank SCM [12] and improves the BSS performance in a
reverberant environment. The short-time Fourier transform
(STFT) of the observed multichannel signal is defined as

xij = (xij,1, . . . , xij,m, . . . , xij,M )T ∈ CM , (4)

where i = 1, 2, . . . , I, j = 1, 2, . . . , J , and m = 1, 2, . . . ,M
are the indices of the frequency bins, time frames, and chan-
nels, respectively, and ·T denotes the transpose. The MNMF
model assumes that the observed signal xij is distributed by
the zero-mean multivariate complex Gaussian distribution as
follows:

xij ∼ N
(
0M ,

∑
n

σijnGin

)
, (5)

where 0M ∈ CM is an M -dimensional zero vector and
N (µ,Σ) indicates the multivariate complex Gaussian distribu-
tion whose mean is µ and the covariance matrix is Σ. Gin is
the time-invariant SCM of the nth source at the ith frequency,
which represents spatial characteristics of the source. The
source model σijn is the time-varying spectrogram of the
nth source at the ith frequency and jth time frame, where
n = 1, 2, . . . , N is the index of the sources. The source model
σijn has a low-rank spectral structure and can be factorized
using NMF as follows:

σijn =
∑
k

tikvkjzkn, (6)

where k = 1, 2, . . . ,K is the index of the NMF basis, and
tik ∈ R≥0 and vkj ∈ R≥0 represent the ith frequency
component of the kth basis and the jth time-frame activation
component of the kth basis, respectively. In addition, zkn ∈
R≥0 is a latent variable that indicates whether the kth basis
belongs to the nth source. MNMF estimates the parameters

tik, vkj , zkn, and Gin that minimize a cost function, which is
the negative log-likelihood of the observed signal xij , as

LMNMF
c
=
∑
i,j

(
xH
ijX̂

−1
ij xij + log det X̂ij

)
, (7)

where X̂ij =
∑
n σijnGin =

∑
k,n tikvkjzknGin and ·H

denotes the Hermitian transpose and c
= denotes equality up

to a constant. All parameters can be optimized by using the
auxiliary function technique and solving the Riccati equation
(details of these update rules are described in [10]). After the
updates, we can estimate the separated signal ŝijn using the
multichannel Wiener filter.

ŝijn =

(∑
k

tikvkjzknGin

)
X̂−1
ij xij (8)

MNMF assumes that Gin is a full-rank matrix [12], which
increases versatility for various types of spatial conditions.
However, this optimization is sensitive to parameter initial-
ization and requires a large amount of computation because
the SCM Gin does not have any restrictions other than the
constraint that it is a positive semidefinite Hermitian matrix
and has a large number of parameters.

C. FastMNMF [13], [20]

To reduce the computational complexity of the update
algorithm of MNMF, FastMNMF additionally assumes that
the SCMs Gi1, . . . ,Gim, . . . ,GiN are jointly diagonalizable
by Qi = (qi1, . . . , qim, . . . , qiM )H, which does not depend
on the source index n, as

QiGi1Q
H
i = Gi1

...
QiGinQ

H
i = Gin

...
QiGiNQ

H
i = GiN ,

(9)

where Gin is a diagonal matrix. From (7) and (9), the negative
log-likelihood of the observed signal is given by

LF
c
=
∑
i,j,m

[
|qHimxij |2∑

n,k tikvkjzknginm
+ log

∑
n,k

tikvkjzknginm

]
− 2J

∑
i

log |detQi|, (10)

where ginm is the mth diagonal element of Gin. The joint-
diagonalization matrixQi in (10) can be optimized by iterative
projection (IP) [21], and the remaining parameters are updated
by using the auxiliary function technique. IP is one of the
coordinate-decent algorithm, which can minimize the cost
function that has the sum of the quadratic form of qim and
the log-determinant of Qi. Similarly to the auxiliary function
technique, IP guarantees the monotonic nonincrease in the
cost function and provides efficient optimization for matrix
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variables. After the updates, we can estimate the separated
signal using the multichannel Wiener filter as follows:

ŝijn = Q−1
i diag

(
hijn1, . . . , hijnM

)
Qixij , (11)

hijnm =

∑
k tikvkjzknginm∑

k,n′ tikvkjzkn′gin′m
. (12)

This change to the model provides a different separation
performance; it is reported that FastMNMF is almost the same
as or slightly better than MNMF [14], [20].

III. PROPOSED METHOD

A. FastMNMF based on Student’s t-distribution

In this paper, we propose the generalization of the model
of FastMNMF to the multivariate complex Student’s t-
distribution (t-FastMNMF). The Student’s t-distribution is a
heavy-tailed distribution and its shape can be changed para-
metrically. This model generalization increases versatility for
various types of sources, and we can expect to further improve
the source-separation accuracy.

The observed signal xij is assumed to be generated by the
multivariate complex Student’s t-distribution as follows:

xij ∼ Tν(0M ,
∑
n

σijnGin), (13)

where Tν(µ,Σ) is the multivariate complex Student’s t-
distribution with mean µ, scale matrix Σ, and the degree-
of-freedom parameter ν > 0. Here, we substitute the model
parameter X̂ij for Σ. The probability density function of the
multivariate complex Student’s t-distribution is given by

p(x;µ,Σ, ν)

=
2MΓ(ν+2M

2 )

(νπ)MΓ(ν2 ) det Σ

(
1+

2

ν
(x−µ)HΣ−1(x−µ)

)−ν+2M
2

.

(14)

When ν is set to ν = 1 and ν → ∞, the Student’s t-
distribution corresponds to the Cauchy distribution and the
Gaussian distribution, respectively. The negative log-likelihood
function based on (13) can be obtained as

LSt
c
=
∑
i,j

[
2M+ν

2
log
(

1+
2

ν

∑
m

|qHimxij |2∑
k,n tikvkjzknginm

)
+
∑
m

log
∑
k,n

tikvkjzknginm

]
− 2J

∑
i

log |detQi|.

(15)

B. Derivation of update rules

First, we derive the update rule of the joint-diagonalization
matrix Qi by modifying (15) to an IP-applicable form. Note
that we cannot directly use IP to optimize Qi for t-FastMNMF
because the cost function (15) does not have the sum of the
quadratic form of qim. To optimize the cost function (15) by
IP, we apply a tangent line inequality to the first logarithm term

in (15). The tangent line inequality for the logarithm function
can be represented as

log y ≤ 1

ξ̃
(y − ξ̃) + log ξ̃, (16)

where y > 0 is the original variable and ξ̃ > 0 is an auxiliary
variable. The equality of (16) holds if and only if ξ̃ = y.
Hence, by applying (16) to the first term in (15), we can design
the following auxiliary function.

LSt ≤
∑
i,j

[
2M+ν

2

(
1

ξ̃ij

(
1+

2

ν

∑
m

|qHimxij |2∑
k,n tikvkjzknginm

− ξ̃ij
)

+ log ξ̃ij

)
+
∑
m

log
∑
k,n

tikvkjzknginm

]
− 2J

∑
i

log |detQi| (17)

:= L+
St, (18)

where ξ̃ij > 0 is the auxiliary variable and the equality of (17)
holds if and only if the ξ̃ij is set as

ξ̃ij = 1 +
2

ν

∑
m

|qHimxij |2∑
k,n tikvkjzknginm

. (19)

Since the auxiliary function (17) is the sum of the quadratic
form of qim and the negative log-determinant of Qi, we can
apply IP to (17) and obtain the update rule of Qi as

qim ← (QiFim)−1em, (20)

qim ←
qim√

qHimFimqim
, (21)

where em denotes the one-hot vector in which the mth element
equals unity and the others are zero, and

Fim =
1

J

∑
j

αij
χijm

xijx
H
ij , (22)

χijm =
∑
k,n

tikvkjzknginm, (23)

αij =
2M + ν

ν + 2
∑
m
|qH
imxij |2
χijm

. (24)

Next, we derive the update rules of tik, vkj , zkn, and ginm.
To obtain the auxiliary function for these parameters, we
can use a tangent line inequality and Jensen’s inequality in
(17). Jensen’s inequality for the reciprocal function can be
represented as(∑

τ

yτ

)−1

=

(∑
τ

η̃τ
yτ
η̃τ

)−1

≤
∑
τ

η̃τ

(
yτ
η̃τ

)−1

=
∑
τ

η̃2
τ

yτ
,

(25)

where yτ > 0 is the original variable and η̃τ > 0 is an
auxiliary variable that satisfies

∑
τ η̃τ = 1, and the equality
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of (25) holds if and only if η̃τ = yτ/
∑
τ ′ yτ ′ . Then, we can

design the following auxiliary function.

L+
St

c
=
∑
i,j

[
2M+ν

2

(
1

ξ̃ij

(
1+

2

ν

∑
m

|qHimxij |2∑
k,n tikvkjzknginm

))
+
∑
m

log
∑
k,n

tikvkjzknginm

]
− 2J

∑
i

log |detQi|

≤
∑
i,j

[
2M+ν

2

(
1

ξ̃ij

(
1+

2

ν

∑
m

∑
k,n

|qHimxij |2η̃2
ijknm

tikvkjzknginm

))
+
∑
m

(
1

ζ̃ijm

(∑
k,n

tikvkjzknginm−ζ̃ijm
)

+log ζ̃ijm

)]
− 2J

∑
i

log |detQi| (26)

:= L++
St , (27)

where η̃ijknm > 0 and ζ̃ijm > 0 are auxiliary variables and
η̃ijknm satisfies

∑
k,n η̃ijknm = 1. The equality of (26) holds

only when

η̃ijknm =
tikvkjzknginm∑

k′,n′ tik′vk′jzk′n′gin′m
, (28)

ζ̃ijm =
∑
k,n

tikvkjzknginm. (29)

From ∂L++
St /∂tik = 0, we obtain the update rule of tik as

tik ← tik

√∑
j,n vkjzknαijβijn∑
j,n vkjzknγijn

, (30)

where

βijn =
∑
m

|qHimxij |2ginm
χ2
ijm

, (31)

γijn =
∑
m

ginm
χijm

. (32)

Similarly to tik, we obtain the update rules of vkj , zkn, and
ginm as

vkj ← vkj

√∑
i,n tikzknαijβijn∑
i,n tikzknγijn

, (33)

zkn ← zkn

√∑
i,j tikvkjαijβijn∑
i,j tikvkjγijn

, (34)

ginm ← ginm

√√√√√∑j,k
|qH
imxij |2
χ2
ijm

tikvkjzknαij∑
j,k

1
χijm

tikvkjzkn
. (35)

Note that these update rules have already been substituted
under the equality conditions (19), (28), and (29) and rear-
ranged. We can confirm that the update rules of t-FastMNMF
(20), (21), (30), and (33)–(35) are equal to those of original
Gaussian FastMNMF (described by [20]) when ν → ∞. Fi-
nally, we estimate the separated signal using the multichannel
Wiener filter, similarly to (11). The algorithm for t-FastMNMF
is summarized in Algorithm 1.

Algorithm 1: Algorithm for t-FastMNMF

1 Initialize Qi and Gin with identity matrix and tik, vkj ,
and zkn with positive random values for all i, j, k,
and n;

2 Calculate χijm, αij , βijn, γijn by (23), (24), (31), and
(32) for all i, j, n, and m;

3 repeat
4 Calculate tik by (30) for all i and k;
5 Calculate χijm, αij , βijn, γijn by (23), (24), (31),

and (32) for all i, j, n, and m;
6 Calculate vkj by (33) for all k and j;
7 Calculate χijm, αij , βijn, γijn by (23), (24), (31),

and (32) for all i, j, n, and m;
8 Calculate zkn by (34) for all k and n;
9 Calculate χijm, αij , βijn, γijn by (23), (24), (31),

and (32) for all i, j, n, and m;
10 Calculate ginm by (35) for all i, n, and m;
11 Calculate χijm, αij , βijn, γijn by (23), (24), (31),

and (32) for all i, j, n, and m;
12 Calculate qim by (20) and (21) for all i and m;
13 until converge;
14 Calculate ŝijn by (11) for all i, j, and n;

Fig. 1. Scores of each part.

IV. EXPERIMENTS

A. Experimental conditions

To confirm the validity of the proposed t-FastMNMF, we
conducted a BSS experiment with simulated mixtures. We
compared the following seven methods: IVA [21], ILRMA [7],
t-ILRMA [16], MNMF [10], t-MNMF [15], FastMNMF [13],
[20], and proposed t-FastMNMF. All the NMF variables
were initialized by nonnegative random values. For IVA,
ILRMA, and t-ILRMA, the demixing matrices were initialized
by the identity matrices. For MNMF and t-MNMF, SCMs
were initialized by the identity matrices. For FastMNMF
and proposed t-FastMNMF, the joint-diagonalized SCMs and
joint-diagonalization matrices were initialized by the identity
matrices.

The dry sources of four melody parts depicted in Fig. 1 were
obtained from [22], [23]. Eight combinations of instruments
with two different melody parts were selected, as shown in
Table I. To simulate reverberant mixing, two-channel mixed
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Source 1Source 1

40°

2m

5.66 cm

Source 2

40° 40°

2m

2.83 cm

Source 2

20°

(a) (b)

Fig. 2. Spatial arrangements of impulse responses used in experiments.

TABLE I
DRY SOURCES USED IN EXPERIMENTS

Part name Source (1/2)
Music 1 Midrange/Melody 2 Flute/Piano
Music 2 Melody 1/Melody 2 Flute/Oboe
Music 3 Melody 2/Midrange Harpsichord/Violin
Music 4 Melody 2/Bass Cello/Violin
Music 5 Melody 1/Bass Cello/Oboe
Music 6 Melody 2/Melody 1 Trumpet/Violin
Music 7 Bass/Melody 2 Flute/Bassoon
Music 8 Bass/Melody 1 Trumpet/Bassoon

signals were produced by convoluting the impulse response
E2A (T60 = 300 ms) in the RWCP database [24]. Fig. 2 shows
the recording conditions of E2A used in our experiments. In
these mixtures, the input signal-to-noise ratio was 0 dB. The
other experimental conditions are shown in Table II.

B. Results

We used the source-to-distortion ratio (SDR) improve-
ment [25] to evaluate the total separation performance. Fig.
3 shows the average SDR improvements over the recording
conditions, the source pairs, and 10-trial initialization. The
result for t-ILRMA using ν = 105 is shown, which is
the best parameter setting. Since the Student’s t-distribution
corresponds to the Gaussian distribution when the degree-of-
freedom parameter in the Student’s t-distribution ν =∞, the
first and second rightmost bars correspond to FastMNMF and
MNMF, respectively. IVA, ILRMA, and t-ILRMA assume the
rank-1 spatial covariance matrix, and since this assumption
does not hold under the situations where reverberation is
longer than the STFT window length, their SDR improvement
values are considered to be low. By comparing proposed
t-FastMNMF and t-MNMF, we can see that proposed t-
FastMNMF shows higher performance overall. It can be
confirmed that proposed t-FastMNMF outperforms conven-
tional FastMNMF for the highest degree-of-freedom parameter
ν = 8. Therefore, it can be said that the proposed method is
superior to the conventional methods.

V. CONCLUSIONS

In this paper, we propose the generalization of the gen-
erative model of FastMNMF from the multivariate complex
Gaussian distribution to the multivariate complex Student’s t-
distribution. We derive a new parameter update rule using the
auxiliary-function-based method that guarantees a monotonic
nonincrease in the cost function, and we confirmed the validity
of the proposed method from BSS experiments using music
sources.

TABLE II
EXPERIMENTAL CONDITIONS

Sampling frequency 16 kHz

STFT 64-ms Hamming window
with 16-ms shift

Number of bases
in low-rank model 20

Number of iterations 300
Degree-of-freedom parameter of

Student’s t-distribution
for t-MNMF and t-FastMNMF

ν = 1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 20, 30, 40,
50, 60, 70, 80, 90, 100

Number of trials 10
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Fig. 3. Average SDR improvements for each method. The result for t-ILRMA using ν = 105 is shown, which is the best parameter setting. For ν = 8, the
proposed method achieves the best SDR improvement and outperforms conventional methods.
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