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Abstract— Epilepsy is a kind of disorder that has affected 
many people in the world. Electroencephalogram (EEG) is an 
effective tool in the diagnosis and treatment of epilepsy. The 
classification of EEG signals from different seizure stages is of 
great interest in this field. This paper proposes a seizure EEG 
classification method based on Short-Time Fourier Transform 
(STFT) and Hidden Markov Model (HMM). We construct 
feature sequences by STFT, and then 50% of the sequences are 
used to train HMMs. Finally, the other sequences are used to 
evaluate the HMMs. Experiments conducted on the dataset from 
University of Bonn are provided, with the accuracy for set D and 
set E reaching 97.18%, and the sensitivity and specificity 
reaching 98.54% and 95.82% respectively. 

I. INTRODUCTION 

Epilepsy is one of the most common neurological diseases 
in the world of which incidence is just next to stroke. About 
50 million people are suffering from it. Epilepsy is 
characterized by its recurrent and sudden seizures which are 
caused by the hyper-synchronous electrical discharges of the 
brain neurons. Electroencephalography (EEG) plays a 
significant role in the diagnosis and treatment of epilepsy, 
which can record the electrical activities of brain neurons. 
There are mainly two types of EEG which are scalp EEG 
(sEEG) and intracranial EEG (iEEG).  

Traditional inspection of EEGs with trained neurologists is 
time-consuming, laborious and subjective. Hence, people 
have become interested in the automatic classification of 
seizure EEG signals. The main steps of this task are 
segmentation of EEG sequences, feature extraction of EEG 
signals and classification by proper classifiers. During the last 
decades, many methods are proposed. Methods based on 
features like power spectral density (PSD) of signals [1][2], 
feature based on wavelet transform [3] and some non-linear 
features such as Lyapunov exponent [4] are proposed. 
Machine learning algorithms, including support vector 
machine (SVM) and neural network algorithms like long 
short-term memory (LSTM), are widely used as classifiers. 
Ref. [5] proposed a method based on STFT and convolutional 
neural networks (CNN) using iEEG and sEEG. Ref.[6] 
proposed a method using a novel feature based on the 
Mahalanobis distance and discrete wavelet transformation 

(DWT), using extreme learning machine (ELM) as the 
classifier and evaluating the method on an iEEG dataset. 
Ref.[4] proposed a seizure EEG classification method based 
on Lyapunov exponent and support vector machine. Ref.[2] 
proposed a method based on spectral of EEG signals and 
SVM. Some other outstanding methods are also proposed.  

In this paper, we propose a method based on STFT and 
HMM, which applies very concise feature extraction. We first 
extract features from EEG segments by STFT and then use 
these samples to solve the parameter identification problem of 
HMM. Then by solving the evaluation problem of HMM, we 
get a series of scores for a testing EEG segment according to 
HMM models of different EEG classes. By comparing the 
scores, we can finally determine the class that this segment 
belongs to. We show in our experiments that our method can 
handle the seizure EEG classification problem effectively 
with concise feature extraction.  

The rest parts of this paper are organized as follows. The 
details of the proposed method and materials are described in 
Section Ⅱ. The experimental setup and results are shown in 
Section Ⅲ. Finally, Section Ⅳ concludes this paper. 

II. DATASET AND METHODS 

In this section, we will introduce briefly the dataset from 
University of Bonn which will be used to evaluate our method 
first. And then, to realize seizure EEG classification, we need 
to solve the parameter identification problem and evaluation 
problem of HMM which are introduced later.  

A. Dataset 

This paper uses the dataset from the Department of 
Epileptology, University of Bonn [7]. The dataset consists of 
5 parts which are set A, set B, set C, set D and set E.  Each set 
contains 100 single-channel EEG segments of 23.6-sec 
duration without any artifacts. All signals are sampled at a 
sampling rate of 173.61Hz and converted by 12-bit analog-to-
digital conversion. Band-pass filter setting is 0.53-40Hz 
(12dB/oct.). All the segments fulfill a stationary criterion [7]. 
Set A and set B consist of segments of scalp EEG taken from 
5 healthy volunteers with eyes open (set A) and eyes close 
(set B) respectively. Set C, set D and set E consist of 
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intracranial EEG segments from 5 patients. Set C contains 
EEG signals from the hippocampal formation of opposite 
hemisphere of the brain during seizure-free periods (known as 
interictal).  Signals in set D and E are gathered from patients 
using intracranial electrodes exactly localizing the seizure 
generating area called the epileptogenic zone [7]. Set D 
contains EEG signals during the seizure-free period (known 
as interictal) while set E contains EEG signals during seizure 
activity periods (known as ictal).  This paper only uses the set 
D and set E for seizure EEG classification. Details about these 
5 sets in the dataset are illustrated in Table 1. Fig.1 shows the 
electrodes implanted in patients’ brains and signals from set D 
and set E respectively. 

 

B. Short-Time Fourier Transform 

The main steps of our method are illustrated in Fig. 2, 
including feature sequence construction, model training and 
evaluation of the model. 

There are many ways to imply time-frequency analysis on 
different kinds of signals. Some studies have proved that EEG 
is one kind of non-stationary signals [8]. But if the time 
interval is small enough, EEGs can be regarded as quasi-
stationary signals. Hence, we choose STFT to calculate the 
spectrum of EEG. STFT is an effective and classic time-
frequency analysis method. STFT multiplies the signal by a 
window function and then Fourier Transform (FT) is carried 
out. By the shift of the window, we will get a series of results 
of FT. Finally, we can get a 2-dimension time-frequency 
image of the signal.    

The formula of STFT can be expressed as   
*( , ) ( ) ( ) jSTFT t x w t e d   

 


                   (1) 

where ( )w t  is the window function. For discrete signals, 

Discrete Fourier Transform (DFT) replace FT and usually 
Fast Fourier Transform (FFT) is carried out. 

 After STFT, the base-10 logarithm of the result is 
computed and multiplied by 10 to get the ultimate feature 
sequences. Fig. 3 shows an STFT of a 23.6s EEG window 
from the dataset. All the EEG segments in the dataset have 
passed through a band-pass filter which ranges from 0.53Hz 
to 40Hz, so only the first half of the STFT result(the part of 
0~40Hz) is useful. We need time sequences to train HMM, so 
we consider the result of STFT as a time sequence with 
several features from different frequency bands.  

EEG signal is a time sequence itself, so we use raw EEG 
signals as the input of HMM as a comparison to STFT 
sequences. After STFT, raw EEG signals become shorter in 
the time dimension and larger in feature dimension (frequency 
dimension) while raw EEG signal is quite long in the time 
dimension and has only one dimension in feature dimension. 

C. Hidden Markov Model 

Hidden Markov Model is one type of stochastic signal 
model which was initially introduced in the late 1960s and has 
worked well in machine recognition of speech, which shows 

 

(a) 

 
(b) 

(c) 

Fig. 1    Electrode positions and EEG signals (a) electrode positions using 
by the dataset from University of Bonn (b) EEG signals from set D 

(interictal) (c) set E (ictal) respectively 

Table 1   Details about the dataset from University of Bonn 

Set  
Type of 

EEG 
Subject Detail 

A sEEG normal recorded with eyes open 
B sEEG normal recorded with eyes close 

C iEEG patient 
recorded during interictal from 
the hippocampal formation 

D iEEG patient 
recorded during interictal 
period  from epileptogenic 
zone 

E iEEG patient 
recorded during ictal period 
from epileptogenic zone 
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its proficiency in ‘characterizing real-world signals in terms 
of signal models’ [9].  

HMM is an extension of Markov Process which contains a  
number of states and the probabilistic description of the 
current state only depends on the current and the predecessor 
states, that is  

1 2

1

{ | , , }

{ | }

   t j t i t k

t j t i

P q S q S q S

P q S q S

 



    

  
               (2) 

Each state of Markov Process corresponds to an observable 
event, which limits its application to some problems of 
interest. Researchers extend Markov Process to Hidden 
Markov Model where states become no more observable (that 
is hidden). The state at a certain time generates its observation 
according to some probabilistic function. It can be described 
that HMM is a model where the observation is a probabilistic 
function of the state.  

Elements of HMM are: the number of states N, the number 
of distinct observation symbols per state M, the state 

transition probability distribution   ijA a  , where 

 1 | ,       1 ,ij t j t ia P q S q S i j N      ,      (3) 

the observation symbol probability distribution in the state j  , 

 ( )jB b k  , where 

 ( )  at |j k t jb k P v t q S                         (4) 

and the initial state distribution ={ }i  , where 

1{ }, 1 i iP q S i N                               (5) 

We usually use a compact notation for convenience 
( , , )A B                                      (6) 

Besides, we denote states as  1 2, , , NS S S S    , state at 

time t as tq  and observation symbols as 1 2{ , , , }MV v v v     

There are three main problems in HMM [9]: 
1) Evaluation: Given the observation sequence, and an 

HMM model ( , , )A B  , how to efficiently compute the 

probability of the observation sequence (O | )P  . 

2) Decode: Given the observation sequence, and the model 
 , how to choose a corresponding state sequence which is 
optimal in some meaningful sense. 

3) Parameter identification: how to adjust model 
parameters to maximize (O | )P   . 

This paper only needs to solve Problem 1) and Problem 3). 
So the solutions to these two problems are described as 
follows. 

The solution to Problem 1): Forward-Backward Procedure 
is the main method to solve Problem 1), usually only the 
forward part is used. We introduce the algorithm as follows: 

Given a fixed observation sequence 1 2{O ,O , ,O }tO     

and a model  , we can evaluate the probability of the 
occurrence of this observation sequence using the forward-
backward procedure. 

First, define the forward variable ( )t i   as 

 1 2( ) (O O O , | )t t t ii P q S                   (7) 
which is the probability of partial observation sequence 

1 2O  O Ot    and state iS  at time t given the model  . Then 

we can compute (O | )P   inductively, as follows: 

1) Initialization:  

1 1( ) (O ),     1i ii b i N                       (8) 
 
 
 

 

 

Fig. 2   Feature sequence construction, HMM model training and evaluation. P_in means probability evaluated given the EEG segment and 
HMM for interictal EEGs while P_ic means probability evaluated given the EEG segment and HMM for ictal EEGs 

 

Fig. 3   STFT of EEG segment 
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2) Induction  

1 1
1

( ) ( ) (O )  

    1 1,1

N

t t ij j t
i

j i a b

t T j N

  


 
  
 

    


              (9) 

3) Termination 

1

( | ) ( )
N

T
i

P O i 


                          (10) 

Algorithm 1 summarizes the whole process of the solution 
of the evaluation problem. 

The solution to Problem 3): Baum-Welch algorithm. 
To adjust the model parameter, Baum-Welch algorithm is 

the most used algorithm. We define ( , )t i j as the probability 

of being in state iS  at time t and state jS  at time t+1, given 

observation sequence O and model   , i.e. 

1( , ) ( , | , )t t i t ji j P q S q S O                (11) 

We define the forward variable as (7) and backward 
variable ( )t i  as            

1 2( ) (O O O , | )t t t T t ii P q S                (12) 
We rewrite ( , )t i j as 

1 1

1 1

1 1
1 1

( , )=[ ( ) (O ) ( )] ( | )

( ) (O ) ( )
          =

( ) (O ) ( )

t t ij j t t

t ij j t t

N N

t ij j t t
i j

i j i a b j P O

i a b j

i a b j

   

 

 

 

 

 
 


            (13) 

By summing over j, we can get ( )t i , the probability of 

being in state iS at time t  

1

( ) ( , )
N

t t
j

i i j 


                             (14) 

Then we can adjust the values of   as 

1( )i i                                     (15) 
1 1

1 1

( , ) ( )
T T

ij t t
t t

a i j i 
 

 

                      (16) 

      1 1
. . 

( ) ( ) ( )

t k

T T

j t t
t t

s t O v

b k j j 
 


                   (17) 

 We have talked about discrete observation above, but the 
EEG signal is not discrete. Hence continuous observation 
density is introduced. 

Given a hidden state, the observation is assumed to have a 
Gaussian distribution: 

 
(O) [O, , U ],       

     1

j j jb

j N

 

 
            (18) 

where j  is the mean vector and U j  is the covariance matrix  

of the Gaussian distribution respectively  
The re-estimation of  j  and U j is as follows: 

1 1

( ) ( )
T T

j t t t
t t

j O j  
 

                    (19) 

  
1 1

( ) ' ( )
T T

j t t jk t jk t
t t

U j O O j   
 

         (20) 

Algorithm 2 summarizes the whole process of the 
parameter identification of HMM. 
    The reason why we can use HMM to set up models for 
seizure EEG signals is: hidden states can be seen as some 
certain physiological situations of the human brain which 
don’t have to contain specific meanings. EEG can be regarded 
as an observation sequence generated by hidden states. EEG 
signals generated during different stages of seizure 
correspond to distinctive HMMs. By solving the evaluation 
problem of HMM, the classification of EEGs can be realized. 

For the classification of seizure EEG, we need to solve 
Problem 3) using EEG segments and then evaluate the HMM  
model by solving Problem 1). For EEG sequences from each 
kind of seizure stage, we need to train HMM models 
respectively. Given an EEG sequence with an unknown label,  

Algorithm 1 Evaluation of HMM: Forward-Backward 
Procedure 
Input: HMM ( , , )A B  and an observation sequence 

1 2{O ,O , ,O }tO     

Output: (O | )P   

Forward variable ( )t i  as (7) 

1. Initialization : 1 1( ) (O ),     1i ii b i N     

2. for t=1 to T-1, do 

3. 1 1
1

( ) ( ) (O )   1
N

t t ij j t
i

j i a b j N  


 
   
 
 ，  

4. end for 

5. return 
1

( | ) ( )
N

T
i

P O i 


  

 
Algorithm 2 Parameter identification of HMM 
Input: HMM ( , , )A B   where B represented as  

(O) [O, , U ],     1j j jb j N     

and training sequence 1 2{O ,O , ,O }tO     

Output: Re-estimation of HMM ( , , )A B   

1. compute forward variable and backward variable as (7) 
and (12) 
2. denote ( , )t i j  as (13), and ( )t i as (14) 

3. Re-estimation of  : 1( )i i   

4. Re-estimation of A :  
1 1

1 1

( , ) ( )
T T

ij t t
t t

a i j i 
 

 

   

5. Re-estimation of (O) [O, , U ],     1j j jb j N    : 

1 1

( ) ( )
T T

j t t t
t t

j O j  
 

    

  
1 1

( ) ' ( )
T T

j t t jk t jk t
t t

U j O O j   
 

      
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all the HMM models should be evaluated and probabilities 
according to each HMM will be given. This EEG sequence 
will be classified into a certain class of which model gets the 
largest probability. 

III. EXPERIMENTS AND RESULTS 

In this section, we first initialize the HMM and then train 
HMMs of the optimal state numbers using 50% of the EEG 
segments from the dataset. Finally, we evaluate the HMMs 
using the last 50% EEG segments from the dataset. Because 
raw EEG signals are time sequences themselves, we also use 
raw EEG signals to train HMMs as a comparison. 

A. Parameter initialization 

We initiate HMM by  1/
N N

A N


 and  1
1/

N
N


 , 

because the uniform initial estimate is adequate in almost all 
cases [9]. For the initialization of B, segmental k-means 
segmentation with clustering is used for the initialization of 
the means vector for the continuous observation densities. 
The specific process is as follows: 

Initialization of j :  Given the number of states N and the 

set of training sequences, k-means algorithm can give N 
cluster centers and we use these centers as the initial estimate 
of j according to N states. 

 Initialization of  U j : Given the set of training sequences    

1 2[ , , , ]L  O O O O                             (21) 

where the shape of 1O   j j L ，  is j fT n  ( jT is the length 

of the sequence and fn is the number of features). We 

initialize U j by 

1 2cov( )O O O I
f f

T T T
j L n nU                   (22) 

where  is the least covariance, which we set 3=10  there, 
and I

f fn n is the f fn n identity matrix. 

After model initialization, training observation sequences 
can be segmented into states, based on the current initial 
model  .   will be adjusted by the set of training sequences 
according to the Baum-Welch algorithm in Section Ⅱ. 

B. Experimental Setup and Result 

STFT is implemented with the Tukey window, 128 points 
overlapped between two segments and 256 points for Fast 
Fourier Transform. 

50 percent of segments from set D and set E are chosen 
randomly to train HMMs. To find the best state number of the 
models, this paper use leave-one-out validation. Fig.4 and 
Fig.5 illuminate the mean score for the validation sequences 
of interictal and ictal respectively, with state number ranging 
from 2 to 9. It can be seen that scores become higher as state 
numbers increase and reach a platform after some state 
number. For interictal segments, the score tends to reach a 
platform after state number 4 while for ictal segments, the 
score reaches the peak at state number 7. Though the larger 
state number may lead to a higher score, the time cost will 
increase accordingly. Thus, 7 is a proper number for both 
kinds of EEG signals.   

We train HMMs by Baum-Welch algorithm using 1000 
iterations which can ensure the convergence of the model. 

We have used accuracy, sensitivity and specificity to 
evaluate the proposed method.  Accuracy is the proportion of 
the correctly classified test samples to all the test samples. 
Sensitivity is the proportion of correctly classified ictal 
samples to all the ictal samples used for testing. Specificity is 
the proportion of correctly classified interictal samples to all 
the interictal samples used for testing 

The last 50 percent of segments are used to evaluate the 
models. We did the experiment 100 times and the mean 
results are shown in Table 2. The mean sensitivity, specificity, 
accuracy of the 100 experiments we did are 98.54%, 95.82% 
and 97.18%, which prove the effectiveness of the method.  
Compared to raw EEG signals as input (sensitivity 95.8%, 
specificity 87.22%, accuracy 91.52%), STFT has improved the 
performance of HMM, and the efficiency of the algorithm has 
been enhanced substantially. 

 
 

    

Fig. 4   Performance of HMM of different state numbers for set D 
(interictal EEG signals) 

 

Fig. 5   Performance of HMM of different state numbers for set E 
(ictal EEG signals) 

Table 2   Results using different sequences 

Sequences Sensitivity Specificity Accuracy 
Raw EEG 95.8% 87.22% 91.52% 

STFT 98.54% 95.82% 97.18% 
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C. Comparison between the Proposed Method and Other 
Existing Methods 

We compare our method with the method from [6], the 
result is shown in Table 3. Our method has a relative high 
specificity which means less interictal samples are wrongly 
classified as ictal samples. 

Ref.[6] proposed a novel feature based on Mahalanobis 
distance and discrete wavelet transform. Based on the dataset 
from University of Bonn, the algorithm has a performance of 
96.18% sensitivity, 98.89 % specificity and 97.53% accuracy. 
Our method has a relatively higher sensitivity and similar 
accuracy. Ref.[5] proposed a seizure EEG classification 
method based on STFT and CNN which has sensitivities of 
89.8% and 89.1% respectively for data sets from Freiburg 
Hospital (iEEG) and Children’s Hospital Boston with 
Massachusetts Institute of Technology (sEEG). However, 
CNN has a relatively complex structure which is time-
consuming and hard to train. The method proposed in this 
paper constructs feature sequences by STFT and no further 
feature extractions is taken which promises the simplicity of 
our method. And after STFT, shorter sequences than raw EEG 
signals are gotten and HMMs can be trained more efficiently. 

IV. CONCLUSIONS 

In this paper, we use the result of STFT as the input of 
HMM rather than further feature extraction, which can reduce 
the complexity of the algorithm. And we determine the proper 
states of HMM by cross-validation. After training the HMMs, 
EEGs of different seizure stages are classified with a 
satisfactory result. We prove the seizure detection capability 
of the proposed method by classifying ictal and interictal 
EEGs from the dataset from University of Bonn. In the future, 
we need more data sets to evaluate the seizure prediction 
capability of our method. 
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Table 3  Comparison between our method and state-of-art-work 

Sequences Sensitivity Specificity Accuracy 
Our method 98.54% 95.82% 97.18% 

Ref.[6] 98.97% 82.60% 90.60 % 
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