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Abstract—Performing dexterous and versatile movements is
essential for multi-finger manipulators for human-robot collab-
oration, and designing effective control methods for the robotic
manipulator is challenging. To recognize human hand move-
ments, we used surface electromyography (sEMG) for sensing
myoelectric activity due to its portability and low-cost compared
to cameras, and proposed a hidden Markov model (HMM) based
method to characterize the transition of action primitives. For
building HMMs for hand movements, the hyperparameters, in-
cluding features, the window length and the number of states, are
optimized by the maximum mutual information (MMI) criterion.
The optimal features - marginal Discrete Wavelet Transform
(mDWT) and mean value - are extracted from multichannel
signals acquired from 12 electrodes. Our proposed method is
validated by recognizing 40 hand movements from activities
of daily living (ADL) in the second NinaPro database. Using
MMI as the optimization criterion for hyperparameters, we have
improved the average recognition accuracy over 40 subjects in
the database from 92.02% to 97.32%.

Index Terms—Hand movement recognition, sEMG, HMM,
MMI

I. INTRODUCTION

Demonstration-based robotic control and teleoperation enable
robots to learn from humans’ dexterous and versatile movements
and improve the collaboration capability between both sides
[1], [2], [3]. Before learning from demonstration or executing a
command, robots should understand the action intention, which
makes the recognition problem one of the major research areas
in robotic control [4], [5]. Surface electromyography (sEMG) is
a non-invasive perception method for the detection, recording
and interpretation of electric activities of skeletal muscles [6].
Moreover, it provides planning and execution information for
movement decoded from signals generated by the brain, thus be-
ing a direct information source for humans’ movement intention.
sEMG-based human hand movement recognition can be modeled
as a time-series classification problem, which can be solved by
three approaches: feature-based, distance-based and model-based
methods.

Feature-based methods classify the sequence by building a
classifier with the extracted feature vector that represents the
whole time-series. Features from both the time domain and
the frequency domain, such as mean absolute value (MAV),
histogram, zero crossings (ZC), and waveform length (WL), have
been utilized. By combining with classifiers such as artificial
neural networks (ANN) [7], [8], support vector machine (SVM)
[9], and linear discriminant analysis (LDA) [10], feature-based

classification has achieved good results [11], [12], [13]. In those
studies, the largest number of subjects from whom sEMG was
acquired was fifteen [9], and the number of hand movements
ranges from three [8] to twelve [14].

Although feature-based methods obtained the accuracy of
around 90%, the number of subjects and movements in the
aforementioned studies is limited. Moreover, due to the variance
of the sEMG quality, the lack of hand gestures and the number
of subjects, it is difficult to benchmark the performance of these
feature-based classifiers. In 2014, a benchmark database Ninapro
(Non-Invasive Adaptive Prosthetics) published the datasets ac-
quired by the state-of-the-art instruments, including multichan-
nel sEMG signals from 67 intact subjects when performing more
than 50 hand movements of ADL [15], [16], [17]. In their work,
a feature-based method combined with the Kernel Regularized
Least Squares (KRLS) algorithm is applied to classify hand
movements. It treats the feature vectors extracted from the fixed-
length windows segmented from an entire sequence as inputs and
the movement class to which that sequence belongs as labels.
Although higher accuracy is obtained using longer windows,
bigger delays are inevitably introduced to the control system [18].
Models built on the features extracted from parts of the sequence
also suffer from the temporal information loss. To understand
how two movements differ both spatially and temporally, it is
desirable to model the movement recognition problem on the
entire sequence. To this end, distance-based and model-based
methods are considered.

Distance-based methods measure the information similarity
between sequences from different movements. K-nearest neigh-
bours algorithm (KNN) is the simplest method which classifies a
sequence by the majority vote of its neighbours [19], and a multi-
dimensional dynamic time wrapping (MD-DTW) based method
successfully extracted the entire trajectories for hand movement
recognition with speed variations [20]. Despite that no training
process is required in KNN, the computational complexity to
classify a new sequence increases with the size of the training
set.

A challenging problem of hand movement recognition is the
variations in velocity, shape, and duration even when executing
the same movement, where model-based methods play a crucial
role. Naive Bayes sequence classifier is the simplest generative
model for sequence classification, which has been widely applied
in text classification [21] and genomic sequences classification
[22]. However, the conditional independence assumption required
by Naive Bayes is often violated. The hidden Markov model
(HMM) can characterize the statistical properties of spatial-
temporal sequences and model the transition between hidden
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states. Compared to Naive Bayes, the independence requirement
does not have to be strictly met. The successful applications
in HMM-based hand movement recognition [23], [24], and sign
language recognition [25] validated the feasibility of model-based
methods .

One difficulty in training HMMs is the optimizetion of hyper-
parameters, especially how to choose the number of hidden states.
In speech recognition, those parameters are chosen empirically
(five hidden states are usually used to represent a word). However,
in HMM-based hand movement recognition, information on how
to choose the number of hidden states can be barely found. In
this work, we applied the maximum mutual information (MMI)
criterion to select the optimal set of models from candidates [26].

For the given Ninapro benchmark, we have shown that model-
based methods are superior to feature-based and distance-based
methods, and will proceed to solve the challenging aspects.
Besides providing an overview of the methodologies, we assessed
the performance improvement of the HMM-based classification
using the technique of hyperparameters’ optimizetion.

Our contributions can be summarized as follows:
1) We proposed a hand movement recognition framework

based on ergodic HMM which can model the myoelectric activity
transitions with multichannel signals of sEMG, achieving an
excellent performance despite limited training data.

2) We proposed using recognition accuracy as a metric to
optimize the length of the sliding window for the segmentation.

3) We proposed the maximum mutual information criterion
for hyperparameters’ optimizetion - the number of hidden states
and feature selection, which were chosen by experience before.

The remaining of our paper is organized as follows. We first
overview the scope of hand movement recognition methods and
review the features as well as mathematical preliminaries to train
HMMs. We choose the feature combination and the number of
hidden states through cross-validation accordingly, based on two
metrics - the mutual information and the classification accuracy.
Then, we evaluate the performance of HMMs optimized by these
two metrics on the test set and analyse the results. Afterwards,
we discuss the internal reasons for the success and limitations
of the proposed method. In the end, we draw conclusions and
future directions in the last section.

II. METHODOLOGY

A. Overview
An overview of our proposed hand movement recognition

method is shown in Fig. 1. Multichannel signals of EMG and
accelerometer are recorded by electrodes placed on the surface
of the muscles which are involved with hand movements. The
proposed method trains an HMM for each hand movement with
multichannel signals, so the number of HMMs is the same as
that of the hand movements. The hand movement is recognized
by selecting the model with the highest probability. Each phase
in the framework will be detailed in the following subsections.

B. Splitting, Preprocessing, and Windowing
We first split the multichannel signals into a training set and

test set and standardized sEMG signals with statistics from the
training set. Then, we used a sliding window to segment the
standardized sEMG and raw triaxial accelerometer signals. We
also conducted experiments to find the optimal sliding window
length, where it was set to 200, 400 and 800 ms respectively, with
the increment of 100 ms.

C. Feature Extraction
One of the critical factors that influence the recognition

accuracy is the feature selection. The features should not only

be able to extract the most useful information, but compu-
tationally efficient. We considered three popular features for
sEMG signals: the root mean square (RMS), the histogram, the
marginal Discrete Wavelet Transform (mDWT), and one feature
for accelerometer signals: the mean value.

1) Root Mean Square: RMS has a quasi- or curvilinear-
relationship with force exerted by muscles [6], which can be
easily implemented in both digital and analogue systems as:

RMS =

√√
√
√ 1

N

N∑

n=1

x2
n, (1)

where N denotes the number of samples within each sliding
window and xn denotes the nth signal sample.

2) Histogram: The range of data is divided into several
disjoint intervals (bins) within which the number of observations
is counted. The bin edges used to capture the outliers on both
sides were set to [−∞,−3, ..., +3,∞] and the number of bins
was set to 20, thus resulting in a histogram feature vector of
240 dimensions. Compared to a smaller number of training
samples, the dimensionality of the histogram feature vector is
large, suffering from the curse of dimensionality. Observations
in the bins located at double tails barely change during the entire
movement, which can be removed for dimensionality reduction.
Therefore, we only kept the four central bins for the histogram
feature. By reducing the feature dimensionality of each channel
from 20 to 4, we improved the recognition accuracy from lower
than 50% to above 80%.

3) Marginal Discrete Wavelet Transform: Discrete Wavelet
Transform (DWT) as a time-frequency feature is generally
utilized to decompose signals at different resolution levels with
wavelet types such as Haar, Daubechies wavelets and so on.
In this study, we used the 7th order Daubechies wavelet and
the marginal coefficients up to the third level, considering
its excellent performance and feature dimensionality reduction.
We implemented the marginal DWT by calculating marginal
coefficients [27] on the decomposition algorithm proposed by
Mallat [28] using the wavelet package in Matlab (Mathworks).

4) Mean Value: The mean value was extracted from the
triaxial accelerometer signals.

The feature candidates, which include individual features
aforementioned and their combinations, were extracted within
each sliding window and stacked to a feature vector. The vector
sequences obtained from all sliding windows will be called
observation sequences in the following sections about HMM
training. Then the performance of models built with different
feature candidates was evaluated. Finally, the optimal feature
(combination) was selected to build HMMs for hand movement
recognition.

D. Choice of HMM Topology
There are mainly two types of HMM topology as illustrated

in Fig. 2: ergodic (or fully connected) and left-right model. In an
ergodic HMM, every state could reach every other state in a single
step; while in a left-right topology, the state index increases (or
stays the same) as time increases. Considering that some action
primitives may reappear during certain tasks, the ergodic one
shown in Fig. 2(b) is selected in our study.

E. Optimization of Hyperparameters
Before training, hyperparameters consisting of two factors

need optimizing. The factor of observation vector representation
involves window length and feature selection and the other is
the number of hidden states. Because little information on the
optimization of these two factors was found in related works,
we present and compare two criteria by maximizing the average
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Fig. 2. Illustration of two classic HMM topologies.

classification accuracy and mutual information, while applying
k-fold cross-validation with grid search on the training set.

F. HMM Training
An HMM with continuous observations can be characterized

by a compact notation:

λ = (A, B, π), (2)

where A denotes the state transition probability distribution, B
denotes the observation symbol probability distribution, and π
denotes the initial state distribution.

1) Action Primitives Decoding: Each movement can be
decoded into several action primitives. In the training process,
the observations were first decoded to uncover the hidden part
of the model and Gaussian mixture distribution was applied to
build a map from the continuous observation sequence to hidden
states, formulated as [29]:

bj(O) =
M∑

m=1

cj,mN [O|μj,m,Σj,m], 1 ≤ j ≤ N (3)

where O is the observation vector to be decoded, cj,m is the
mixture coefficient for the mth mixture in state j and N is
Gaussian probability density function, with mean vector μj,m

and covariance matrix Σj,m for the mth mixture component in
state j. The mixture coefficients constraint is given by:

M∑

m=1

cj,m = 1, 1 ≤ j ≤ N, (4)

cj,m ≥ 0, 1 ≤ j ≤ N, 1 ≤ m ≤ M. (5)

2) Model Parameters Estimation: Given the observations in
the training set, the unknown model parameters are estimated
by maximum likelihood approach, which is implemented by
Baum-Welch algorithm [30]. This procedure is equivalent to the
constrained optimization as:

λ
∗

= argmax
λ

Q(λ, λ) (6)

where the re-estimated model is defined by λ = (A, B, π),
and Q(λ, λ) =

∑

Q

P (Q|O, λ) log
[
(O, Q|λ)

]
is Baum’s auxiliary

function. The stochastic constraints of the HMM parameters are
given by:

N∑

i=1

πi = 1, (7)

N∑

j=1

aij = 1, 1 ≤ i ≤ N, (8)

M∑

k=1

bj(k) = 1, 1 ≤ j ≤ N. (9)

G. HMM-based Recognition

After the training process, the optimal parameters for each
HMM model were obtained. For hand movement recognition with
the trained HMMs, the probability of an observation sequence
given the model P (O|λ) was calculated by the forward algorithm,
defined as:

αt(j) = P (O1 O2... Ot, qt = Si|λ), (10)

where the forward variable αt(j) is solved iteratively as:
Step1: Initialization

α1(i) = πibi(O1), 1 ≤ i ≤ N. (11)
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Fig. 3. Placement of EMG electrodes: 8 electrodes were equally spaced
around each participant’s forearm at the radio-humeral joint, two at the EDC
and FDS muscles, and another two at the biceps and triceps muscles [15].

Step2: Iteration

αt+1(j) =

[
N∑

i=1

αt(i)aij

]

bj(Ot+1),

1 ≤ t ≤ T − 1, 1 ≤ j ≤ N.

(12)

Step3: Termination

P (O|λ) =
N∑

i=1

αT (i). (13)

Each observation sequence in the test set can be recognized
by the maximum probability selection, given by:

v∗ = argmax
v

[P (O|λv)] , 1 ≤ v ≤ V (14)

where v∗ denotes the index of the recognized movement.

III. EXPERIMENTAL SETUP

A. Data Acquisition
To evaluate the performance of the proposed method, we

utilized the second version of the publicly available database
from the Non-Invasive Adaptive Prosthetics project [15] - the
largest sEMG database to the best of our knowledge. In DB2,
40 intact subjects performed six repetitive tasks of 40 hand
movements following the videos displaying their right hands as
shown in Fig. 3. The signal acquisition setup is a DelsysTM

Trigno Wireless system R© consisting a base station and twelve
wireless electrodes. The accelerometer signals were acquired by
the triaxial accelerometers integrated on the electrodes sampled
at a rate of 148 Hz (being upsampled to the sampling rate of
sEMG of 2 kHz using interpolation afterwards). The position of
the electrodes is shown in Fig. 3.

The sEMG signals were filtered using a Hampel filter [31] from
50 Hz (and its third and fifth harmonics) power-line interference
before synchronizing with the accelerometer signals. Following
the protocol of splitting data into the training set and test set for
classification [17], [15], the second and fifth repetitions of each
movement were used for testing, while the remaining four for
training. Statistics from the training set of each subject was used
to standardize the training set and test set.

B. Hyperparameter Optimization
The training set includes signals acquired from four repetitions

of each movement. To optimize hyperparameters (the observation
vector representation and the number of hidden states), we
applied four-fold cross-validation on the training set with grid
search, i.e., three repetitions for training the model and the left
one for validation.

Fig. 4. Average classification accuracy over 40 subjects: 1) three sEMG
features and one ACC feature individually, 2) the combination of three sEMG
features, and 3) the combinations of sEMG and ACC features, extracted from
window lengths of 200, 400, 800 ms. The error bars indicate unit standard
deviation.

1) Observation Vector: Window length and feature selection
are two main factors for observation vector representation. Under
each of three window lengths (200, 400 and 800 ms), features in
terms of three cases - three sEMG features and one ACC feature
individually, the combination of sEMG features, the combinations
of sEMG and ACC features - were extracted. The performance
was measured by the average classification accuracy over 40
subjects, as shown in Fig. 4.

Regarding the window length, results in Fig. 4 show that a
window length of 200 ms outperforms 400 and 800 ms for all
feature candidates, hence a sliding window of 200 ms was chosen
to segment multichannel signals.

For feature selection, from all individual sEMG features, it
can be observed that mDWT achieves better performance than
RMS and HIST. Because of the more extracted information,
the accuracy achieved by the combination of sEMG features
shows a noticeable increase compared to each sEMG feature.
It also shows that the inclusion of ACC modality to RMS and
mDWT improves the accuracy towards a higher level, which
verifies the suggestion in [17] that the ACC and sEMG signals
are complementary sources. Three feature candidates (RMS,
HIST and mDWT; mDWT and MEAN; RMS, HIST, mDWT
and MEAN) achieve the best performance without significant
differences (p = 0.384, ANOVA). Moreover, these candidates
have far less standard deviations than the others, resulting in
more reliable performance, thus being selected to represent the
observation vector.

2) Number of hidden states: To optimize the number of
hidden states, we conducted experiments and evaluated the
performance under each number by two criteria - average recog-
nition accuracy and mutual information over k folds, following
Algorithm. 1 and Algorithm. 2.

Average recognition accuracy of the selected feature candidates
under different numbers of hidden states (from 1 to 20) is shown
in Fig. 5. The accuracy of the feature candidate mDWT and
MEAN decreases from 87.2% to 80.5% as the number of hidden
states increases, while the accuracy of the other two fluctuated
around 87% as the number of states increases from 1 to 15, and
then drops to about 85%. The combinations of sEMG features
(RMS, HIST, and mDWT) and all features (RMS, HIST, mDWT,
and MEAN) achieve nearly the same good performance over
most numbers of states. Following Occam’s Razor principle, the
combination of sEMG features (RMS, HIST, and mDWT) was
chosen. The number of hidden states was optimized to two.

Besides fitting the model to the training data by the maximum
likelihood, we also need to consider that the model should
distinguish itself from the others which represent the other
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Algorithm 1 Average recognition accuracy computed over k-
fold cross-validation.
Require:

Observation sequences in the training set.
Ensure:

Average recognition accuracy.
1: Split the observation sequences into the validation set and

training set;
2: for the number of hidden states from 1 to 20 do
3: for each feature combination do
4: for each fold do
5: Train 40 HMMs using maximum likelihood;
6: Compute log probability matrix P (where Pi,j

represents the log probability of the ith obser-
vation being generated by the jth model) using
Eq.(11),Eq.(12), Eq.(13);

7: Recognize movements in the validation set and
compute accuracy under each fold;

8: end for
9: Compute the average recognition accuracy over k

folds.
10: end for
11: end for
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Fig. 5. Average accuracy of recognition achieved by three feature candidates
(mDWT and MEAN; RMS, HIST and mDWT; RMS, HIST, mDWT and
MEAN) under each number of hidden states.

movements. The criterion for the mutual information I between
the observation sequence Ov and the complete set of models
λ = (λ1, λ2, ..., λV ) is implemented as:

Iv = log P (Ov|λv) − log

V∑

w=1

P (Ov|λw). (15)

By maximizing (15), the best model λv on the training
sequences Ov is selected. By maximizing the sum over all training
sequences, hyperparameters are optimized simultaneously by
(16):

I =
V∑

v=1

[

log P (Ov|λv) − log

V∑

w=1

P (Ov|λw)

]

. (16)

Average mutual information under different numbers of hid-
den states is illustrated in Fig. 6. The mutual information of two
feature candidates (RMS, HIST and mDWT; RMS, HIST, mDWT

Algorithm 2 Average mutual information computation over
k-fold cross-validation.
Require:

Observation sequences in the training set.
Ensure:

Average mutual information.
1: Split the observation sequences into the validation set and

training set;
2: for the number of hidden states from 1 to 20 do
3: for each feature combination do
4: for each fold do
5: Train 40 HMMs using maximum likelihood;
6: Compute log probability matrix P ;
7: Compute mutual information using Eq.(16) under

each fold;
8: end for
9: Compute the average mutual information over k

folds.
10: end for
11: end for

and MEAN) is nearly the same under all numbers of states and
increases gradually by the number of hidden states. However, the
feature combination of mDWT and MEAN obtained much larger
mutual information than the other two. Following the maximum
mutual information criterion, the feature candidate of mDWT
and MEAN was chosen as the representation for the observation
vector, and the number of hidden states was optimized to six.

IV. RESULTS

For each subject in the database, HMMs were trained on
the training set with hyperparameters optimized by two metrics
mentioned above. The performance was measured by the average
accuracy of the recognized movement in the test set.

A. Evaluation Based on Accuracy of Recognition
Based on the recognition accuracy, we extracted three sEMG

features mentioned above from multichannel signals and set
the number of hidden states to 2. The extracted observation
sequences were used to train ergodic HMMs with two hidden
states, which were then used to recognize the hand movements
in the test set. Fifty experiments were repeated to validate the
accuracy convergence of our proposed method, where the initial
HMM parameters were randomized. The average recognition
accuracy and standard deviation over repetitive experiments for
40 subjects are shown in Fig. 7. The robustness of our method
was validated by the small standard deviation within each subject
shown in Fig. 7. However, there is performance variation among
subjects, i.e., the recognition accuracy of 30% subjects is higher
than 95%, while that of the other nine subjects is below 90%.
Results show that there exist individual muscular differences,
thus suggesting that the tuning of HMM parameters should be
subject-specific.

B. Evaluation based on maximum mutual information
Based on MMI, the feature combination of mDWT and MEAN

was extracted, and the number of hidden states was set to 6. The
experiments were also repeated for fifty times to test the reliability
of results. As illustrated in Fig. 7, there is a substantial increase
regarding recognition accuracy compared to the first criterion.
The accuracy exceeds 90% for all subjects and is above 95%
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Fig. 6. Average mutual information of three feature candidates (mDWT and
MEAN; RMS, HIST and mDWT; RMS, HIST, mDWT and MEAN) under
each number of hidden states.

for 90% subjects. Even taken the standard deviation within each
subject into consideration, the performance of the latter criterion
is much better. It is conclusive that applying the MMI criterion,
instead of experience or recognition accuracy via cross-validation,
is an advantageous way to optimize hyperparameters.

V. DISCUSSION

A. The Success of HMM-based Hand Movement Recognition
HMM-based recognition method obtained the accuracy over

95% for 90% subjects when classifying 40 hand movements,
which cover the majority of ADL. The confusion matrix is
shown in Fig. 8, where each row is normalized. The element
in the diagonal corresponds to the total number of the correctly
recognized sequences from the test set. The proposed method
achieved the accuracy of more than 90% for all hand movements,
where more than 20% movements were recognized accurately,
more than 60% movements obtained the accuracy of above 98%,
and more than 80% of the movements had the recognition
accuracy over 95%. The success of our proposed method is
analysed as follows.

While a person is moving the hand, the involved muscles un-
dergo a transition from rest to activation and deactivation. Here,
HMM can be successfully applied to describe the state transition
in time-series, which is ideal for modelling the transition of action
primitives for different hand movements, which are realized by
the coordination of the involved muscles (extension and flexion of
wrists, palms and fingers). Different coordination modes, which
is characterized by the number, excitation time and amplitude of
the involved muscles, can be measured by multichannel sEMG
signals.

In terms of feature selection, the inclusion of ACC in sEMG
features significantly increases the recognition accuracy. The
accelerometer signals contain more accurate positional/spatial
information than sEMG. Therefore, while combining sEMG and
ACC features, the uncertainty of sEMG due to noize, cross-talk
and semi-stochastic property, is reduced to a lower level.

Feature candidates selected by the maximum likelihood pro-
cedure achieved no significant performance difference regarding
the recognition accuracy. So we present the metric - mutual
information - to evaluate the performance of different hyper-
parameters from a different perspective. The mDWT, which
extracts information from both time and frequency domain, has
lower dimensionality and computational complexity compared
to the feature combination of RMS (time-domain) and HIST
(frequency-domain). Under this number of hidden states, the
model’s ability to distinguish observation sequences from incor-
rect model candidates is also maximized.

Our proposed HMM-based method also outperforms distance-
based methods, where multidimensional dynamic time wrapping
(MD-DTW) was used to measure the similarity between multi-
channel signals of sEMG [20]. The performance was compared
on the same database, and in terms of recognition accuracy,
the result of our work shows an advantage (See Fig. 3 in [20],
where no movement was predicted with 100% accuracy, only 5%
movements’ accuracies exceed 98%, less than 10% movements
achieved the accuracy of 95%, half movements obtained the
accuracy of over 90%, and 4 movements had the accuracy of less
than 80%). Moreover, in terms of prediction, our method has an
advantage in the computational complexity, i.e., O(M) where M
is the total number of movements, whereas MD-DTW has the
computational complexity of O(N2) where N is the number of
samples.

B. Limitation of Recognition Using sEMG and Accelerometer
As indicated in Fig. 8, six movements got an accuracy slightly

below 95% and the worst performance was 90%, locating in the
22nd and 30th. The misclassification happens mostly in three
movements highlighted by squares. Mostly the 22nd movement
is misclassified to the 18th and 20th, and the 19th movement is
also prone to be misclassified to the 18th.

For the group in the red square, four fingers were flexing at
the same time, while the thumb moved differently. To recognize
this group, the HMMs should be able to classify different thumb
movements. However, sEMG signals do not contain the electric
activity of muscles that control the thumb movement because
physiologically, extensor pollicis longus, abductor pollicis longus
and the other two brevis, responsible for thumb’s extension
and flexion, are deeper muscles which cannot be sensed by
surface EMG. Moreover, accelerometers attached on the arm
have no measurement of the thumb position at all. We can
also observe that the other two misclassifications (29th/30th, and
28th/33rd) are also due to different thumb movements. Therefore,
additional sensors should be introduced to distinguish different
hand movements caused by the thumb gesture.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed an HMM-based hand movement
recognition method with multichannel signals of sEMG and ac-
celerometers and evaluated the method on the NinaPro database.
Then, we introduced the maximum mutual information (MMI)
criterion combined with 4-fold cross-validation to optimize hyper-
parameters. Although misclassification exists in several groups of
movements due to the limitation of sensors, experimental results
indicated using HMM with multichannel signals of sEMG and
accelerometer is an advantageous and reliable method for hand
movement recognition.

In future work, to shorten the process to optimize hyperpa-
rameters via cross-validation, non-parametric Bayesian method
can be applied. Moreover, it is time-consuming to obtain enough
labelled data, especially when conducting experiments on people
with amputation for designing prosthetics. Future work should
also focus on adapting existing models on new subjects to improve
the efficiency of the training process.
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