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Abstract—This paper presents a new local backlight dimming
(LBD) for liquid crystal displays (LCD) method based on a
convolutional neural network (CNN). Many previous LBD algo-
rithms controlled the backlight intensity relying on hand-crafted
features within a local block, that is, statistical information
of pixel values in each block. However, they have a lack of
generalization ability due to the use of hand-crafted features,
which are usually not adaptive to the input properties. Also, they
usually disregarded the diffusion property of the backlight that
may affect the neighboring blocks. In this respect, we propose
a CNN-based LBD algorithm to alleviate these problems. To
address the lack of generalization ability of hand-crafted features,
we adopt a CNN-based approach that learns the features and thus
provides appropriate backlight intensities for the given inputs.
Also, the diffusion property of light and leakage property of
liquid crystal are considered when training the network, thereby
alleviating the loss of details while achieving the high contrast
ratio. Experiments show that the proposed method outperforms
both quantitatively and qualitatively compared to the other LBD
algorithms. Specifically, for the images from the DIV2K dataset,
the proposed method achieves at least 1dB enhancement in PSNR,
showing the generalization performance.

I. INTRODUCTION

Currently, two types of displays, namely organic light-
emitting diode (OLED) display and the liquid crystal display
(LCD), are the most dominant ones in the market. The OLED
display is a self-emitting device, which directly illuminates
the light with the intensity of the corresponding pixel value.
Hence, it can render fine color differences and a perfectly
black screen, and thus achieves the infinite contrast ratio. On
the contrary, the LCD is not a self-emitting device, and thus
the backlight is required to display the contents. Technically,
the displayed contents on LCD are derived by the product
of liquid crystal (LC) transmittance and backlight luminance.
However, due to the structural limitation of LC, the LCD has
light leakage property, which means that LC transmittance
cannot be zero. Hence, the LCD cannot make the perfect-black
area, and thus the overall contrast is generally worse than the
self-emitting devices. However, thanks to several advantages
compared to the OLED display such as in lifetime, durability,
and price, it still has a large market share, and thus there have
been many efforts to overcome the above-stated drawbacks of
LCD.

One of the main approaches to reduce the influence of
leakage property is the backlight dimming technique. In
principle, this method dims the backlight at the dark area

and conversely compensates for the LC transmittance to be
reciprocally proportional to the dimming ratio. As a result,
the displayed image is less distorted while reducing the influ-
ence of leakage property. Nowadays, the light-emitting diode
(LED) has replaced cold-cathode fluorescent lamps (CCFL)
as a backlight unit (BLU). The BLU is usually divided into
blocks so that we can locally and individually control the
intensities of LEDs in each block according to image contents.
This strategy is named as local backlight dimming (LBD),
which greatly increases the contrast ratio while reducing the
power consumption [1]–[6]. However, the LBD also often
brings some degradations, such as loss of details and halo
artifacts. First, when the backlight is significantly dimmed,
the LC transmittance value is overcompensated, which results
in saturation and thus loss of details. Conversely, boosting
the backlight intensities usually preserves the details, but the
diffusion of light and the leakage property of LC bring out halo
artifacts, i.e., blooming around the intensity-boosted blocks.
Therefore, finding the optimal backlight intensities for the
given image is essential so that the LCD can display less-
distorted details and real black level.

To handle these problems, several algorithms have been
proposed, addressing their uniqueness in the decision criteria
of dimming ratio [1]–[6]. Many previous LBD algorithms
rely on hand-crafted features on the only local block, that is,
statistical information of pixel values in each block (a segment
of BLU). For instances, the most straightforward method is
to control the backlight intensity of each block based on
the mean or maximum values of the pixels in each block.
Chen et al. [1] used a weighted average of the histogram of
each image block to calculate the initial luminous intensity.
Hsia et al. [2] used variance values of a block to detect
the region that contains edges, which needs enhancement of
BLU to preserve edges. However, the aforementioned hand-
crafted-feature-based algorithms [1]–[3], [6] determined the
intensity of the local LED segment only with the correspond-
ing (local) block information. Since the light of a BLU is
diffused to the neighboring areas, the diffusion effects must
also be considered to determine the LED intensity. In other
words, not only the local information but also the neighboring
block information should be considered to determine the LED
intensity. Taking the diffusion into consideration, there have
been several attempts to formulate the LBD as an optimization
problem to minimize the distortion of an image after the
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Fig. 1: We proposed a CNN-based local backlight dimming algorithm. To estimated the backlight intensities of each LED,
we design our network as an autoencoder model, which takes an image as the input. Additionally, for end-to-end learning of
network, we formulate the LCD model as fully differentiable model, taking simulation process of LCD into consideration.

local dimming [4], [5]. However, these approaches require
burdensome computation and lack of generalization ability due
to heuristically defined parameters.

In recent years, convolutional neural networks (CNNs) have
become popular in many fields such as pattern recognition and
computer vision, as they outperform traditional methods using
hand-crafted features [7]–[9], [16], [17]. In this respect, we
propose a CNN-based LBD algorithm which performs better
than the above-stated conventional methods. In detail, to ad-
dress the lack of generalization ability of hand-crafted features,
we adopt a learning-based network that learns features for
finding the optimal intensity of BLU. Precisely, we design a
network as an autoencoder model [10], which takes an image
as the input and produces the intensities of BLUs. By adopting
the CNN, the proposed method can exploit rich representations
of image contents. Also, unlike the conventional methods [1]–
[3] that find the backlight intensity using hand-crafted features
in pixel values within the corresponding block, our CNN-
based method estimates the intensity using learned features
in a wider range of pixel values. Hence, it also naturally
considers the diffusion of light from the neighboring blocks.In
summary, we consider deep features from neighboring blocks
when computing the backlight intensity for the given input
image. Experiments show that the proposed algorithm achieves
plausible results in terms of objective measures.

II. PREVIOUS WORKS

Many LBD algorithms [1]–[3], [6] are based on the statis-
tical information of pixel values in each block. For example,
Chen et al.’s method [1] mainly includes two steps: calculation
of initial intensities of LEDs and dark scene enhancement. In
the first step, for considering the major gray levels, a weighted
average of the histogram of each image block was used to
calculate the initial backlight intensity. In the second step
for dark scene enhancement, the initial LED intensities were
enhanced more in the case of a very dark scene. Hsia et al. [2]
proposed an LBD algorithm to improve the edge information.
They noted that using the average value of each block reduces
image details because the compensated LC transmittance value
can be easily saturated. To alleviate this problem, blocks
containing the large edge magnitude are detected by high
variance values, and the initial backlight intensities of the
corresponding block are enhanced. By doing this, the backlight

intensity of the block containing large edges is not too dimmed
so that it does not lose image details. Also, there are several
attempts to formulate LBD as an optimization problem to
minimize the distortion of an image after the local dimming
[4], [5]. Cha et al. [4] presented an optimization-based LBD
method that minimizes power consumption under a given
allowable distortion for the LCDs with edge-lit LED backlight.
To reduce the image quality fluctuation in this method, an
inequality constrained optimization problem is formulated, and
the steepest descent method is used to solve the optimization
problem.

III. BACKGROUNDS FOR THE PROPOSED METHOD

A. Autoencoder

To address the lack of generalization ability when using
hand-crafted features, we adopt a learning-based network,
specifically an autoencoder (AE) model [10]. The AE is a
type of artificial neural network that aims to learn a represen-
tative encoding of a set of data, typically for the purpose of
non-linear dimensionality reduction [10]. The AE is mainly
composed of two parts: encoder and decoder. They can be
expressed with two mapping functions φ : Rm → Rn and
ψ : Rn → Rm. The encoder stage of the AE takes the input
x ∈ X ⊂ Rm and outputs the latent vector z ∈ Z ⊂ Rn. The
decoder stage of the AE attempts to reconstruct the original
input, producing x̂ ∈ X from the latent z. These non-linear
mapping functions are trained to minimize reconstruction
errors such as mean squared errors (MSE):

φ, ψ = argmin ||x− ψ ◦ φ(x)||2. (1)

In other words, the AE learns an approximation of identity
function so that its output x̂ becomes as similar as to x. By
imposing other constraints on the network such as limiting the
dimension of Z space or formulating a deterministic decoder
part, we can allocate specific meaning to the z. Mostly, the
latent space Z has lower dimensionality than the input space
X , m > n, then the z = φ(x) is the compressed representation
of the input x.

In our case, the task is to estimate the intensities of a
fixed number of LEDs z from the input image x, where the
dimension of z is much smaller than x, given a constraint that
the displayed image x̂ through the decoder should be as similar
as to the input image x. Hence, we model the estimation of

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

1068



Fig. 2: Overall architecture of proposed network. Lock icon at the decoder denotes that it is a not-trainable function. The
decoder is the process of making an output image with the BLU and given pixel values.

BLU through the encoder of the AE with trainable parameters
of CNN, while we design the decoder part to simulate the
mechanism of LCD. The overall architecture of the proposed
network is shown in Fig. 2.

B. Convolutional Neural Network

We formulate the encoder stage of the proposed network
using a convolutional neural network (CNN), which enables
to capture rich representations of images and thus now widely
used in various computer vision tasks [9]. The operation in a
convolution layer can be represented as,

hout = σ(W ∗ hin + c), (2)

where W and c denote a set of learnable filter coefficient
and bias, respectively. The convolution layer’s output hout
is obtained by convolving (∗) layer’s input hin with W and
addition with c, followed by a non-linear activation function
σ. The output from a layer can be interpreted as an acti-
vation map, which shows the presence of specific features
or patterns in the image. As one layer feeds its output into
the next, extracted features hierarchically and progressively
become more complex. By using the CNN, it is able to
recognize patterns with extreme variability, with robustness to
distortions and simple geometric transformations. Therefore,
CNNs outperform traditional methods based on hand-crafted
features in a variety of applications [7]–[9], [17]. In this
respect, we formulate the encoder stage of our autoencoder
using a CNN which determines the backlight intensity. Details
on the architecture of the encoder stage are shown in Fig. 3
and will be handled in Section IV-A.

IV. PROPOSED METHOD

Without loss of generality, we formulate the LBD problem
as the estimation of the brightness of 10 × 16 LEDs z from
a 960× 1536 RGB input image x. The overall architecture of
the proposed network is shown in Fig. 2. For the arrangement
of LEDs, we consider only the direct-lit backlight where the
backlights are placed behind the screen with the equivalent
block size for convenience. In other words, we divide BLUs
into 10×16 blocks for local dimming control so that one unit
covers to 96 × 96 pixels. These numbers are chosen just for
an instance of many possible implementations, and we believe

Fig. 3: Details of the encoder stage of proposed network.

that our method will also work for a large variation of these
settings (block numbers, the arrangement of the light source,
image size, etc.).

A. Structure of Encoder Part

As we already stated in Section III-A, to find a compressed
representation of the input image, we design the encoder
stage of the proposed network as shown in Fig. 3. Unlike
previous methods [1]–[3] which handled only gray level such
as Y channel or maximum value among RGB, we feed the
original 3-channel RGB image. Hence, the encoder receives
960 × 1536 × 3 input images as the input, and generates
10× 16 compressed latent representative z. To be precise, the
encoder is composed of 8 convolution layers, rectified linear
unit (ReLU) as the non-linear activation function, and 4 max-
pooling layers with different strides. We also adopt the dilated
convolution filter [11] instead of the plain convolution, for en-
larging the receptive field. For efficiently exploiting surround
contextual information with a small number of parameters, the
dilated filter pads zero between the components of filters with
dilation factor. Finally, we apply a sigmoid function for the
final output of the encoder to be bounded from 0 to 1, which
is the normalized intensity of the BLU.
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Fig. 4: Overall architecture of decoder stage of proposed network. The decoder is mainly composed of 3 parts: Diffusor, LC
transmittance Compensator, and Simulator. Referred notations are handled in Section 4.2.

Fig. 5: Illustration of Gaussian smoothing. First, we pad
boundary of bdim with mirror reflections, considering the fact
that the light is blocked and cannot be spread at the boundary.
Secondly, padded BLUs are convolved with 7 × 7 Gaussian
filter for blurring.

B. Structure of Decoder Part

To give a constraint for the 10 × 16 latent array to work
as BLUs, we design decoder part concerning the physics of
LCD. As shown in Fig. 4, the LCD model is composed of 3
parts: diffusor, LC transmittance compensator, and simulator.

1) Diffusor: Since the LED is a discrete light source, multi-
layered optical diffuser films are necessary to disperse the LED
light. This makes the illumination spread over the regions
as a plane light source so that the blocking artifact around
the backlight block is reduced. To model the effect of the
optical diffuser film, we utilize two operations, namely Gaus-
sian smoothing and bilinear interpolation. First, the Gaussian
smoothing operation is to model the constructive diffusion
property of light, which is given by

bblur(c, r) =

3∑
k=−3

3∑
l=−3

bdim(c+ k, r + l)×G(k, l), (3)

where
G(x, y) =

1

2πσ2
e−

x2+y2

2σ2 , (4)

where bdim and bblur denote dimmed and blurred backlight inten-
sities at (c, r)-th block, respectively. Also, c ∈ {1, 2, . . . , 10}
and r ∈ {1, 2, . . . , 16} represent column and row index of a
block, respectively. We use 7×7 Gaussian filter with σ = 1.5.
At the edge of the panel, the light has different diffusion
property from the fact that the light is blocked and cannot be
spread. Therefore, when convolving the Gaussian smoothing
filter, we pad boundary with mirror reflections of the BLUs as
shown in Fig. 5. Furthermore, with the assumption that each
LED is located at the center of the corresponding block, we
model the optical diffuser films using a bilinear interpolation
[18]. As shown in Fig. 4, this model eventually gives the
uniformly-dispersed luminance of BLUs (BLBD) as a plane light
source.

2) LC transmittance compensator: The displayed image on
LCD is derived by the product of backlight luminance with
LC transmittance. Before applying LBD, we assume that the
initial luminance of BLU is at peak luminance (=1), which
means that all light sources are equally turned on. Formally,
the original pixel value of the LCD panel at the position (i, j)
is modeled as

Icori(i, j) = T c
init(i, j)×Binit(i, j) (5)

where Icori, T
c
init, and Binit denote the original pixel value of

the c-th channel, initial LC transmittance of the c-th channel,
and backlight intensity, respectively. Before the application of
LBD, all the backlights are fully turned on, which corresponds
to Binit(i, j) = 1 for all (i, j). Hence, the pixel value before
the LBD is

Icori = T c
init(i, j). (6)

When the backlight luminance is dimmed, to keep the same
luminance value with the original image, the LC transmittance
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must be compensated to be reciprocally proportional to the
dimming ratio. For this, we define the compensation factor C
as

C(i, j) =
Binit(i, j)

BLBD(i, j)
=

1

BLBD(i, j)
(7)

where BLBD is the dimmed lacklight in (0, 1]. However,
since the LC transmittance is bounded, we have to impose
a saturation constraint through the clip function. Then, the
compensated LC transmittance after the LDB is expressed as

T c
LBD(i, j) = fclip(C(i, j)× T c

init(i, j)), (8)

where fclip(·) denotes the clip function which bounds the
input values from 0 to 1. When the backlight is overly
dimmed (BLBD � 1), conversely the compensation factor is
boosted (C � 1), and then, the compensated LC transmittance
(C × T c

init > 1) values are saturated due to the clip function.
As a result, the simulated image cannot fully reconstruct the
original value, which results in loss of details. To prevent
the loss of details from saturation, several algorithms [1],
[6] used an experimental lookup table (LUT) which contains
pre-determined compensation factors according to the relation
between Iori and BLBD. However, in order to show the
intrinsic performance of the models, the LUT is excluded in
all experiments.

3) Light Leakage: In addition to the diffusor and compen-
sator, it is required to consider the leakage of LC. Precisely,
with the transmittance T c

LBD and backlight intensity BLBD, the
brightness on display had to be T c

LBD × BLBD when there is
no leakage. But since there is a small amount of leakage that
is proportional to BLBD, the actual brightness is modeled as

IcLBD(i, j) = εBLBD(i, j) + (1− ε)BLBD(i, j)T
c

LBD(i, j), (9)

where ε denotes the light leakage factor. It is determined to
depend on the characteristics of LC material, device structure,
and viewing angle. In our simulation, a constant ε = 0.03 is
used for the entire pixels for simplicity.

C. Loss function for Traning the Proposed Network

To design a loss function for our network, we investigate
several loss terms which reflect the discrepancy between two
vectors. Among them, inspired by the work for image restora-
tion task [16], we adopt L2-norm loss function to simulate
the displayed image from the estimated BLUs as close as to
the original image. Thus, the loss function for training our
network is

Loss =
1

2

w∑
i=1

h∑
j=1

3∑
c=1

(Icori(i, j)− IcLBD(i, j))2 (10)

where w and h denote the width and height of an image,
respectively.

D. Dataset

For training and test, we use DIV2K dataset [13] which is
released for single image super-resolution. The DIV2K dataset
consists of high resolution (2K) RGB images with a large

Fig. 6: Typical examples of used dataset. From the first to
the third columns, images are examples of DIV2K, manually
crawled, and augmented images used for training, respectively.

diversity of contents, composed of 800 images for training
and 100 images for validation. Additionally, we manually
crawled 536 RGB images from the Internet for paying special
attention to the image quality, and also for the diversity
of contrast. Including these images in training dataset, we
augment the dataset with 1,336 images, so that our dataset
covers a wide range of contrast. For efficiency, we train with
sub-images randomly cropped from the original dataset with
the size of 480×768, which is one-quarter of the target image
size. Moreover, we augment the dataset by randomly masking
the sub-images for the robustness of the network, providing
training images with extremely high contrast with irregular
shapes. Finally, we construct a dataset with 106,084 cropped
sub-images for the training. Typical examples are shown in
Fig. 6.

V. EXPERIMENTAL RESULTS

A. Training Method

During training, we estimate 5 × 8 BLUs from 480 × 768
sub-images. The size is enough for the network to consider sur-
rounding contextual information. We have trained the network
using Adam optimizer [18] with the mini-batch size of 32. We
used 0.0005 as the initial learning rate with 0.8 decay rate in
every 20 epochs. Dilation rate of the filters in the encoder is
empirically set to 3. Additionally, we applied weight decay
regularization [14] to prevent overfitting.

B. Comparions with Other LBD Methods

We compare our method with three LBD algorithms: a
conventional method which is based on block-wise Max value,
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Fig. 7: Experimental results applying LBD algorithms to img0843 from DIV2K [13]. From the first to the fourth rows, images
are the results of estimated BLU, diffused BLU, simulated images, and difference images from the original, respectively. For
better visualization, the difference images are amplified. The best quantitative results are highlighted in bold face.

Chen et al. ’s [1], and Hsia et al. ’s [2]. For the latter two
methods, no source codes are available, so we implemented the
codes based on the original papers with MATLAB. The 10×16
BLU is estimated by each method from 960 × 1536 image.
Then we compare the BLU estimation performance of each
method with the images displayed by a common LCD model.
For the quantitative comparisons, peak signal-to-noise ratio
(PSNR) and structural similarity (SSIM) [15] are used. Since
the main purpose is to display the contents of the LCD panel
to be close to the original, it is meaningful to use the PSNR
associated with mean squared error as a measure of closeness.
Also, under the assumption that human visual perception is
related to the structural information from a scene [15], we
also use the SSIM to assess the image quality.

1) Evaluation on DIV2K Dataset: We evaluate our method
with other LBD algorithms on the DIV2K validation dataset.
As shown in Fig. 7, the proposed method achieves the largest
performance gain compared to the other methods. Specifically,

TABLE I: Quantitative comparisons of Local Backlight Dim-
ming algorithms

DIV2K HR set
(100 images resized 960 1536)

Quantitative measure

PSNR SSIM

Maximum method 36.91 0.9842

Chen et al. [1] 20.02 0.8345

Hsia et al. [2] 33.30 0.9757

Proposed method 37.91 0.9862

it can be seen that other methods estimate backlight intensities
only in the parts where the contents exist. However, in our
results, the backlight intensities exist even if there is no content
at all. This suggests that the proposed method estimates
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Fig. 8: Experimental results applying LBD algorithms. Gray
scale images are difference image with the original. For better
visualization, we multiply 10 to the difference results. The best
quantitative results are highlighted in bold face.

intensities of LEDs using not only local information but also
neighbor information, unlike other LBD algorithms. As a
result, our proposed method prevents the degradation of the
edge contents which occurs due to the lack of light as shown
in the other comparisons.

Also, the average values of quantitative results on 100 im-
ages in DIV2K validation set are shown in TABLE I. We can
observe that the proposed method outperforms others in terms
of PSNR and SSIM. Although the maximum value method
also achieves quite high PSNR, it is prone to make halo
artifacts from the leakage property of LC and the diffusion of
light. Conversely, mean value based methods, such as Chen et
al.’s and Hsia et al.’s, are easy to make clipping artifacts due
to LC transmittance saturation [19]. Also, due to the lack of
generalization of mean value based methods with heuristically-
defined parameters, their results are more degraded than the
maximum value methods as shown in TABLE I. On the
contrary, as shown in Fig. 8, the proposed method works well
for the images of various contents and environments, showing
good generalization ability.

2) Luminance Profile Analysis: Fig. 9 plots the displayed
luminance value of pixels in the dashed blue line of the image.
The results without LBD, which is the red line in the graph,

Fig. 9: Luminance profile of pixels in the dashed blue line of
the image. Gray scale images are difference image with the
original. For better visualization, we amplify the difference
image

shows that the saturation of LC transmittance does not occur,
i.e., preserve details. But the real black is not expressed due
to the light leakage. On the other hand, in the case of LBD
methods, the real black is well expressed by reducing the effect
of leakage, but degradations in the boundary of contents occur
due to the saturation of LC transmittance. Results in the right
peak of the luminance profile demonstrate the effectiveness
of the proposed method compared to the others. Chen et
al. [1] and Hsia et al. [2] initially estimate the intensities
of LEDs based on the mean value of the block. As shown,
Chen et al.’s [1] method shows severe degradation due to
saturation. In the case of Hsia et al.’s [2] result, although
they enhance the luminance value of the block owing to being
classified as the edge of contents, it shows saturation due to
the lack of light. In other words, adequate luminance cannot be
covered only by an LED in a corresponding block. However,
in our case, as shown in the luminance profile, degradation
due to saturation is quite mitigated while suppressing the light
leakage. Although some halo artifacts occur, it is believed to
be negligible. Also, Fig. 10 shows activation maps of a layer
in the CNN, which demonstrates that our CNN-based method
fully exploits various features from an image.
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Fig. 10: Visualization of some activation maps of the second
convolution layer of our encoder. The figure shows that our
method exploits various directions of edges, textures, dark
regions, bright regions, etc.

VI. DISCUSSION

We have proposed a CNN-based local backlight dimming
algorithm. Unlike the conventional methods that locally con-
trol the BLU, the proposed method considers the surrounding
contextual information by using a large receptive field size
of CNN. Also, the diffusion property of light and leakage
property of LC are included in the backpropagation path,
which eventually makes the displayed content of LCD as close
as to the original. Experimental results show that the proposed
method yields outstanding qualitative results with less loss of
details and a higher contrast ratio. Also, it is shown from the
visualized results that the proposed method outperforms other
methods in terms of perceptual quality. Finally, we note that
the complexity of CNN can be an issue for its practical usage
in the LCD panels. Hence, we also considered minimizing the
computation complexity and memory by squeezing the number
of filters and the depth of layers. The number of parameters for
this light implementation is 108K, which is much less than the
well-known conventional VGG16 [17] that requires 138, 358K
for classification tasks. We leave it as a future work to further
squeeze or quantize the CNN to reduce overall computation
and memory requirements while maintaining the performance.
Our codes and datasets will be made publicly available on a
website.
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