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Abstract—This paper proposes a new fusion algorithm based 

on two-scale guided filtering for polarized images. After 

generating the detail and base layers from source image, we 

construct the saliency map. It provides good characterization of 

the saliency level information, which is beneficial to the fusion. 

Subsequently, two different scales of guided filtering are 

performed on the weight map which is derived from the saliency 

map. Finally, weighted fusion method is used with the filtered 

weight map to fuse the detail layer and the base layer. In the 

proposed algorithm, we improve the saliency map by combining 

second-order and first-order difference edge detection operations. 

The weight maps constructed with the improved saliency map 

can fulfill the requirements of the new weighted fusion method.  

Compared with the original method, all of the benchmarks on 

testing images have been significantly improved during objective 

evaluation. Subjectively, it is also shown that the details of the 

improved saliency map have become obviously sharper.  

Keywords—image fusion, guided filtering, sailency map, 

Laplacian operator 

I.  INTRODUCTION 

Polarization imaging technique can provide more 
information about the roughness, texture and material of the 
object surface than traditional optical imaging. Therefore, it has 
been widely used in military reconnaissance [1], remote 
sensing detection, medical treatment [2] and astronomical 
observations. The traditional polarization image analysis 
mainly interprets information by calculating the Stokes images. 
However, analyzing individual Stokes image is easy to lose 
details and could not fully reflect the target polarization 
information [3]. With the information redundancy and 
complementarity between polarized images, researchers have 
proposed a number of polarization information analysis 
methods based on image fusion technique in the recent years. 
The objective is to fuse together information that is different 
and complementary [4].  

Li [5] developed a new algorithm for polarization image 
fusion based on bidimensional empirical mode decomposition 
(BEMD) and adaptive the pulse-coupled neural network 
(PCNN). This fusion algorithm combines the advantages of 
both the multi-resolution and multi-scale characteristic of 
BEMD transform, as well as the pulse synchronization 
excitation of PCNN. It successfully solves the problems in 
traditional polarization image fusion, such as poor visual effect 
and insufficient detail information. Another group of image 
fusion methods is based on multi-scale transformation, which 
apply different fusion strategies to the frequency coefficients of 

different scales. The representative algorithms in this group 
include curvelet transform (CVT) [6], dual-tree complex 
wavelet transform (DTCWT) [7], and non-subsampled shearlet 
transform (NSST) [8]. This can achieve more detailed fusion, 
and therefore has been widely used. However, due to imperfect 
fusion rules, it is impossible to transfer all the desired 
information to the fusion image. In addition, these methods 
may produce brightness and color distortions because spatial 
consistency is not well considered.  

To make full use of spatial context, optimization-based 
image fusion approaches, e.g., generalized random walks [9], 
and Markov random fields [10], have been proposed. However, 
optimization-based methods have a common limitation, i.e., 
inefficiency, since they require multiple iterations to find the 
global optimal solution. Moreover, another drawback is that 
global optimization-based methods may over-smooth the 
resulting weights, which is not good for fusion. Subsequently, a 
novel image fusion approach has been proposed in [11] based 
on random walks fusion framework developed in [10]. 
Although the complexity of this method is reduced, the ability 
to retain details in smooth areas is weak. In order to improve 
efficiency and special consistency, the authors of [12] proposed 
a new image fusion method with guided filtering. A simple 
average filter is used to quickly decompose the image into two 
scales. Although the method of decomposition is simplified, 
excessive smoothing causes the loss of detailed image 
information. In addition, a novel weight construction method 
[12] is proposed to combine pixel saliency and spatial context 
for image fusion. Instead of using optimization-based methods, 
guided filtering [13] is adopted as a local filtering method for 
image fusion. Laplacian operator is used to detect edge 
information in constructing pixel saliency. However, the edge 
direction estimation, edge continuity and noise robustness of 
this algorithm are relatively weak. 

In order to address the above challenges, we propose a new 
fusion algorithm. When constructing the saliency map, we 
combine Sobel edge detection and Laplacian sharpening. Sobel 
algorithm is insensitive to noise and provides accurate edge 
directions, while Laplacian filter has high accuracy in edge 
positioning. In our algorithm, the polarized images with four 
angles are used as the source images, which are firstly 
decomposed into base layer and detail layer. Secondly, the 
saliency map is improved to construct weight map. At last, 
guided filtering with the modified parameters is used as local 
filtering for image fusion. Experimental results show that the 
proposed method can provide better fusion quality than guided 
filtering-based fusion (GFF) [12].  
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  The following paper is organized as follows. In Section II, 
the review about guided filtering is presented. In Section III, 
the proposed algorithm is introduced with details. In Section IV, 
the proposed method is compared with GFF and the results of 
both fusion quality and processing time are presented. 
Conclusion is presented in Section V. 

II. GUIDED FILTERING  

In theory, the guided filter assumes that the filtering output 

O is a linear transformation of the guidance image I, as shown 
in (1), in a local window Wk centered at pixel k, 

 ,    i k i k kO a I b i W      (1) 

where Wk is a square window with size of (2r+1) ×(2r+1).  
The linear coefficients ak and bk are constant in Wk, which 

can be estimated by minimizing the squared difference between 
O and the input image P, as: 
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where   is a regularization parameter given by the user. The 

coefficients ak and bk can be directly solved by linear regression 
as follows: 
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 kk k kb P a    (4)  

where 
k  and 

k  are the mean and variance of I in Wk 

respectively, W  is the number of pixels in Wk, and 
kP  is the 

mean of P in Wk. Next, the output image can be calculated by 
computing the average of ak and bk, as follows: 
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 In this paper, 
,G ( , )r P I

 is used as the function to represent 

the guided filtering operation. r and   are the parameters 

which decide the filter size and blur degree of the guided filter.  
The edge-preserving characteristic of guided filter can be 

intuitively interpreted as follows. When the guided filter is 
used as an edge-preservation filter, the input image P can be 
used as the guidance image I, that is, I=P. According to (1), (3) 
and (4), it can be seen that in the flat area, local variance 

k  is 

very small which means that the pixels in guidance image I 
remains almost unchanged in Wk. Therefore, ak becomes close 

to 0 and the filtering output O equals to 
kP , i.e., the average of 

the adjacent input pixels. In contrast, if the local variance is 
very large which means that the pixels are in an edge area, ak 
becomes much greater than zero. As demonstrated in [13],  

O a I    becomes valid, which means that only the weights 

in one side of the edge will be averaged.  In this way, the edges 
in I can be preserved in the output O after the filtering.  

III. THE PROPOSED METHOD  

Due to the edge-preserving properties of guided filtering, 
we choose guided filtering to perform decomposition and 
weight map construction to generate the fused base layer and 
detail layer. Fig. 1 summarizes the main processes of the 
proposed method. Firstly, we perform self-guided filtering on 
the source images to get the two-scale representations. Next, 
we combine the Sobel operation and the Laplacian operation to 

improve the saliency map construction. Subsequently, the 
weight map determined by improved saliency map is used as 
the input of guided filtering to construct the new weight map. 
The last but not the least, the base and detail layers are fused by 
using a guided filtering based method. It uses weighted average 
to achieve two-scale reconstruction.  

A. Two-Scale Image Decomposition 

As shown in Fig. 1 A, each source image is decomposed 
into two scales by guided filter. The base layer can be derived 
from: 

 ,G ( , )
ii r i iB I I   (7) 

,G ( , )
ir i iI I

 represents that guided filtering is performed on Ii   

with Ii also serving as the guidance image, where Bi is the base 
layer image, Ii is the source image, i ϵ{0°,45°, 90°, 135°}. r and 

i  are the parameters used in guided filtering, and we set r  = 

15, i  = 
i , where 

i  is the standard deviation of Ii. Parameter 

r controls the size of the local window, and the larger window 
size makes the filtered image to be smoother. However, 
excessively smoothed basic layer cannot represent the basic 
information well. On the other hand, when r is too small, it 
cannot filter out details effectively. According to Cao et al. [14] 

and our experiments, we set r = 15. As proposed in [15], i  is 

selected to be 
i  as the regularization parameter of self-guided 

filtering. This not only generates a smooth image, but also has 
better edge-preserving characteristics and spatial consistency 
than average filter used in GFF. Therefore, the detail layer 
image Di can be obtained by subtracting the base layer from the 
source image, as 

 
i i iD I B    (8) 

B.  Improved Saliency Map Construction 

As shown in Fig. 1 B, the saliency map is constructed as 
follows. Firstly, we use Laplacian filter to highlight details in 
source images.  

                '*i iH I L          (9) 

where L’ is a 3×3 modified Laplacian filter, Hi is derived by 
the convolution of L’ and the source image. As shown in (10), 
L is the Laplacian filter used in GFF. L’ as shown in (11) is 
used as the Laplacian filter in this paper. Unlike L, which only 
performs along horizontal and vertical directions, L’ also 
includes 45° and 45   directions. Hence, compared with L, L' 

has better effect on edge detection [16]. 
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 Secondly, the sharpened image Ei is obtained by adding the 
absolute value of Hi to Ii, as 

 

 i i iE H I           (12) 
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 Thirdly, Sobel filter [17] is applied to each source image. It 
can be achieved as follows: 
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where h represents horizontal direction and v represents 
vertical direction. Sh and Sv are Sobel mask for x and y 
components. (x, y) represents the pixel position in image. Fh,i is 
derived by the convolution of Ii and Sh. Fv,i is similarly derived. 
Fi is calculated by adding the absolute values of Fh,i and Fv,i.  

Fourthly, as shown in equation (14), Fi is smoothed by the 
average filter. The size of average mask A provided by the 
average filter is conventionally set to 5×5.  

 *i iM F A          (14) 

Fifthly, as shown in (15), the saliency map Si is derived by 
multiplying the smoothed result Mi and the sharpened image Ei 
obtained in equation (12). In this case, the smoothed Sobel 
filtered image can be regarded as a masked image. 

 
i i iS M E           (15) 

 Finally, the saliency maps are compared to determine the 
weight maps as  
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where k

iS  is the saliency value of the pixel k in the saliency 

map Si. 

C. Weight Map Construction with Guided Filtering 

However, as shown in Fig.1 B, weight maps obtained 
above are usually noisy and not aligned with object boundaries, 
which may produce artifacts to the fused image. Using spatial 
consistency is an effective way to solve this problem. Due to 
the edge-preserving of the guided filtering, those pixels with 
similar color or brightness tend to have similar weights if we 
use guided filtering. This is exactly the principle of spatial 
consistency. 

Hence, as shown in Fig. 1 C, guided image filtering is 

performed on each weight map Wi with the source image iI  

serving as the guidance image, as follows:  

 
1 1,G ( , )B

i r i iRW W I   (17) 
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where 1r , 1 , 2r , 2  are the parameters of guided filter, B

iRW  

and D

iRW  are the resulted weight maps of the base and detail 

layers. Finally, the values of 4 weight maps are normalized. 

B. Improved saliency map construction C. Weight map construction with guided filtering 

A. Two-scale image decomposition D. Two-scale reconstruction 
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Fig.1 The flowchart of the proposed method 
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 Furthermore, as shown in Fig.1 A, the base layers look 
spatially smooth and the detail layers look spatially sharp. 
Therefore, a large filter size and a large blur degree are 
preferred for fusing the base layers, while a small filter size and 
a small blur degree are preferred for fusing the detail layers. 
Otherwise, artificial edges may be produced. In order to select 
the size and blur degree of the filter, in this paper, we refine the 

value range and conduct experiments separately. When 1r  = 40, 

1  = 0.3, 2r  = 6, 2  = 10 6 , the algorithm produces better 

effect. 

D. Two-scale Image Reconstruction 

As shown in Fig. 1 D, two-scale image reconstruction 
consists of the following two steps. Firstly, the base and detail 
layers of different source images are fused together by 
weighted averaging, as follows: 
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Secondly, the fused image F is obtained by adding the 

fused base layer B  with the fused detail layer D . 

 F B D    (21) 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

In this section, the proposed method is compared with GFF 
[12]. Firstly, various benchmarks are used to objectively 
evaluate these two methods. Next, subjective evaluation is 
performed on the saliency map. At last, the processing time of 
these two methods is evaluated. 

A. Objective Evaluation Using Benchmarks 

In this session, four images are used to compare the fused 
image quality of the proposed method with GFF. For these 
testing, four fusion quality metrics, i.e., information theory 
based metric (QMI [18]), structure based metrics (QY [19] and 
QC [20]) and feature based metrics (QP [21]) are adopted. 

TABLE I.  BENCHMARKS OF FOUR ALGORITHMS 

Image 
Bench 
mark 

GFF 
[12] 

Proposed 

 

 0.9308 0.9546 

QY 0.5112 0.5168 

 
 

 
 

0.2255 

0.7780 
 

 

0.2839 

0.8498 

 

 

 

 0.8420 0.8708 

QY 0.4619 0.4851 

 
 

 
 

0.7889 

0.6623 

0.8804 

0.7396 

 

 

 

 0.7893 0.7970 

QY 0.4885 0.4958 

 
 

 
 

0.7442 

0.7647 

 
 

0.7446 

0.7967 

 

 

 

 0.8562 0.9177 

QY 0.5303 0.5403 

 
 

 
 

0.7186 

0.8440 

 
 

0.8010 

0.8783 

 
 

 

Table I shows the comparisons of benchmarks between the 
proposed method and GFF. From Table I, we can conclude that 
the proposed method performs better in all benchmarks. QMI 
defines a measure to objectively evaluate pixel-level fusion 
performance by evaluating the amount of the original 
information transferred from the different source images to the 
fused image. GFF has a lower QMI score than the proposed 
method, because the average filter is used in GFF to 
decompose the image into the base layer and the detail layer. 
However, it causes blurring and loss of image information such 
as contrast, background edges and details. Structure based 
metrics QC and QY estimate how well the important information 
in the source images is preserved in the fused image. When 
constructing weight maps in our method, the guided filtering 
with modified parameters is used to generate the resulted 
weight maps, so that the proposed method can better preserve 
the complementary information of source images without 
producing artifacts and distortions. Feature based metric QP 
measures the image characteristics through phase consistency 
and its corresponding moment. The main moments with 
consistent phases contain angle and edge information. The 
construction of saliency maps in this paper can be regarded as a 
combination of Laplacian filter and Sobel filter. Strong edges 
and the reduction of visible noise are the key characteristics of 
masking Laplacian filtered images with a smoothed gradient 
image. Hence, the proposed method produces better results. To 
further compare the quality of fused images by GFF and the 
proposed method, subjective evaluation is done in the next 
session. 

B. Subjective Evaluation on the Saliency Map 

The main difference between GFF and the proposed 
method is constructing saliency maps. It will affect the image 
fusion quality. Fig. 2 (a)-(e) show the 5 steps of constructing 
saliency map in the proposed algorithm. As a second-order 
differential operator, Fig. 2 (a) shows that Laplacian filter has 
obvious advantages in enhancing image details. However, it 
will produce more noise than Sobel filter. We can see that the 
noise in the flat area is very significant. Fig. 2 (b) displays the 
sharpened image. The Sobel filter, as shown in Fig. 2(c), has 
stronger response in the area where the gray value changes 
drastically than the Laplacian filter. However, it has weaker 
response on noise and small details than the Laplacian filter. 
Hence, this noise can be smoothed by an average filter. The 
smoothed result is shown in Fig. 2 (d). The saliency map as 
shown in Fig. 2 (e) still retain details in the area where the gray 
value changes drastically. The noise is reduced in the area 
where the gray value changes are relatively flat. 

The comparison results between the proposed method and 
GFF are shown in Fig. 3 and Fig. 4. Fig. 3 shows the 
comparison of the saliency maps generated by the proposed 
method and GFF. It can be clearly seen that the proposed 
method makes the edges in the saliency map sharper. Fig. 4(a) 
and (b) respectively display the fused images produced by our 
method and GFF. We enlarge the red frame area in the fused 
images and display them in Fig. 4(c) and Fig. 4(d). We can see 
that the fused image produced by GFF has more distortion 
compared to the fused image produced by our method. 
Therefore, by improving the method of constructing saliency 
maps, the quality of fused images is indeed improved. 

 

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

1153



 

  
(a) (b) 

Fig. 3. Saliency map comparison using (a) the proposed method; (b) GFF; 
 

 

  
(a) 

 

(b) 

 
(c) (d) 

Fig. 4. Fusion results comparison using (a) the proposed; (b) GFF; 

(c) The enlarged red flame area in (a); (d) The enlarged red flame area in (b). 

C. Computational Complexity and Processing Time 

All the experiments are conducted with i5-10210U CPU at 
2.8GHz, using MATLAB R2019b as the platform. Table II 
summarizes the complexity and processing time of GFF and 
the proposed method, for 1024×1024 images. The processing 
time in seconds are almost the same. By exploiting integral 
image technique [22], GFF has a linear time complexity as 
O(N), where N is the total number of pixels in each source 
image. The complexity of the proposed method is also O(N), 
because all the steps including the saliency map construction 
have complexity of O(N). This shows that the proposed 
algorithm can significantly improve the fused image quality 
without computational complexity overhead. 

 

 

TABLE II.  THE COMPLEXITY AND THE PROCESSING TIME 

Method Computational Complexity Processing Time (s) 

GFF [12] O(N) 3.87 

19.9742 Proposed O(N) 4.00 

0.0168 
 

V. CONCLUSION 

 In this paper, we propose an improved polarization image 
fusion method. This method uses self-guided image filtering to 
quickly complete multiscale decomposition, which is simple 
and effective. More importantly, by changing the ways of 
constructing saliency maps and the parameters of guided 
filtering, the method achieves spatial consistency and weight 
optimization. Objective comparison shows that the proposed 
algorithm can improve benchmarks QMI, QY, QC and QP by 
around 4%, 3%, 12%, and 7% respectively. Together with 
subjective evaluation, the experimental results show that the 
proposed method can produce better fusion quality with little 
computation time overhead.  
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