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Abstract—In this study, we propose to introduce group sparse
regularization with multiple Directional Lapped Orthogonal
Transforms (DirLOTs) for image restoration. Sparse signal
restoration has shown its effectiveness in a wide variety of fields.
While `1-norm regularization is typically used in sparse restora-
tion, a group sparse regularization can restore signals more effec-
tively if sparse structure in signals is organized into groups. As a
previous research, a group sparse regularization with dependency
between discrete wavelet transform (DWT) coefficients has been
proposed and the significance is demonstrated. Since DirLOTs
are redundant and symmetric, more effective sparse restoration
can be expected than ordinary DWTs. In this work, we introduce
group sparse regularization into image restoration with multiple
DirLOTs, where the symmetric property is utilized. Through
simulations, the restoration performance of the proposed method
is shown and the significance is confirmed.

I. INTRODUCTION

Developing of sensing technology, acquisition of data in
various situation becomes possible. To use sensing data ef-
fectively, high quality data reconstruction is needed. However,
restoring data which are measured under severe environment
is not trivial. In this situation, prior knowledge that signals
are sparsely represented has shown the effectiveness in many
reconstruction problems [1]. Therefore, incorporating a prior
into a restoration model is important to restore high quality
signals.

Fig. 1 shows a framework of sparsity-aware restoration
problem. Let an observation image v ∈ RK be represented
by

v = Pu? + w,w ∼ N (0, σ2
wI), (1)

where u? ∈ RJ is an unknown clean image, P ∈ RK×J
is a measurement process and w ∈ RK is additive white
Gaussian noise (AWGN) with mean 0 and covariance σ2

wI.
Image restoration problem is to estimate an image u? from
the observation image v. Since the process P is not invertible
typically, this problem is ill-posed. In this case, sparsity as
prior knowledge works well for the restoration. As shown in
Fig. 1, the restored image û is represented by a dictionary
D ∈ RJ×L and transform coefficients ŝ ∈ RL as û = Dŝ.
Based on this assumption, the problem of estimating coeffi-
cients ŝ from an observed image v is set as follows:

ŝ = arg min
s

1

2
‖PDs− v‖22 + λρ(s), (2)

Fig. 1. Framework of sparsity-aware restoration problem.

where ‖ · ‖2 is the `2-norm, ρ(·) is a regularization term and
λ ≥ 0 is a regularization parameter. For sparse representation,
the `1-norm regularization is typically used and its effective-
ness has been confirmed [1]. In recent years, image restoration
methods using deep convolutional neural network (CNN) were
developed [2], [3]. In these methods, CNN is trained from data
and then applied to solve the problem. While these methods
have been shown to be effective, they require a huge number
of design parameters to train the network.

For representing images, a suitable synthesis dictionary D
is demanded to restore clean images. As classical approach,
separable transform such as discrete cosine transform (DCT)
and DWT have disadvantage in representing diagonal edges
and textures. Contourlets proposed by Do et al. satisfy non-
separable property [4]. However, it is difficult to satisfy
the tight and symmetric property simultaneously. DirLOT,
non-separable lapped orthogonal transform with directional
property, can satisfy both of the properties [5]. Furthermore,
multiple DirLOTs, which consist of several DirLOTs, can im-
prove sparse representation of images with multiple diagonal
edges and textures [6], [7]. The redundancy works effectively
to promote the sparsity. In [8], [9], image restoration with the
`1-norm regularization and Poisson denoising were proposed
and the effectiveness of multiple DirLOTs was confirmed.

While the `1-norm regularization was successful in image
restoration [8], it ignores the relationship between transform
coefficients. Since a dictionary with a hierarchical structure
has dependency of coefficients among scales, it is expected to
improve the performance. As a previous research, Rao et al.
[10] proposed group sparse regularization to use dependency
among scales in a hierarchical structure. Note that, since
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Fig. 2. Lattice structure of a four channel analysis bank of DirLOT, where d(z) is a 2-D delay chain of size 4 × 1, M is the downsampling matrix and is
M = diag(My,Mx) , symbols W0, U0 and U

{d}
nd are orthonormal matrices of size M/2 ×M/2, E0 is an M ×M matrix directly given by the 2-D

DCT, z−1
x , and z−1

y are shift operates of the coefficients in the horizontal and vertical direction, respectively.

the symmetric property of DirLOTs do not need a group
delay compensation, it is expected to effectively represent the
dependency [12].

In this paper, we introduce a group sparse regularization
into an image denoising with multiple DirLOTs, where we
can utilize the tight and symmetric property. In addition, the
proposed method has fewer parameters than the restoration
methods with CNN since there is no training. The proposed
method is evaluated through its image denoising application.
This paper is organized as follows: Section 2 reviews multiple
DirLOTs and problem settings for sparsity-aware restoration.
Section 3 describes the proposed method. Section 4 evaluates
the performance of the proposed method. Finally, the conclu-
sions follow in Section 5.

II. REVIEW OF MULTIPLE DIRLOTS

In this section, let us review DirLOT and problem setting
with multiple DirLOTs for sparse representation.

A DirLOT is a non-separable transforms and can simul-
taneously satisfy the fixed-critically-subsampled, overlapped,
orthonormal, symmetric, real-valued and compact support
property. In addition, a DirLOT can hold the trend vanishing
moments (TVMs) for any direction. The directional property
works well for diagonal texture and edge representation [5].

A. Outline of DirLOT

Fig.2 shows the lattice structure of an analysis bank of Dir-
LOT. The polyphase matrix of order [Ny, Nx]

T is represented
for even M by

E(z) =

Ny∏
ny=1

{R{y}ny
Q(zy)} ·

Nx∏
nx=1

{R{x}nx
Q(zx)} ·R0E0, (3)

where z = (zy, zx)
T ∈ C2 is a variable vector in the 2-D Z-

transform domain. Matrix Q(zd),R0 and R
{d}
n is represented

by

Q(zd) =
1

2

(
IM

2
IM

2

IM
2
−IM

2

)(
IM

2
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,
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W0 0M

2
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and

R{d}n =

(
IM

2
0M

2

0M
2

U
{d}
n

)
,

where d ∈ {x, y} denote a direction. x and y mean horizontal
and vertical direction, respectively. In the above expression,
the product of sequential matrices is defined by

N∏
n=1

An = ANAN−1 · · ·A2A1.

E0 is an M × M symmetric orthonormal transform matrix
given directly through the 2-D separable DCT, where M is the
number of channels, i.e. M = |det(M)|. Symbols W0, U0

and U
{d}
nd denote orthonormal matrices of size M/2 ×M/2,

which are freely controlled during the design process.
A single DirLOT is not suitable for an image with texture

and edges in multiple directions. Thus, multiple DirLOTs,
a dictionary consists of several DirLOTs with a different
directions, was developed [7]. The dictionary is represented
by

D = [ΦT
0∪π2

ΦT
φ1

ΦT
φ2

· · · ΦT
φC−1

], (4)

where ΦT
0∪π2

is an isotropic symmetric orthonormal DWT
(ISOWT) with the classical two-order vanishing moments [11]
and Φφc for c ∈ {1, 2, · · · , C − 1} is a directional symmetric
orthonormal wavelet transforms (DirSOWTs) constructed by
DirLOTs with the two-order TVMs for the direction φc. C
denotes the number of DWTs, i.e. the redundancy of dictionary
D. D gives a tight frame with normalized atoms and satisfies
DDT = CI. Note that the symmetric property is suitable for
grouping the coefficients between scales. In transforms without
the symmetric property, the group delays may differ from other
scales. Some group delay compensation is needed to adjust the
phase shift. While transforms with the symmetric property do
not need this kind of group delay compensation. In this sense,
DirLOT is suitable for grouping coefficients between scales
[12].
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(a)

(b)

Fig. 3. Illustration of wavelet coefficient dependency. (a) 8×8 montage image
using 3-level DWT coefficient. (b) is a dependency model in the case of (a).

B. Problem setting

In sparse representation approach, when the regularization
term ρ(·) in (2) is set to `1-norm, the problem becomes
LASSO as follows:

ŝ = arg min
s

1

2
‖PDs− v‖22 + λ‖s‖1. (5)

We proposed to take another regularizer. Coefficients s can be
organized into groups. The following problem setting adopts
the mixed `1,2-norm regularization [13]:

ŝ = arg min
s

1

2
‖PDs− v‖22 + λ

∑
g∈G

‖sg‖2, (6)

where
∑

g∈G ‖ · ‖2 is the mixed `1,2-norm, sg denotes a sub
vector of s belonging to the g-th group and G is an index set
of the groups.

In sparse representation, while the `1-norm regularization
was effective, it ignores the relationship between transform
coefficients. Group sparsity can incorporates this relationship.
To use the group sparsity, we need to model a grouping
structure.

III. INTRODUCTION OF GROUP SPARSITY

In this section, let us describe our proposed group sparse
regularization for an union of multiple hierarchical DirLOTs.

When a dictionary D has a hierarchical structure, coeffi-
cients may have some dependency, which shows the tendency
that large coefficients prone to appear across scales. The
dependency was modeled as [15]. Fig. 3 shows an example of
a model with a DWT dictionary. As shown in Fig. 3, the model

Fig. 4. Illustration of a grouping method to introduce group sparse. This
method group the top level parent and the children corresponding to that
parent across levels.

Algorithm 1 Proximal gradient method
Input: v, α, λ, n
Output: û

Initialization :
n← 0
x(0) ← C−1DTPTv
while ‖s(n) − s(n−1)‖22/‖s(n)‖22 > ε do

s(n+1) = prox λ
αρ(·)

(s(n) − 2
α (D

TPT (PDs(n) − v)))
n = n+ 1

end while
û← Ds(n)

connects the coefficients of parents and children. Based on this
model, grouping methods for group sparse regularization are
considered in [10].

Fig. 4 shows the grouping method in this work. As shown in
Fig. 4, a parent at the top level and all children corresponding
to the parent across scale are grouped. By applying this
grouping to all the coefficients, group sparse regularization
is realized.

Since this grouping yields non-overlapping groups, the
proximal map of the mixed `1,2-norm is represented by

[prox λ
α‖·‖1,2

(s)]g =
sg
‖sg‖2

max

(
‖sg‖2 −

λ

α
, 0

)
. (7)

Thus, the problem in (6) can be solved by the proximal
gradient method [14] shown in Algorithm 1. In Algorithm
1, α is the Lipschitz constant of ∇f . Since our dictionary D
yields a tight frame and DDT = CI, the Lipschitz constant
is given by

α = 2Cλmax(P
TP), (8)

where λmax(·) denotes the maximum eigenvalue.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the proposed method through
some experiments on image denoising. To verify the perfor-
mance, the image restoration performance with the `1-norm
regularization and BM3D [16] are also shown for reference.
We used the proximal gradient method for the experiments.
The stop condition of the algorithm is set to a fixed iteration
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(a) φ = 0 ∪ π
2

(b) φ1 = −π
6

(c) φ2 = −π
6

(d) φ3 = π
6

(e) φ4 = π
3

(f) φ5 = −π
6

(g) φ6 = 2π
3

Fig. 5. Bases of DirLOTs used in this experiment. (a) ISOWT, (b) - (g) The
bases of DirLOTs designed for angles in (9). The polyphase order and deci-
mation matrix is set to [Ny , Nx]T = [4, 4]T and M = diag(My ,Mx) =
(2, 2), respectively.

number of 20 times. The regularization parameter is set by
hand. The multiple DirLOTs consists of one ISOWT and
four DirSOWTs of polyphase order [Ny, Nx]

T = [4, 4]T and
decimation matrix M = diag(My,Mx) = (2, 2). We select
the following six angles for φc in (4) as

φc ∈
{
−π
6
, 0,

π

6
,
π

3
,
π

2
,
2π

3

}
, (9)

Fig. 5 shows the bases of DirLOTs designed for angles in
(9). The number of tree levels of the multiple DirLOTs is
set to 4. To generate an observation image, we use the 2-D
Gaussian filter with standard deviation σb = 2.0 and AWGN
with standard deviation σw ∈ {20, 30, 40}. The restoration
performance is evaluated by the peak-signal to noise ratio
(PSNR) and structural similarity index measure (SSIM). The
PSNR is given by

TABLE I
COMPARISON OF PSNR AMONG THREE METHODS FOR VARIOUS

PICTURES AND AWGN WITH STANDARD DEVIATION σw . THE VALUE IN
THE PARENTHESIS INDICATE THE REGULARIZATION PARAMETER λ. THE

NUMBER OF TREE LEVELS OF THE MULTIPLE DIRLOTS IS SET TO 4.

PSNR
Image σw `1-norm BM3D Proposal

20 27.57 (0.054) 27.92 27.77 (0.20)
Lena 30 26.60 (0.12) 27.07 26.79 (0.33)

40 25.72 (0.19) 26.26 25.95 (0.44)
20 20.80 (0.028) 20.62 20.88 (0.13)

Baboon 30 20.41 (0.079) 20.28 20.53 (0.25)
40 20.15 (0.15) 20.07 20.28 (0.38)
20 23.13 (0.051) 23.32 23.16 (0.19)

Barbara 30 22.72 (0.12) 22.96 22.76 (0.32)
40 22.41 (0.19) 22.66 22.44 (0.45)
20 26.40 (0.055) 25.96 26.64 (0.19)

Goldhill 30 25.67 (0.12) 25.70 25.92 (0.32)
40 25.04 (0.20) 25.24 25.23 (0.44)
20 25.90 (0.046) 26.01 26.03 (0.18)

Man 30 25.06 (0.11) 25.20 25.25 (0.30)
40 24.48 (0.18) 24.61 24.63 (0.43)
20 25.01 (0.039) 25.15 25.24 (0.16)

Boat 30 24.23 (0.096) 24.29 24.52 (0.28)
40 23.62 (0.17) 23.68 23.89 (0.41)

TABLE II
COMPARISON OF SSIM AMONG THREE METHODS FOR VARIOUS PICTURES

AND AWGN WITH STANDARD DEVIATION σw . THE VALUE IN THE
PARENTHESIS INDICATE THE REGULARIZATION PARAMETER λ. THE
NUMBER OF TREE LEVELS OF THE MULTIPLE DIRLOTS IS SET TO 4.

SSIM
Image σw `1-norm BM3D Proposal

20 0.744 (0.054) 0.779 0.755 (0.20)
Lena 30 0.720 (0.12) 0.761 0.728 (0.33)

40 0.694 (0.19) 0.746 0.701 (0.44)
20 0.423 (0.028) 0.379 0.424 (0.13)

Baboon 30 0.387 (0.079) 0.347 0.391 (0.25)
40 0.366 (0.15) 0.332 0.371 (0.38)
20 0.604 (0.051) 0.631 0.605 (0.19)

Barbara 30 0.582 (0.12) 0.612 0.581 (0.32)
40 0.565 (0.19) 0.598 0.564 (0.45)
20 0.632 (0.055) 0.630 0.642 (0.19)

Goldhill 30 0.604 (0.12) 0.605 0.615 (0.32)
40 0.586 (0.20) 0.588 0.593 (0.44)
20 0.655 (0.046) 0.671 0.661 (0.18)

Man 30 0.625 (0.11) 0.642 0.632 (0.30)
40 0.604 (0.18) 0.623 0.608 (0.43)
20 0.627 (0.039) 0.644 0.642 (0.16)

Boat 30 0.597 (0.096) 0.6122 0.6121 (0.28)
40 0.578 (0.17) 0.593 0.590 (0.41)

PSNR = 10 log10
2552

MSE

MSE =
1

J

J∑
j=1

(uj − u?j )2,

where uj and u?j are the j-th element of u and u?. The SSIM
is computed as follows:

SSIM =
(2µuµu? + c1)(2σuu? + c2)

(µ2
u + µ2

u? + c1)(σu + σu? + c2)

c1 = 1.0× 10−4, c2 = 3.0× 10−4,
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(a) Original (b) Observation (18.59 dB) (c) BM3D (20.62 dB) (d) `1-norm (20.80 dB) (e) Proposal (20.88 dB)

Fig. 6. Image denoising result when σw = 20 for ”Baboon”. (a) Original image, (b) Observation image (PSNR: 18.59 dB), (c) Restored image with BM3D
(PSNR: 20.62 dB), (d) Restored image with the `1-norm regularization (PSNR: 20.80 dB), (d) Restored image with the proposed method (PSNR: 20.88 dB).

(a) Original (b) Observation (21.05 dB) (c) BM3D (25.70 dB) (d) `1-norm (25.67 dB) (e) Proposal (25.92 dB)

Fig. 7. Image denoising result when σw = 20 for ”Goldhill”. (a) Original image, (b) Observation image (PSNR: 21.05 dB), (c) Restored image with BM3D
(PSNR: 25.70 dB), (d) Restored image with the `1-norm regularization (PSNR: 25.67 dB), (d) Restored image with the proposed method (PSNR: 25.92 dB).

(a) Original (b) Observation (20.80 dB) (c) BM3D (26.01 dB) (d) `1-norm (25.90 dB) (e) Proposal (26.03 dB)

Fig. 8. Image denoising result when σw = 20 for ”Man”. (a) Original image, (b) Observation image (PSNR: 20.80 dB), (c) Restored image with BM3D
(PSNR: 26.01 dB), (d) Restored image with the `1-norm regularization (PSNR: 25.90 dB), (d) Restored image with the proposed method (PSNR: 26.03 dB).

where µu, µu? are the average of u,u?, σu, σu? are the
variance of u,u? and σuu? is the co-variance of u and u?.

A. Experimental results

Tables I, II shows PSNRs and SSIMs from the experiments
respectively. Figs. 6-8 also shows the restored images degraded
by AWGN with standard deviation σ = 20. In Table I,
the proposed method archives better PSNR than the `1-norm
approach. It is confirmed that the group sparse regularization
improves the image restoration performance. In Figs. 6-8,
compared to BM3D, the proposed method shows compara-
ble performance and is superior especially for images with
detailed edges and textures to the others.

V. CONCLUSIONS

In this paper, we introduced group sparse regularization into
an image restoration with multiple DirLOTs. Through simula-
tions, it was confirmed that the proposed method improve the

restoration performance. In the future, we will apply subband
adaptive method such as [17] to the proposed method.
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