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Abstract—Humans are capable of imagining scene images
when hearing ambient sounds. Therefore, audio-to-image syn-
thesis becomes a challenging yet practical topic for both natural
language comprehension and image content understanding. In
this paper, we propose an audio-to-image generation network
by applying the conditional generative adversarial networks.
Specifically, we utilize such generative models with the proposed
feature consistency and conditional adversarial losses, so that
diverse image outputs with satisfactory visual quality can be
synthesized from a single audio input. Experimental results
on sports audio/visual data verify that the effectiveness and
practicality of the proposed method over the state-of-the-art
approaches on audio-to-image synthesis.

Index Terms—audio-to-image generation, conditional genera-
tive adversarial network, cross-modal generation

I. INTRODUCTION

In daily life, people can imagine pictures or things based
on external stimuli, such as text descriptions and sounds. With
the rapid development of machine learning, computer vision,
and natural language processing, many researchers have been
trying to equip machines with the ability of imagination.
For instance, the recent research on text-to-image [1] or the
more challenging problem, audio-to-image generation. This
also drives research progress in many research areas, such as
cross-modality and multi-modal learning. In this paper, we
demonstrate that the machine can recall multiple correspond-
ing pictures after hearing a sound.

The recent advances in Generative Adversarial Networks
(GAN) [2] also motivates the developments of recent audio-
to-image generation models. Rather than solely depending on
a noise vector as the input, the generators are designed to
be conditioned on audio segments, which is the main idea of
conditional GANs (cGANs) [3]. However, even though some
techniques have been adopted to generate realistic images,
such as projection discriminator [4] and recurrent adversarial
network [5], this task remains challenging for synthesizing the
precisely corresponding images. To address similar problems
of text-to-image synthesis, many methods [6], [7], [8], [9] have
been proposed to generate text-relevant images by applying the
discriminator to distinguish between the ground truth image
and corresponding text pair and the generated image and
corresponding text pair. In order to solve text-to-image-to-text
problems with better semantics-preserving ability, Qiao et al.
proposed MirrorGAN [1] to improve the generated images by
redescription.

Inspired by the above methods, we aim to develop a deep
learning model for audio-to-image synthesis. More specifi-

cally, our model is able to produce diverse image outputs
with consistent audio and visual semantic information can be
produced, by observing the input audio data. We redesign
the conditional discriminators and the regenerate of audio
segments in our proposed framework, which enforces the
output visual and audio content features, respectively. In our
experiments, we consider real-world sports videos and apply
three evaluation metrics: inception score [13], R-precision,
and classification score for quantitative evaluation. We also
conduct cross-modal synthesis and the multi-modal visual-
ization for qualitative evaluation. Both evaluations support
the effectiveness of our model in realizing diverse audio-to-
image generation while performing favorably against recent
approaches.

We highlight the contributions of our works below:
• We are among the first to address audio-to-image gener-

ation with diverse outputs with satisfactory quality.
• Our proposed generative model is realized by a condition

discriminator and observing feature consistency, preserv-
ing both semantic (categorical) information and content
authenticity.

• Experiments on sports video data confirm the effective-
ness of our approach in generating diverse image outputs
when conditioned on audio inputs.

II. PROPOSED METHOD

A. Notations and Problem Definition
To begin with, we define the notations used in this paper.

We assume that a set of N audio segment and image pairs
{(Sm

i , Imi )}Ni=1 are collected from M categories, where Ii
represents the corresponding image of the audio segment Si,
and {m}Mm=1 indicates the category that the set belongs to.
As depicted in Fig. 1, we apply SoundNet [14] to extract
the acoustic features for the audio segments ami ∈ Rd (d
denotes the dimension of feature). Coupled with a noise
vector z, the generator G64 first extracts the low-dimensional
latent representation h ∈ Re (e indicates the dimension after
extraction) and recovers the image:

(Ĩmi )64 = G64(a
m
i , z), (1)

where (Ĩmi )64 ∈ R64×64×3. To leverage the images with better
quality, the generator G128 further refines the image by:

(Ĩmi )128 = G128(a
m
i , h). (2)

We see that (Ĩmi )128 ∈ R128×128×3 is conditioned on the
acoustic feature ami and h, which is the visual feature extracted
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(a) (b)
Fig. 1. Overview of our proposed model. (a) The generators (G64 and G128) take the audio input for producing image outputs I at different scales, whose
semantic information and authenticity are enforced by conditional discriminators (D64 and D128). We have pretrained SoundNet and image-to-audio (I2A)
models in our framework; the former is to extract the audio feature a, while the latter is to preserve the resulting audio content consistency. (b) Design of
the conditional discriminator D, in which K assesses the authenticity of the input images (conditioned on the audio features), while P serves as an auxiliary
classifier verifying the categorical label m. Note that n denotes a category label different from m.

by G64. The synthesized images, (Ĩmi )64 and (Ĩmi )128, are
fed to the introduced conditional discriminator D64 and D128,
respectively. The design and properties of such discriminators
will be explained in Sec. II-C.

B. Conditional Image Generation with Audio Consistency

Previously, [15], [16] exploited audio spectrograms to ad-
dress audio-to-image synthesis, while recent cross-modality
tasks such as text-to-image generation associated text features
with the corresponding images [17], [18], [19], [1]. It is
reported in [4] that, among sound feature representations,
including Spectrogram, Fbank, mel-frequency cepstral coeffi-
cients (MFCCs), and SoundNet feature embedding, SoundNet
features are preferable when it comes to image generation.
Therefore, our acoustic features a are encoded by a pretrained
SoundNet, which will be fed into our generator G64 as
inputs. Moreover, in order to realize diverse image outputs,
we have random noise z fed into G64 as well. To further
refine the generated image output, we have G64 take (Ĩmi )64
and the visual latent representation h by G64 as the inputs to
the second generator G128. Furthermore, we design a unique
architecture in the conditional discriminator D as depicted
in Fig. 1 to make the generated images more semantically
consistent.

The objective function of each generator LGj
(j denotes the

image dimension) is:

LGj
= −E[Kj((Ĩ

m)j , a
m, an)

−logPj(m|(Ĩm)j)],
(3)

where m and n denote the category labels. Note that (K,P )
are the network modules in our discriminator D, where K
assesses the authenticity of the input image Ĩm with the
corresponding audio feature am, while P serves as an auxiliary
classifier verifying the categorical label of the input image.

To further strengthen the relation between sound features
and the corresponding synthesized images (Ĩm)128, we pro-

pose to observe audio consistency between the acoustic feature
ã extracted from (Ĩm)128 and the input a. More specifically, as
shown in Fig. 1, we apply a I2A model [20] pretrained on the
training pairs (ami , Imi ) which extracts the reconstructed acous-
tic feature ãmi ∈ Rd from the high-quality image (Ĩmi )128.
With the above design, the acoustic feature based consistency
loss is denoted as:

Lcon = L2(a, ã), (4)

which calculates the L2 distances between the audio feature
of the input signal and that encoded by the generated image.
Thus, the objective function of the generator is the summation
of the above generator and audio consistency losses.

C. Conditional Discriminator with Auxiliary Classifier for
Semantics Consistency

As depicted in Fig. 1, we have a conditional discriminator
in our framework, which serves as a multi-task learning model
for solving different tasks. Here, we design two different
modules (K,P ) in the discriminator D. First, K manages
to distinguish the generated images from the real ones for
preserving image quality. In detail, other than general loss
function defined in GAN [2], we have different combinations
of audio-image pairs to enforce the audio-image consistency.
Specifically, only the pairs (am, In)|m=n is regarded as true,
the other pairs such as (am, In)|m 6=n and (am, Ĩm) are re-
garded as false. Second, similar to AC-GAN [10], we apply
an auxiliary classifier P to recognize the associated image
categories, which recognizes the categorical label m of the
generated image outputs. We note that, we have discriminators
introduced at the outputs of both G64 and G128, with the
only difference as the number of down-sampling blocks due to
distinct image sizes. Thus, the loss function can be presented
as LDj

where j denotes the single dimension of the generated
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TABLE I
QUANTITATIVE EVALUATION IN TERMS OF INCEPTION SCORE AND

CLASSIFICATION ACCURACY.

inception score classification
accuracy(%)

Ground Truth 4.79± 0.52 96
VAE 1.06± 0.01 50

Wan et al. [4] 2.25± 0.22 78

Ours 3.37± 0.17 86

images:

LDj
= E[max(0, 1−Kj((I

m)j , a
m, an))]

+E[max(0, 1 +Kj((Ĩ
m)j , a

m, an))]

−E[logPj(m|(Im)j)].

(5)

With loss functions for both generator and discriminator
components defined, we apply standard techniques including
hinge loss [12] and spectral normalization [11] to train our
proposed model.

III. EXPERIMENTS

A. Dataset

The dataset that we apply for evaluation is collected by [4],
which consists of 9 categories with 10, 701 sound-image pairs
for training and 248 audio segments for testing. We choose
two categories, baseball and soccer, to evaluate our proposed
model. We note that, the original data in this dataset are with
noisy labels (which were originally classified by SoundNet),
we remove the data with incorrect labels before training and
testing. After data cleaning and randomly splitting them into
train/test sets, our dataset contains 2, 065 sound-image training
pairs, and 218 audio segments for testing.

B. Quantitative Results

For comparisons, we first train a VAE model for audio-to-
image generation tasks as our baseline. Then, we reproduce
the state-of-the-art method [4] with the same settings. We
apply the inception score [13] to measure the objectiveness
and diversity of the synthesis images. Moreover, we train a
classifier on ground truth images for classification accuracy
evaluation. The inception score and classification accuracy are
shown in Table I. Our proposed model achieved the highest
performance in both evaluation metrics. Compared with the
previous work [4], we improved the inception score from
2.25 to 3.37 and outperformed by 8% in the classification
accuracy. In other words, our model can generate images
with better quality and diversity, and at the same time, the
generated images can also be more correlated with the input
audio segments.

To further evaluate the visual-sound similarity between the
generated images and their corresponding audio segments, we
consider the metric of R-precision which has been widely
used for retrieval evaluation and calculate the top-k ranked
retrieval results. For each audio segment, we first form an
image pool with its generated image and 99 randomly selected

TABLE II
RETRIEVAL PERFORMANCE EVALUATION IN TERMS OF R-PRECISION (%).

top-k k = 1 k = 5 k = 10

VAE 3.2 9.2 16.5
Wan et al. [4] 5.5 17.4 28.4

Ours 6.0 18.3 34.9

mismatched generated images. Then, we compute the cosine
similarities between the acoustic feature and the image features
in the pool. Lastly, candidates are ranked in descending
similarity and we found the top-k (k = 1, 5, 10) relevant results
for calculating the R-precision. From Table II, it is clear that
our model obtained the highest score in each ranked k, when
performing favorably against both VAE and [4].

C. Qualitative Results with Diverse Image Outputs

We now qualitatively examine the images generated by our
proposed model. Subsequently, We present samples generated
by VAE, Wan et al., and our proposed model conditioned on
testing audio segments in Fig. 2. For each row, the first two
images belong to the soccer category, while the remaining
two images belong to the baseball category. The athletes can
be apparently seen in the images generated by our proposed
model, and the scenes are highly associated with its audio
categories.

In addition, we investigate whether the generated images
are correlated with the input audio segments, and also eval-
uate the multi-modal visualization. We selected three audio
segments from the testing data, one of which belongs to soccer
category, others belong to the baseball one. Specifically, the
two baseball audio segments are different. One of them is a
broadcast of a baseball game, while the other is a segment
in which players are playing baseball. The results are shown
in Fig. 3. In each row, the first image denotes the ground
truth, while the remaining images demonstrate the multi-modal
results using the same audio segments. Evidently, our model
can generate multi-modal samples, conditioning on the same
audio segments. Specifically, the audio category and sound
information are precisely related to the generated images. For
instance, in the second and third rows, although the categories
of input audio segments are both baseball, our results show
that the former is a broadcast view, while the latter is a
play view which is consistent with the ground truth images.
The audio segments used for testing here can be found in
https://peitseyang.github.io/audio-to-image/.

The above quantitative and qualitative results successfully
verify the effectiveness of our proposed model, which is able to
produce cross-modality and multi-modal image results based
on the audio input.

IV. CONCLUSION

We propose a unique generative model for diverse audio-
to-image generation. Conditioned on the audio input, our
model is able to produce the corresponding image outputs with
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(a) Soccer Samples (b) Baseball Samples
Fig. 2. Example audio-to-image generation results and comparisons between VAE, Wan et al. [4], and our proposed model. Note that for each column, the
outputs are produced by the same audio input.

Fig. 3. Example multi-modal image outputs produced by our model. Note that
each row is conditioned on a single audio input, while more than one possible
image output with proper visual content can be generated by our model.

both audio and semantics consistency. The former is achieved
by observing the audio feature consistency, while the latter
is realized by the conditional discriminator, which not only
preserves the output image quality but also simultaneously
ensures the visual content to match the associated semantic
label. The integration of the generative model with a coarse-
to-fine architecture allows us to output diverse images with
satisfactory quality. From the experiments on real-world sports
audio-video data, we confirm that our model quantitatively and
qualitatively performs favorably against baseline and recent
methods on this challenging task.
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