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Abstract—This paper proposes a high-precision fast approx-
imation method for the `2-norm evaluation of 2-tuple arrays
by means of a rotated `1-norm evaluation with fixed-point
arithmetic. A considerable number of calculations for 2-tuple
`2-norm are frequently required in several signal processing
applications such as image restoration with isotropic total vari-
ation and complex `1-norm regularization. Typical embedded
applications prefer parallel processing, constant scaling, and
fixed-point arithmetic compared with serial processing, vari-
able multiplication, and floating-point arithmetic. To achieve a
hardware-friendly calculation, square and square root operations
should be adequately approximated. However, several existing
techniques are challenged with respect to approximations with all
three preferable features. Thus, in this paper, a hardware-friendly
approximation algorithm is proposed. The proposed method uses
the fact that the upper bound of the surface of a first-order
rotational cone traces a second-order cone, i.e., `2-cone, requests
less variable multiplication, and can easily be implemented in
parallel with fixed-point arithmetic. To verify the effectiveness
of the proposed method, an image restoration performance and
software/hardware co-design report are evaluated.

Index Terms—Sparse modeling, Fixed-point arithmetic, Soft-
thresholding, Programmable SoC, Embedded vision

I. INTRODUCTION

Internet of Things (IoT) is attracting attention to facilitate
the development of information societies [1]. IoT conveys
a concept of Internet usage where a lot of things (devices)
are connected through the Internet, and physical data are
collected via servers. Examples of IoT applications include
smart homes, structural health monitoring, economic agri-
culture, assisted living, and safety vehicles [1]. Since the
network should be capable of handling heavy traffic and the
servers should manage a considerable amount of versatile data
within a limited response time, it is necessary to reduce the
communication and computational load throughout the system.
One way to solve these challenges are to introduce edge
computing technologies [2], [3].

Edge computing is a form of distributed processing that
assigns tasks not only to servers but also to edge devices,
i.e., sensing terminals or computers near sensors. In gen-
eral, such edge devices are expected to be small as well
as lightweight and to consume low power for long-term
sustainable ubiquitous sensing. Therefore, tasks on edge de-
vices place a priority on speed and power consumption over
quality. Embedded implementation of processing in hardware
(HW) is a typical approach to satisfy the highlighted need.
Specific IoT applications adopt imaging devices as sensors

to exploit visual information. For example, driver assistance
technologies use optical cameras and radars to detect objects
[4], [5]. Many visual IoT applications, however, work under
severe conditions such as vibration, inclement weather, and
darkness, among others. Thus, the acquired images are prone
to be contaminated. Edge devices are required to restore such
images in real-time while satisfying the conditions of low-
power consumption. When implementing such algorithms on
HW, reducing the usage of circuit resources is required.

Recent advances in image restoration employ the effective-
ness of sparsity. The total variation (TV) and `1-norm are
typical examples of sparsity-promoting regularizers to solve
image restoration problems [6]–[11]. Certain solvers for such
problems are implemented in an HW-friendly manner with
simple arithmetics such as the iterative shrinkage- thresholding
algorithm (ISTA). However, certain cases request operations
that consume circuit resources, e.g., variable multiplications
and non-linear operations. For example, image restoration
by means of isotropic TV regularization and the `1-norm
regularization for complex-valued data demand the 2-tuple `2-
norm evaluation. The `2-norm evaluation requires square root
and square operations. These slightly expensive operations
result in costs that cannot be ignored, particularly in cases
where large amounts of data are involved. Parallel processing,
constant scaling, and fixed-point arithmetic are preferable for
HW to serial processing, variable multiplication, and floating-
point arithmetic [12]. One approach to tackle the square
root is to use the CORDIC (COordinate Rotation DIgital
Computer) [13], [14]. However, the calculations for squares
inside the square root remain. Piecewise linear approximation
also suffers from the same problem.

In this work, we focus on the approximation of the `2-
norm for 2-tuple arrays, because it appears in solvers used
in certain important problem settings such as isotropic TV
regularized image restoration and complex `1-norm regular-
ization. We propose an algorithm for approximating the 2-
tuple `2-norm evaluation. The proposed algorithm reduces the
`2-norm evaluation to simple calculations such as constant
scaling by using the fact that the upper bound of a rotated
first-order, or `1-cone traces a second-order, or `2-cone [15].
We assess the performance of the proposed method through an
image restoration simulation and software/hardware co-design
reports.
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Fig. 1. Typical sparsity-aware image restoration models, where (a) is an
analysis dictionary model and (b) is a synthesis dictionary model.

II. REVIEW OF IMAGE RESTORATION

Let us review the problem settings relating to image restora-
tion that use the `2-norm evaluation of 2-tuple elements.
For context setting, we briefly describe the isotropic TV
regularization and the complex `1-norm regularization. In this
paper, by the term “2-tuple array,” we imply an array of 2-
tuple elements. Note that we refer to an element in R2 and C
as a 2-tuple element in common.

A. Isotropic TV regularization

Fig. 1 (a) shows a sparsity-aware image restoration model
with an analysis dictionary ∆ ∈ Rn×m. A problem concerning
isotropic TV regularization is categorized in the model in
Fig. 1 (a), where u ∈ Rm is an unknown original image and
d ∈ Rn is a vector consisting of the first-order differences of
u analyzed through ∆ in the vertical and horizontal directions,
v ∈ Rq is an observation of u and assumed to be measured
through the process P ∈ Rq×m with additive white Gaussian
noise (AWGN) w ∈ Rq . Their relation can be formulated as

d = ∆u (1)
v = Pu + w. (2)

An image restoration problem based on the isotropic TV
regularization is formulated as

û = arg min
u∈[umin,umax]n

1

2
‖Pu− v‖22 + λ‖∆u‖1,2, (3)

where ‖ · ‖2 and ‖ · ‖1,2 denote the `2-norm and mixed `1-
`2-norm, respectively, umin, and umax are the minimum and

maximum values of u, and λ is a regularization parameter [6].
Note that ‖∆u‖1,2 is refered to as the isotropic TV of u.

We can adopt the primal-dual splitting (PDS) algorithm to
solve the problem in (3) [16], [17]. In the PDS solver, the
generalized soft-thresholding expressed by[

prox 1
τ ‖·‖1,2

(x)
]
i

= [x]i �max (1− τ1� ‖[x]i‖2 ,0) (4)

is used as the proximity operator of ‖ · ‖1,2, where [·]i
denotes the i-th tuple consisting of the vertical and horizontal
differences at the i-th position, τ > 0 denotes the thresh-
old value, � and � denote element-wise multiplication and
division, respectively, max(·, ·) denotes a vector consisting
of greater elements between the first and second argument
elementwisely, 0 and 1 denote the vectors of zeros and
ones, respectively. (4) performs the soft-thresholding for every
element in the i-th tuple. In the isotropic TV case, each tuple
has two elements and consists of differences between adjacent
pixels in the vertical and horizontal directions.

B. Complex `1-norm regularization

Fig. 1 (b) shows a sparsity-aware image restoration model
with a synthesis dictionary D ∈ Km×n, where K is a field
such as R and C. The observation image v ∈ Kq is assumed
to be

v = Pu + w, (5)

where P ∈ Kq×m is the observation process, w ∈ Kq is
additive white Gaussian noise, and u ∈ Km is an unknown
original image represented by

u = Ds. (6)

The least absolute shrinkage and selection operator (Lasso)
problem is categorized in the model in Fig. 1 (b) [10], and the
problem setting is formulated as

ŝ = arg min
s∈Kn

1

2
‖PDs− v‖22 + λ‖s‖1, (7)

where ‖ · ‖1 denotes the `1-norm. To solve (7), we can adopt
ISTA.

In this study, we are interested in the complex-valued
case when u ∈ Cm. In complex ISTA, the complex soft-
thresholding expressed by[

prox 1
τ ‖·‖1

(x)
]
i

= xi ·max (1− τ/ |xi| , 0) (8)

is used as the proximity operator of ‖ · ‖1, where [·]i denotes
the i-th element of its argument and xi = [x]i ∈ C [18].

C. Problems for embedded implementation

In the generalized soft-thresholding in (4), it is necessary to
calculate the `2-norm of the 2-tuple element, i.e.,

‖[x]i‖2 =
√
x2
i,1 + x2

i,2. (9)

It is also necessary to take the absolute of complex element
in the complex soft-thresholding in (8), i.e.,

|xi| =
√
<2(xi) + =2(xi). (10)
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The calculations of two formulas are the same in that both
of them take the square root of the sum of the squares of
two components. Note that all tuples should be evaluated
in every iteration of the restoration algorithms. The `2-norm
is essentially important to gurantees the phase invariance in
the complex plane and the rotation invariance in the 2-D
Euclidean space, where the approximation by the `1-norm
severly violates those characteristics.

In the embedded implementation, it is desirable to use fixed-
point arithmetic from the viewpoint of circuit resources and
calculation speed. As well, constant scaling is preferable to
variable multiplication to reduce circuit resource usage through
sophisticated approaches such as canonical signed digit (CSD)
representation, reduced adder graph (RAG), and distributed
arithmetic (DA) [12]. For the square root function, the calcula-
tion can be approximately realized by several existing methods
such as CORDIC and piecewise linear approximation(PLA).
However, such techniques do not allow us to avoid variable
multiplications within the square root function.

III. PROPOSED 2-TUPLE `2-NORM APPROXIMATION

In this section, we propose an approximation method for
the 2-tuple `2-norm evaluation with fixed-point arithmetic to
solve the problems discussed in the previous section.

A. Second-order cone via rotational first-order cone

Let us first express a key idea of our proposed approxima-
tion. We identically represent (9) and (10) in a form without
the square root and square operations. We express the real and
imaginary part of a complex value xi as xi,1 = <(xi) and
xi,2 = =(xi), respectively. As a result, the right-hand sides
of the two equations became equal. Thus, in the following
section, we discuss the two cases in common.

Our proposed method has the basis of the following theo-
rem:

Theorem 1 (Second-order cone via first-order rotational cone).
Let a rotated first-order cone function aθ : R2 → R be

aθ([x]i) :=
1√
2

(
|xi,1 cos θ+xi,2 sin θ|+|xi,1 sin θ−xi,2 cos θ|

)
,

(11)
where [x]i = (xi,1, xi,2)ᵀ ∈ R2. Then, aθ(·) relates to the
`2-norm of 2-tuple element [x]i as

‖[x]i‖2 = sup
θ∈[0,π2 )

aθ([x]i). (12)

Proof: Let ∠[x]i = tan−1 xi,2
xi,1

. Then, we see aθ([x]i) =
‖[x]i‖2√

2
(| cos(∠[x]i − θ)|+ | sin(∠[x]i − θ)|). When θ =

∠[x]i − π
4 , we have the relation

a∠[x]i−π4 (x) =
‖[x]i‖2√

2

(∣∣∣cos
π

4

∣∣∣+
∣∣∣sin π

4

∣∣∣) = ‖[x]i‖2. (13)

Besides, we can equate the derivative to zero as

∂aθ
∂θ

=
‖[x]i‖2√

2
(− sin(∠[x]i − θ) + cos(∠[x]i − θ)) = 0.

(14)

(a) (b)

(c)

Fig. 2. Soft-thresholding factor of the generalized soft-thresholding
with τ = 0.5, where (a) max(1 − τ/‖(x1, x2)ᵀ‖2, 0), (b) max(1 −
τ/AN ((x1, x2)ᵀ), 0) with N = 2, and (c) approximation error.

As a result, we see that θ = ∠[x]i − π
4 gives the maximum

value for 0 ≤ ∠[x]i−θ < π
2 , which means that (12) holds from

the fact that aθ(·) = aθ+π
2 k

(·) always holds for any k ∈ Z.

B. Approximation of 2-tuple `2-norm evaluation

Let us derive an approximation method for the `2-norm
evaluation of 2-tuple elements. From Theorem 1, we see that
(12) can be approximated by discretizing the angle θ. From
this consideration, we propose to approximate (4) as follows:[

prox 1
τ ‖·‖1,2

(x)
]
i
≈ [x]i �max (1− τ1�AN ([x]i),0) ,

(15)

where

AN ([x]i) := max
θ∈Θ

aθ([x]i),

Θ = {θ0, θ1, . . . , θN−1}, θk =
π

2N
k. (16)

Algorithm 1 shows the procedure to realize (15). Fig. 2 (a)
and (b) confirm the soft-thresholding factor of the generalized
soft-thresholding in (4) and that given by the proposed approx-
imation in (15) with N = 2, respectively, where τ = 0.5. The
approximation error results in Fig. 2 (c), where it is observed
that there is no approximation error in the direction where
θ = 0 and π/4, as indicated by the proof of Theorem 1.
The maximum error in the range shown in Fig. 2 (c) is
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Algorithm 1 Approximated 2-tuple generalized soft-thresholding

Input: (x1, x2)ᵀ ∈ R2, τ > 0, N ∈ N
Output: (y1, y2)ᵀ ∈ R2

for each k ∈ {0, 1, 2, · · · , N − 1} do
ck, sk ← 1√

2
cos π

2N k,
1√
2

sin π
2N k

ak ← |ckx1 + skx2|+ |skx1 − ckx2|
end for each
a← max(a0, a1, a2, . . . , aN−1, τ)
y1, y2 ← x1

(
1− τ

a

)
, x2

(
1− τ

a

)
TABLE I

COMPARISON OF EXISTING AND PROPOSED METHODS.

Method CORDIC PLA Proposal
Fixed-point arithmetic Feasible Feasible Feasible

Parallel processing Difficult Feasible Feasible
Constant scaling Impossible Impossible Feasible

approximately 0.0412. One can verify that the error decreases
as N increases.

Note that it is possible to calculate {ck}k and {sk}k in Al-
gorithm 1 in advance and store them as fixed-point constants.
Finally, we obtain a simple approximation procedure for the
2-tuple `2-norm evaluation with fixed-point constant scaling.

A comparison of the existing and proposed methods is
shown in Table I. In contrast to CORDIC and PLA, the
proposed method is feasible, in terms all of the fixed-point
arithmetic, parallel processing and constant scaling.

IV. PERFORMANCE EVALUATION

To evaluate the performance of the proposed method, we
first demonstrate the simulation results of image restoration
with floating-point arithmetic. Then, we evaluate the precision
and resource usage of the fixed-point HW implementation
and compare the proposed method to other approximation
methods.

A. Evaluation method

We evaluate the validity of the proposed method through
the applications to image restoration. We used monochrome
image to evaluate the TV, and millimeter wave range spectrum
to evaluate the complex `1-norm regularization.

The range spectrum sb is generated by

sb(x, y, xu) =
∑
k

σkwk(x, y, xu)Tp exp

(
j

4πfc
c

rk(xu)

)
·

sinc

(
2πB

c
(r(x, y, xu)− rk(xu))

)
,

(17)

wk(x, y, xu) =


1

∣∣∣tan−1 x−xu
y − θs

∣∣∣ ≤ δθ
2 ∩∣∣∣tan−1 xk−xu

y − θs
∣∣∣ ≤ δθ

2

0 otherwise

, (18)

where x and y and are positions in the along track (azimuth)
and range direction, respectively, and r(x, y, xu) is the range

TABLE II
SIMULATION CONDITIONS OF IMAGE RESTORATION MODELED BY THE

ISOTROPIC TV REGULARIZATION.

Image size 256× 256
Bit depth 8bpp

Scale [0, 1]
Standard deviation of AWGN σ =10/255

Pixel loss rate 50%
Regularization parameter λ 0.01

] of angles N = 2
] of CORDIC iterations 5
Piecewise linear Approx. [0, 2] with nodes set to every 0.3

TABLE III
SIMULATION CONDITIONS OF IMAGE RESTORATION MODELED BY THE

COMPLEX `1-NORM REGULARIZATION.

Image size 2000× 600
Center frequency fc = 76.5× 109

Band width B = 0.9× 109

Sweep time Tp = 0.5× 10−3

Squint angle θs = 45◦

Hone angle δθ = 20◦

Standard deviation of AWGN σ = 3.16× 10−6

Regularization parameter λ 4× 10−6

Synthesis dictionary D 2-Lv. Undecimated Haar Trans.
] of angles N = 2

] of CORDIC iterations 5
Piecewise linear Approx. [0, 2] with nodes set to every 0.3

distance between the antenna position and observation point
(x, y), sb is an image created by mapping a range data on the
beat-spectrum at rk(xu) := r(xk, yk, xu), the range from the
antenna to the k-th target [19], [20]. In 17, c is the speed of
light, σk is the reflection coefficient of the k-th target, fc is the
center frequency, B is the band width, Tp is the sweep time,
θs is the squint angle, and δθ is the hone angle. We perform
denoising before synthesizing a SAR image. A simulation is
conducted with a fixed antenna position xu.

The variation of Peak Signal-to-Noise Ratio (PSNR) of
the restored images is observed by changing the bit width
of the fractional part in fixed-point arithmetic. Furthermore,
we implement a part of the proposed method with HW and
evaluate the resource utilization by changing the bit width. Our
simulations are conducted using MATLAB R2019a, and HW
resources are estimated by the Xilinx SDSoC 2016.2 for the
ZC706 Evaluation Kit used as the target device. Tables II and
III summarize the simulated conditions for image restoration
modeled by the isotropic TV regularization and complex `1-
norm regularization, respectively.

B. Simulation of restoration performance

Let us show the restoration performance of the proposed
method with floating-point arithmetic. Figs. 3 and 4 show
the image restoration results by the isotropic TV regulariza-
tion and complex `1-norm regularization, respectively, where
PSNR for complex images is calculated by using one as the
peak value and the average of mean squared error (MSE)
values of the real and imaginary part as the total MSE.
In Fig. 3, (a) and (b) show the original and observation
image, respectively, (c) is a restored image with the original
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(a) (b)

(c) (d)

Fig. 3. Simulation results of image restoration by means of isotropic
TV regularization. (a) Original image, (b) Observation image (PSNR : 8.60
dB), (c) Restored image without approximation (PSNR : 26.46 dB), and (d)
Restored image with the proposed approximation (PSNR : 26.45 dB).

`2-norm evaluation, and (d) represents the image with the
proposed approximation. In Fig. 4, (a) shows the observation
image, (b) is a restored image with the original `2-norm
evaluation, and (c) represents the image with the proposed
approximation. The difference between Fig. 3 (c) and (d),
i.e., the approximation error, is approximately 0.01 dB with
respect to PSNR.

Let us also compare the restoration performance of the
proposed method to that of conventional approximations with
fixed-point arithmetic. Fig. 5 (a) and (b) show the variation
in PSNR for the isotropic TV regularization and complex `1-
norm regularization case, respectively, where the integer part
is fixed to 6 bits, and the number of bits in the fractional part
is changed.

1) Isotropic TV regularization case: From Fig. 5 (a), it is
observed that the PSNR increases as the width of the fractional
part increases and shows a significant rise around 6 bits. This
is because the fractional part of the regularization parameter
λ becomes valid when the number of bits is greater than 6,
and the generalized soft-thresholding works properly.

2) Complex `1-norm regularization case: Fig. 5 (b) com-
pares the influence of the width of the fractional part to the
PSNR of the complex `1-norm regularization case. The PSNR
rises once when the fractional part exceeds 7 bits. This is
because the fractional part of the regularization parameter
λ becomes valid for more than 7 bits, and the complex
soft-thresholding begins to work. PSNR, more than 24 dB,
requires the fraction to be of width more than 10 bits. Our
proposed approximation shows almost the same performance
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Fig. 4. Simulation results of image restoration by means of complex `1-norm
regularization. The observation images were generated by superimposition
of sb and AWGN. (a) Observation image, (b) Restored image without
approximation, and (c) Restored image with approximation.

as other conventional techniques for more than 10 bits in the
fractional part. Without significant performance loss, we can
set the fractional part to 10 bits, and our approximation can
be adopted with N = 2.

C. Evaluation of FPGA implementation

Let us evaluate the FPGA implementation and compare the
results among the approximation techniques under discussion.
The scope of the FPGA implementation is soft-thresholding.
Fig. 6 compares the resource utilization of the proposed
method to that of the others, where the integer and fractional
parts are fixed to 15 bits and 10 bits, respectively. Fig. 6
shows that the amount of resources utilized in the proposed
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(a) (b)

Fig. 5. Image restoration performance of CORDIC, piecewise linear
approximation (PLA) and the rotated `1-norm approximation (Proposed),
where the bit width of the fractional part is changed. (a) PSNR for the isotropic
TV regularization and (b) PSNR for the complex `1-norm regularization.

Fig. 6. Logic resource utilization of soft-thresholding with three approxima-
tion methods in FPGA, where the integer and fractional parts are fixed to 15
and 10 bits, respectively.The proposed method used the least amount of LUTs
and Registers compared to the existing method; the amount of BRAM used
was the same; the amount of DSP used was similar between the proposed
method and PLA.

method is the lower than or equal to that of the other
methods. This is because our proposed method requires fewer
variable multiplications than other methods. Table IV shows a
comparison of the execution speed on the FPGA. The proposed
method is faster than the existing methods as it takes less time
for a one-time calculation. Also, the increase in computation
time is small because the proposed method can be run in
parallel even when the number of N is increased.

V. CONCLUSIONS

In this paper, we proposed an `2-norm evaluation method
for 2-tuple arrays, which is suitable for fixed-point arithmetic.
We assessed the application by applying it to image restoration
and evaluated the HW resource utilization through the FPGA
design. The degradation of the proposed approximation is
verified to be insignificant with lower resource utilization than
other conventional techniques. In the future, we will apply the
proposed method to an embedded vision system, particularly
for millimeter-wave radar image processing.

TABLE IV
COMPARISON OF EXECUTION SPEED BETWEEN EXISTING AND PROPOSED

METHODS ON FPGA.

Method CORDIC PLA Proposal
(N = 2)

Proposal
(N = 4)

Latency [us] 22.770 23.770 22.010 22.210
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