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Abstract—The present study proposes a method for detecting
objects with a high recall rate for human-supported video
annotation. In recent years, automatic annotation techniques such
as object detection and tracking have become more powerful;
however, detection and tracking of occluded objects, small ob-
jects, and blurred objects are still difficult. In order to annotate
such objects, manual annotation is inevitably required. For
this reason, we envision a human-supported video annotation
framework in which over-detected objects (i.e., false positives) are
allowed to minimize oversight (i.e., false negatives) in automatic
annotation and then the over-detected objects are removed man-
ually. This study attempts to achieve human-in-the-loop object
detection with an emphasis on suppressing the oversight for the
former stage of processing in the aforementioned annotation
framework: bi-directional deep SORT is proposed to reliably
capture missed objects and annotation-free segment identification
(AFSID) is proposed to identify video frames in which manual
annotation is not required. These methods are reinforced each
other, yielding an increase in the detection rate while reducing the
burden of human intervention. Experimental comparisons using
a pedestrian video dataset demonstrated that bi-directional deep
SORT with AFSID was successful in capturing object candidates
with a higher recall rate over the existing deep SORT while
reducing the cost of manpower compared to manual annotation
at regular intervals.

I. INTRODUCTION

In recent years, many researchers have shown interest in

building video datasets for the development of object tracking

systems, an elemental technology for self-driving cars, video

surveillance systems and mobile robots [1], [2], [3], [4], [5],

[6]. In such datasets, the trajectories of all objects in the

video should be accurately and efficiently annotated. In this

case, manual annotations, such as human verification and

crowdsourcing, provide high accuracy, but are time-consuming

and expensive. In contrast, automatic annotations based on

object detection and tracking techniques, while efficient and

economical, are generally not sufficiently accurate.

Human-supported or semi-automatic video annotation,

which integrates these two approaches, is a good strategy

to make annotation more efficient and economical. Several

attempts have been made for reducing human intervention

while maintaining high accuracy. For example, VIPER-GT

and LabelMe [7], [8] manually annotated a small number

of video frames and used the results to automatically detect

the remaining objects. VATIC [9] exploited crowdsourcing on

Amazon Mechanical Turk (AMT) [10] for manual annotation,

and its extension [11] used active learning to select video

frames to be manually annotated [12], [13]. PathTrack [14]

also used crowdsourcing with active learning. Here, pre-

labeling using automatic object detection reduced the time for

manual annotation. These studies suggest that a combination

of automatic annotation may contribute to lower the human

annotation cost. It should be noted here that some objects,

such as occluded objects, small objects, and blurred objects,

are difficult to detect automatically, and such objects need to be

annotated manually. This argument, therefore, suggests that it

makes good sense to identify the areas that should be annotated

manually while automatically annotating those that are not.

To this end, the present study proposes an efficient human-

in-the-loop object detection method. We assume a human-

supported video annotation framework in which object regions

are detected without missing even if we allow for over-

detection, and then the over-detected regions are removed

manually. The proposed method corresponds to the previous

stage of processing in this annotation framework and em-

phasizes the reduction in missed objects. The key to the

success of minimizing the missed objects is accurate detection

of occluded or small objects. An attempt, therefore, is made

to estimate such object regions by tracking them from the

objects detected in the previous and subsequent frames. For

this purpose, the unidirectional object tracking technique, deep

SORT [15], is extended to enable bi-directional tracking:

backward tracking focuses on increasing the number of object

candidates, while forward tracking focuses on accuracy, aim-

ing to reduce misses without unduly increasing overdetection.

For those objects that are still difficult to detect, manual

annotation is inevitable. We, therefore, attempt to identify

frames that contain objects to be annotated manually using

a binary search. By designing both methods to reinforce

each other, the proposed method aims to reduce the cost

of human intervention while also reducing the number of

oversights. Experimental comparisons using a pedestrian video

dataset is carried out to demonstrate the effectiveness of the

proposed human-in-the-loop object detection method in terms

of the recall rate of detecting objects and the cost for manual

annotation.

The rest of the present paper is organized as follows. Section

II briefly explains an expected application, a human-supported

video annotation framework. Section III proposes the effi-
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Fig. 1. Assumed human-supported video annotation framework for moving objects: 1) proposed efficient human-in-the-loop object detection using bi-directional
deep SORT with annotation-free segment identification (AFSID); 2) manual combination of unduly divided tracks with same object; and 3) manual deletion
of incorrectly captured objects.

cient human-in-the-loop object detection method. Section IV

examines the performance of the developed object detection

systems. Section V provides some concluding remarks.

II. OBJECT DETECTION FOR HUMAN-SUPPORTED VIDEO

ANNOTATION FRAMEWORK

This section clarifies the focus of this study and the assumed

application. This study is intended to contribute to a human-

supported (or semi-automatic) video annotation framework,

which aims at effective integration of automatic and manual

annotation to give high efficiency and accuracy. Figure 1

illustrates the pipeline of the assumed human-supported video

annotation framework. It is composed of the following three

stages of processing:

• Stage 1: Proposed efficient human-in-the-loop object

detection using bi-directional deep SORT and annotation-

free segment identification (AFSID)

• Stage 2: Manual combination of unduly divided tracks

with the same object

• Stage 3: Manual deletion of incorrectly captured objects.

In this framework, it is important to avoid miss detection

even at a sacrifice of yielding a number of over-detected (or

false-positive) candidates in the first stage because manually

deleting redundant object candidates might be easier than

drawing bounding boxes to the missed objects. The present

study, therefore, focuses on the first stage of the framework

and aims at efficient object detection with a high recall rate.

Although the first-stage processing of the framework does not

check the identity of objects in the track, nor does it delete

the false positive of object candidates, these processes can be

performed by human verification in the subsequent two stages.

III. HUMAN-IN-THE-LOOP OBJECT DETECTION

This section presents the proposed efficient and high recall

object detection method designed as a human-in-the-loop

architecture: bi-directional deep SORT is introduced with the

aim of minimizing miss detection without unduly increasing

overdetection, while identifying annotation-free segments, in

which manual annotation is not required, to improve the effi-

ciency in the annotation. The following subsections describe

the details of the proposed method: Section III-A briefly

explains deep SORT [15] that is the basis of this study,

Section III-B describes an overview of the proposed object

detection architecture, Section III-C describes the algorithm

of AFSID, and Section III-D describes the algorithm of object

tracking in bi-directional deep SORT.

A. Deep SORT and Its Drawbacks

This section provides an overview of deep SORT, which

is the basis of this study, and discuss its shortcomings. Deep

SORT exploits Kalman filter with deep appearance descriptors

for reliable tracking of a sequence of object candidates. Here,

a track begins with an object candidate region, which is the

output of the object detector. Kalman filtering estimates the

candidate regions in the following frames with the aim of

capturing the missing objects, which are difficult to capture,

such as highly occluded, small, or blurred objects. Deep SORT

has shown to be robust against a long period of occlusions and
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Fig. 2. Schematic diagram of proposed human-in-the-loop object detection. Bi-directional deep SORT employs (uni-directional) deep SORT [15] in not only
forward but also backward directions on time axis to increase the recall rate of detecting objects. Annotation-free segment identification (AFSID) estimates
time segments (i.e., consecutive frames) that do not require costly manual annotation. Human verification is performed for time intervals estimated by AFSID
to require manual annotation.

effectively reduce the number of identity switches. The asso-

ciation measure and algorithm for object tracking is described

in detail in Section III-D.

Note that the purpose of this study is to achieve object

detection that avoids missed objects as much as possible.

Estimation of object candidate regions by Kalman filtering

helps to reduce such missed objects because it captures

objects that are difficult to detect. Unidirectional tracking,

however, has its limitations. Suppose an object that is occluded

temporarily but long enough. If the object is tracked only

in the forward direction, subsequent tracking may fail, and

detecting the object just before it is no longer obstructed

is unlikely. The object in such a situation, however, can be

captured by tracking it from behind. Such tracking in both

forward and backward directions, therefore, can contribute to

a reduction in the missed objects. This argument suggests

the effectiveness of our proposal, bi-directional deep SORT.

Some object candidates, however, are still difficult to detect

automatically with deep SORT. In order to treat such objects,

human-powered annotation is inevitable. Further reduction in

the missed objects can be expected by utilizing manually

annotated object regions with deep SORT. For the efficient

implementation of the aforementioned framework, a human-

in-the-loop architecture is proposed.

B. Proposed Object Detection

1) Overview: Figure 2 illustrates the schematic diagram of

the human-in-the-loop object detection architecture proposed

to yield the high recall rate and less missed objects. Algo-

rithm 1 lists its algorithm in detail. This algorithm mainly

consists of three processing components as follows:

• Backward deep SORT: Objects are tracked using deep

SORT in the backward direction. Here, the manually-

annotated object regions as well as the outputs of the

mask RCNN [16] are used as start points for tracking.

Not only those regions, but also the regions estimated by

backward tracking are used as starting points for tracking.

• Forward deep SORT: Objects are tracked using deep

SORT in the forward direction. Not only the manually-

annotated regions and outputs of the mask RCNN, but

also the object candidate regions obtained during back-

ward deep SORT are used as starting points for tracking.

Unlike backward deep SORT, the regions estimated in a

forward tracking are not used as the starting points.

• Annotation-free segment identification (AFSID):

Annotation-free segments, i.e., consecutive frames in

which manual annotation is not required, are identified

by computing an intersection over unions (IoU) between

the object candidate and the ground truth.

The purpose of bi-directional deep SORT is to reduce

misses without unduly increasing overdetection. To that end,

backward tracking focuses on increasing the number of object

candidates in order to reduce missed objects. Subsequent

forward tracking takes into account the accuracy of tracking.

Therefore, the estimated results from tracking, which are

sometimes unreliable, will be used as starting points during

backward tracking, but not during a forward tracking. For the

purpose of avoiding miss detection as much as possible, man-

ual annotation is inevitable. Nevertheless, human intervention

is costly and should be kept to a minimum. Annotation-free
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Algorithm 1 Proposed Object Detection

Input: Object candidate regions D, manually-annotated object

regions A, annotation-free segment indices F = φ, initial

value of time interval for manual annotation N = 32, ter-

minated value of time interval E

1: Give manual annotations to A every N frames

2: while N > E do

3: Update D by backward deep SORT (Alg. 3)

4: Update D by forward deep SORT (Alg. 3)

5: Halve time interval N
6: Update F and A by AFSID (Alg. 2)

7: return

Algorithm 2 AFSID

Input: Object candidate regions D, manually-annotated object

regions A, annotation-free segment indices F , time interval for

manual annotation N

1: t← StartFrame
2: while t ≤ LastFrame do

3: if t /∈ F then

4: A ← A + manual annotation at frame t
5: Compute recall R(t) using D(t) and A(t)
6: F ← F +AFF(F , t, N,R(t))

7: t← t+N

8: return F , A

segment identification is introduced for this purpose.

2) Algorithm: The algorithm of the proposed object de-

tection is shown in Alg. 1. A binary search [17] is used to

efficiently determine the annotation-free segments by halving

the time intervals for manual annotation. The iteration begins

at a time interval of N and stops when the time interval reaches

E. The initial value for N is empirically determined to be 32.

First, object regions are manually annotated every 32

frames. Such manually-obtained object regions as well as the

object candidates detected by the mask RCNN are used as

starting points for backward tracking (line 3 in Alg. 1). Using

the object regions obtained in this step, forward tracking is

then performed to predict further object candidates (line 4 in

Alg. 1).

Here, time interval N is halved in a binary search manner

i.e., annotations are manually given every 16 frames (line 5 in

Alg. 1). After that, annotation-free segments are identified to

reduce the cost for manual annotation, and then the annotation-

free segment indices F and manually-annotated objects A
are updated (line 7 in Alg. 1). The segments with F are

unnecessary to manually annotate from the next iteration.

C. Annotation-Free Segment Identification (AFSID)

This section describes the details of annotation-free segment

identification (AFSID). In a certain video frame, if the object

regions annotated by humans match the object candidate

regions detected automatically, it implies that the objects in

such a frame are easy to detect and such a frame does not

Algorithm 3 Forward or backward deep SORT

Input: Object candidate regions D, Manually-annotated object

regions A

1: for t ∈ {StartFrame, ...,LastFrame} do

2: if A(t) is not empty then D(t) = A(t)

3: Compute association cost matrix C = [ci,j ] using Eq. 8

4: Compute association gate matrix B = [bi,j ] using Eq. 9

5: Initialize set of matches M← φ
6: Initialize set of unmatched detections U ← D(t)
7: for n ∈ {1, ...,Amax} do

8: Select tracks by age Tn ← {i ∈ T |ai = n}
9: [xi,j ]← min cost matching(C, Tn,U)

10: M←M∪ {(i, j) | bi,j · xi,j > 0}
11: U ← U \ {j ∪

∑

i{bi,j · xi,j > 0}

12: end for

13: M,U ← IoUMatching(M,U , T )
14: if A(t) is not empty then T ← T \ {j | j(update) >

0}
15: else T ← T \ {j | j(update) > Amax}

16: T ←UpdateState(T ,M)
17: if Backward deep SORT and A(t) is empty then

18: D(t) ← D(t) ∪ {j | j ∈
Anestimated region by backward tracking}

19: if Forward deep SORT then

20: U ← U \ {j | j ∈
Anestimated region by forward tracking}

21: Initialize U as Track

22: end for

need to be manually annotated thereafter. In addition, if a pair

of such annotation-free frames has the small time interval N ,

the objects in all frames between that frame pair t−N and t are

also considered easy to detect and those frames t−N, · · · , t
are determined to be the annotation-free segment. The results

of preliminary experiments showed that this assumption is

considered to be satisfied if N is less than or equal to 32. This

is the reason why the time interval for manual annotation N
begins with 32 frames and then repeatedly decreases by half.

1) Decision function: The frames that do not require man-

ual annotation can be identified on the basis of the recall rate

R(t) of the object candidate regions {d
(j)
t } ∈ D(t) detected

using bi-directional deep SORT for the correct object regions

{a
(i)
t } ∈ A(t), which are given manually. The recall rate is

written as:

R(t) =

∑

i 1l[maxj IoU(d
(j)
t , a

(i)
t ) ≥ Th(1)]

#A(t)
, (1)

where #A(t) denotes the number of correct object regions

at time t, IoU(d
(j)
t , a

(i)
t ) denotes the IoU between the object

candidate region d
(j)
t and the correct region a

(i)
t to give

IoU(d
(j)
t , a

(i)
t ) =

|d
(j)
t ∩ a

(i)
t |

|d
(j)
t ∪ a

(i)
t |

, (2)
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and Th(1) denotes the IoU threshold, which is empirically

determined to be 90%. Using the result in Eq. (1), annotation-

free frames (AFFs) are given as:

AFF(F , t, N,R(t)) =










[t−N, t], (R(t)=100% & t−N ∈F)

t, (R(t)=100%)

None, (otherwise).

(3)

If the recall at frame t is 100%, the frame t is added to the

annotation-free segment indices F . In addition to that, if the

previous frame t−N has already been included in F , the

previous N+1 frames t−N, t−N+1, · · · , t are added to F .

2) AFSID algorithm: The algorithm of AFSID is shown

in Alg. 2. The iteration index t begins with the first frame

of the video and ends when t reaches its last frame (lines 1

and 2 in Alg. 2). At every N frames (line 7 in Alg. 2), it is

checked if the frame does not need to be manually annotated

i.e., annotation-free.

If the target frame is not included in F , manual annotation

is performed and the results are added to the set of manually-

annotated object regions A (lines 3 and 4 in Alg. 2).

The recall R(t) between the object region d
(j)
t estimated

using bi-directional deep SORT and the correct region given

manually a
(i)
t is calculated using Eq. (1) (line 5 in Alg. 2).

Using R(t) and F , the annotation-free frames are determined

using Eq. (3) and added to F (line 6 in Alg. 2).

D. Object Tracking in Bi-directional Deep SORT

This section describes the details of object tracking, specifi-

cally focusing on the objective function and algorithm for ob-

ject matching. The present study refers to the object matching

algorithm used in deep SORT and extends it for bi-directional

tracking.

1) Objective function for object matching: For object track-

ing, Kalman filtering is employed to robustly predict the

location of the missed object against the occlusion problem.

Here, the tracking scenario is defined in the eight-dimensional

state space (u, v, γ, h, ẋ, v̇, γ̇, ḣ), where (u, v) denotes the

center position of a bounding box, γ denotes the aspect ratio of

a bounding box, h denotes the height of a bounding box, and

four other variables express their respective velocities. If the

object is missing less than or equal to Amax frames, tracking

the object continues, and otherwise, the tracking is terminated.

In addition, if an object in a track does not match manually-

annotated object regions, the corresponding track is deleted.

When a Kalman filter is employed under the assumption of

a constant velocity motion and a linear observation model, u,

v, γ, and h are considered to be direct observations of the

object state. The association cost between the predicted object

state and a newly arrived object candidate region is given using

the Mahalanobis distance [18] as

d(1)(i, j) = (d
(j)
t′ − y

(i)
t )TS

(i)
t

−1
(d

(j)
t′ − y

(i)
t ), (4)

where (y
(i)
t , S

(i)
t ) denotes the mean and variance of the i-th

tracking state at time t, and d
(j)
t′ denotes the j-th bounding

box state at time t′, where t < t′. Here, unlikely associations

are excluded on the basis of a 95% confidence computed from

the inverse χ2 distribution [19]. The association function

b(1)(i, j) = 1l[d(1)(i, j) ≤ Th(2)] (5)

yields a value of one if the association between the i-th track

and j-th object candidate is admissible, where the Mahalanobis

threshold Th(2) is empirically set to 9.4877.

For more reliable estimation, appearance descriptors are

extracted using a pre-trained convolutional neural network

(CNN), as in deep SORT [15]. Let r
(j)
t′ and r̂

(i)
t be an

appearance descriptor for the j-th object candidate at time

t′ and that for the object region in the i-th track at time t,

respectively, where ||r
(j)
t′ || = 1. For each object candidate,

the best matching track is chosen and the corresponding

association cost is obtained by computing the cosine similarity

between their appearance descriptors to give

d(2)(i, j) = min
r̂
(i)
t

{1− (r
(j)
t′ )Tr̂

(i)
t }. (6)

Here, for the object regions in the i-th track up to 100 previous

frames, i.e., r̂
(i)
t−100, · · · , r̂

(i)
t , the cosine similarity from the

object region r
(j)
t′ is calculated and its minimum value is taken

as the association cost d(2)(i, j). The association function

b(2)(i, j) = 1l[d(2)(i, j) ≤ Th(3)] (7)

yields a value of one if the association between the i-th track

and the j-th object candidate is admissible, where Th(3) is

empirically determined to be 0.3.

Finally, the association costs described in Eqs. (4) and (6)

are combined to give

ci,j = λd(1)(i, j) + (1− λ)d(2)(i, j). (8)

Here, the association is admissible if both the aforementioned

conditions represented by Eqs. (5) and (7) are satisfied as

bi,j =

2
∏

m=1

b(m)(i, j). (9)

In [15], the system with λ = 0 yields the best accuracy when

the camera is not stable. This parameter is also used in the

present experiment.

2) Object Matching Algorithm: Algorithm 3 shows the

algorithm of matching objects across frames used to track

objects in the forward and backward directions. Unidirectional

deep SORT is extended as follows:

• Backward tracking (lines 17 and 18 in Alg. 3) is intro-

duced, and its results are used as object candidate regions.

• Manual annotation is incorporated into the tracking algo-

rithm (lines 2, 14 and 15 in Alg. 3).

First, the association cost matrix C={ci,j} is computed as

in Eq. (8) and used for object matching (line 3 in Alg. 3).

Then, the association gate matrix B = {bi,j} is computed as

in Eq. (9) and used for removing infeasible associations (line

4 in Alg. 3). Using these two matrices, tracks T are mathing

with object candidates.
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The matching of the tracks T and object candidates D(⊔)
is solved as a linear assignment problem (i.e., minimum cost

bipartite matching) using the cost matrix C (line 9 in Alg. 3).

In such an assignment, the number of pairs of the tracks T
and object candidates D(⊔) should be maximized to reduce

missed objects as much as possible. In addition, the tracks

T are matched with the object candidate D(⊔) in order from

the most recently updated track (line 8 in Alg. 3). This is

based on the assumption that the track that has been recently

paired with the object candidate can be tracked stably without

occlusion or other problems and are likely to be paired with

the object candidate at the current time as well. The adequacy

of the assignments are verified using the gate matrix B (lines

10 and 11 in Alg. 3).

In order to be able to track objects that suddenly change in

their appearance (e.g., occluded, small, or blurred objects),

the IoU(y
(i)
t , d

(j)
t′ ) is computed for the unmatched pair of

the track and object candidate (lines 13 in Alg. 3). The pair

with the IoU more than the empirically determined threshold,

30%, is considered to be a matching pair. If the IoUs for

multiple candidates exceed the threshold, the candidate with

the highest one is selected and connected to the track. If

no object candidate that can be connected to the track is

found, or the missing time is longer than Amax, tracking is

terminated (line 15 in Alg. 3). Especially, if the frame t is

manually annotated, then the result of no match is reliable,

and the unmatched tracks are terminated at that frame (line

14 in Alg. 3). The direction of movement of the track T is

adjusted when the track and the object candidate region are

connected (line 16 in Alg. 3). Especially, if the newly detected

object candidate matches the manually annotated object, the

Kalman state (u, v, γ, h) is initialized with information about

the annotated object region because it is more accurate than

the automatically detected region.

The purpose of backward tracking is to increase the number

of object candidates. The regions estimated at time t, therefore,

are added to the object candidates D(t) (lines 17 and 18

in Alg. 3) and exploited as starting points for subsequent

tracking. In contrast, forward tracking (lines 19 and 20 in

Alg. 3) aims at accurate tracking and it, therefore, uses the

object regions detected by the mask RCNN and manually

annotated regions as starting points for tracking, and does not

use the regions estimated by tracking as such. Finally, the set

of unmatched object regions U is initialized as the start point

for tracking (line 21 in Alg. 3).

IV. PEDESTRIAN DETECTION EXPERIMENT

Experimental comparisons were carried out to demonstrate

the effectiveness of the proposed bi-directional deep SORT

with AFSID on pedestrian detection in terms of 1) the recall

rate of detecting pedestrians, and 2) the cost for manual

annotation. For the former point, the accuracy of bi-directional

deep SORT and that of deep SORT were compared and for the

latter, the efficiency of using AFSID over manual annotation

at regular intervals was examined.

TABLE I
NUMBER OF PEDESTRIANS INCLUDED IN V000 AND V007 OF CALTECH

PEDESTRIAN DATASET.

set Reasonable Partial Heavy Full # of frame

V000 5149 587 992 2050 1842
V007 472 6 22 3 1842

A. Dataset

The Caltech pedestrian dataset [1] contains the realistic

situations for annotation, such as frequent occlusions of pedes-

trians and blurred images. The object tracking performance

was evaluated for several occlusion levels defined in the

Caltech pedestrian dataset as follows:

• Reasonable: no occlusions in a bounding box

• Partial: less than 35% occlusions in a bounding box

• Heavy: 35% to 70% occlusions in a bounding box

• Full: more than 70% occlusions in a bounding box

In this experiment, V000 and V007 in set07 were selected

for evaluation. V000, which has a large number of pedestri-

ans and includes many occlusions, is suitable for evaluating

difficult cases of pedestrian tracking, and V007, which has

few pedestrians, is suitable for evaluating the situation easy to

track pedestrians. The number of pedestrians included in these

subsets is listed in Table I.

The Caltech pedestrian dataset has labels of pedestrians

such as “person” and “people,” which are exploited as the

ground truth. In the present experiment, these two classes were

not distinguished and the bounding boxes whose sizes were

smaller than 50 pixels were ignored.

B. Experimental Setups

Experimental setups were the same as those in [15].

The wide residual network [20] was trained with the Mars

dataset [21], which is designed for the person re-identification

task, and used for appearance matching between the estimated

track and subsequent object candidates. The object candidates

were extracted by using the mask RCNN [16] in both the deep

SORT and bi-directional deep SORT. The confidence score of

these objects is more than 1%. Here, the mask RCNN1 was

trained using the MS COCO dataset [22]. This network was

built using ResNet-101-FPN as a backbone network [23].

The object candidate with an IoU rate between the predicted

region and ground truth of more than 50% was regarded as

a positive example (i.e., pedestrian). The systems developed

were evaluated with variously varying final values of time

intervals for manual annotation (e.g., two, four, and eight

frames) to evaluate the trade-off between the object detection

accuracy and manual annotation cost. Here, the correct labels

were given to the first and last frames for reliable tracking.

C. Experimental Results

Tables II and III list the recall rates for the “Reasonable,”

“Partial,” “Heavy,” and “Full” cases, the number of required

1The present experiment used the pre-trained model of the mask RCNN
obtained from https://github.com/matterport/Mask RCNN.
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TABLE II
EXPERIMENTAL RESULTS OF RECALL RATE AND NUMBER OF ANNOTATIONS IN V000 DATASET. TIME INTERVAL EXPRESSES TERMINATED VALUE OF

TIME INTERVAL FOR MANUAL ANNOTATION.

method time interval Reasonable Partial Heavy Full # annotations FP rate # box

Deep SORT 8 90.66% 84.67% 81.05% 82.83% 232 49.63% 14235
Deep SORT 4 94.76% 92.84% 93.75% 94.49% 462 35.9% 12084
Deep SORT 2 97.98% 99.15% 98.79% 96.63% 922 20.27% 10041

Bi-dir. Deep SORT 8 95.59% 95.57% 85.08% 93.46% 232 55.69% 17338
Bi-dir. Deep SORT 4 98.41% 98.47% 95.97% 98.88% 462 46.48% 15034
Bi-dir. Deep SORT 2 99.46% 99.66% 99.19% 99.46% 922 32.98% 12142

Bi-dir. Deep SORT + AFSID 8 95.46% 95.57% 84.98% 93.61% 218 56.55% 17670
Bi-dir. Deep SORT + AFSID 4 98.41% 98.47% 95.97% 98.88% 415 48.76% 15704
Bi-dir. Deep SORT + AFSID 2 99.48% 99.49% 99.40% 99.41% 758 38.32% 13206

TABLE III
EXPERIMENTAL RESULTS OF RECALL RATE AND NUMBER OF MANUAL ANNOTATIONS IN V007 DATASET. TIME INTERVAL EXPRESSES TERMINATED

VALUE OF TIME INTERVAL FOR MANUAL ANNOTATION.

method time interval Reasonable Partial Heavy Full # annotations FP rate # box

Deep SORT 8 96.40% 66.67% 95.45% 33.33% 232 78.44% 2212
Deep SORT 4 99.15% 83.33% 90.90% 33.33% 462 64.57% 1380
Deep SORT 2 100% 100% 95.45% 66.67% 922 40.86% 837

Bi-dir. deep SORT 8 96.40% 66.67% 100% 33.33% 232 81.19% 2541
Bi-dir. deep SORT 4 99.79% 100% 90.91% 33.33% 462 71.19% 1708
Bi-dir. deep SORT 2 100% 100% 95.45% 66.67% 922 53.65% 1068

Bi-dir. deep SORT + AFSID 8 96.40% 66.67% 100% 33.33% 145 85.74% 3352
Bi-dir. deep SORT + AFSID 4 99.79% 100% 90.91% 33.33% 200 84.26% 3126
Bi-dir. deep SORT + AFSID 2 100% 100% 95.45% 66.67% 307 82.99% 2910

manual annotations, and false positive rates in V000 and V007,

respectively. Note that manual annotation at regular time

intervals was incorporated into deep SORT and bi-directional

deep SORT and compared with bi-directional deep SORT with

AFSID to demonstrate both the accuracy and efficiency of the

proposed approach.

The results showed that proposed bi-directional deep SORT

improved the recall rate over existing deep SORT. Bi-

directional deep SORT sacrificed an increase in the false

positive rates. The false positive candidates, however, can

be deleted by the subsequent human verification in assumed

human-supported video annotation framework as shown in

Fig. 1. The present study, therefore, does not see it as a

serious problem although there is room for improvement.

In addition, the results of comparison between bi-directional

deep SORT with and without AFSID suggest that AFSID

efficiently reduced the number of manual annotations without

the reduction in the recall rate.

Since the number of pedestrians in V007 is small (e.g., 6,

22, and 3), the comparison in the recall rate between V000

and V007 will not be discussed here. When the time interval

for manual annotation was two frames, the reduction in human

annotation by AFSID was about 18% in V000, which contains

more pedestrians, and about 67% in V007, which contains

fewer pedestrians. In V000, a reduction in recall with AFSID

was observed, but only marginally. This suggests that the

reduction in human annotation is more effective in datasets

with fewer objects.

Figure 3 shows erroneous examples for analysis: the left

images are the results of proposed bi-directional deep SORT,

and the right images are the ground truth provided in the

dataset. From the top-right image, it can be seen that some

correct labels are too hard to capture due to their small

sizes. The bottom-right image indicates that the shape of the

bounding box is subtly incorrect. Since the shape of such a

ground truth was different from the estimated shape of the

object even though the developed system reasonably predict

the object region, this evaluation can yield unduly decrease in

recall rates.

V. CONCLUSION

The present study proposed a high-recall object detection

approach based on object tracking and efficient human annota-

tion. Specifically, bi-directional deep SORT was introduced to

reduce the number of missed objects, and AFSID was incorpo-

rated to reduce the burden of manual annotation. Experimental

comparisons using pedestrian detection demonstrated that the

proposed method improved the recall rate by 11 % at most over

deep SORT and reduced the number of manual annotations by

67 % at most over bi-directional deep SORT without AFSID.

In the present paper, bi-directional deep SORT was proposed

and used as an object tracking method, but in future, it can be

replaced by a more accurate tracking method tfor challenging

video datasets.

o reduce the false positive rates for challenging video

datasets.
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