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Abstract— In this paper, we solved the problem of the 
colorization algorithms using convolutional neural networks. 
There are existing algorithms predicting chroma components to 
generate colorization images, but the color of generated images is 
usually dim and the saturation of them is poor. Thus, we proposed 
to solve the colorization problem by a pyramid-alike multi-scale 
convolutional neural networks and convert the color space of 
image from RGB to HSV to predict the chroma components. 
Experiments indicate our algorithm can produce colorized images 
with more accurate color and higher saturation than the existing 
work. 

I. INTRODUCTION 

There are lots of colorless gray photos from the old day. If 
those old photos can be colorized, they would be more vivid 
and joyful to the viewers. Even nowadays, there are still many 
cases of gray-scale images generated somewhere in our daily 
life, such as infrared images, satellite images, and electron 
microscope images. Coloring those images will help viewers 
analyze and interpret the information presented in the image 
more intuitively and correctly. To colorize a gray-scale image 
with rational color, it is necessary to first correctly recognize 
the contents of images with the help of prior knowledge. The 
manual colorizing approach by humans can be very accurate 
but requires huge amounts of labors and time, whereas the 
computer can save the efforts by predicting the corresponding 
color from analyzing the context of objects inside images, but 
it is a challenging problem. 

The computer-based gray-scale image colorization can be 
categorized into three types of approaches: scribble-based[1], 

example-based [2], and learning-based [3-6] approaches. The 
scribble-based approach is a semi-automatic approach. It needs 
the assistance of humans to draw the color scribbles to describe 
each object feature of target images, and computers will 
colorize target images according to the scribbles. The example-
based approach can automatically colorize images using the 

color of a similar feature in the pre-selected reference image by 
humans. Scribble-based and example-based methods can save 
a lot of time compared to all-manual coloring, but each 
processed image still needs to be assisted by providing relevant 
color information. 

The learning-based approach can automatically analyze the 
features of gray-scale images and predict correct colors by 
neural networks. The convolutional neural network (CNN) 
updates the parameters through the learning from a large 
number of color images, so that it can predict reasonable colors 
that match the input. Most of the learning-based work in the 
literature [3-6] often generate the chroma components in YUV 
or Lab color space, which are then combined with the original 
gray-scale images to generate colorized results. Zhang et al. [3] 
proposed a learning-based approach regarding color prediction 
as a regression problem. They classified the ab-pairs of Lab 
color space into 313 categories and generated ab-pairs 
according to the features in images. As human eyes are less 
sensitive to chroma, Guadarrama et al. [4] proposed to generate 
delicate low-resolution chroma compositions pixel by pixel 
through PixelCNN architecture, and then improve image 
details using bilinear interpolation and the CNN. The 
PixelCNN used in [4] will increase the color pixel accuracy but 
it is an extremely time-consuming process. Iizuka et al. [5] used 
two parallel CNNs to respectively extract global and local 
features, and they added the scene classification label to 
optimize the training of network. Cao et al. [6] made the 
prediction based on conditional GAN. The generator adopts 
convolutional architecture without dimensionality reduction to 
replace U-net. All of the above learning-based colorization 
methods do not require human assistance, but the common 
problem is the resulted images are dim and low-saturated in 
color. The objective of our paper is to propose a fully automatic 
colorization algorithm based on learning-based methods while 
solving the above problems. 

 
Fig. 1 Flowchart of the proposed architecture 
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Fig. 2 First stage model 

Our method has the following contributions: 
 The image pyramid alike structure of convolutional neural 

network models is used to predict the chroma components H and 
S of HSV color space. This multi-scale structure can produce the 
chroma maps more accurately by finding from lower and middle 
resolutions. 

 The pyramid alike structure can save network size as the feature 
size of networks is smaller in lower resolutions and the overall 
layer can be shallower due to the help of low-scale information. 

 The HSV color space is adopted and the loss function for the H 
component of HSV is tailored to obtain a more correct color. 
Thus, the colorized image can have better color and saturation. 

II. PROPOSED METHOD 

We propose a pyramid model by incrementally predicting 
color from lower to higher resolutions of chroma, through 
which the color components H and S of HSV are generated. 
The flowchart is shown in Fig. 1. 

We adopt HSV color space in our method due to its 
characteristics that can preserve linearity and match the human 
vision description properly, which we found in this space the 
learning-based method behaving more like humans can learn 
better color and saturation than other color spaces such as Lab 
and YUV that are commonly used in other work of this research 
area.  

We use the V component of HSV as the gray-scale image 
input into our model and predict the approximate chroma 
components in the lower resolution forms via convolutional 
layers. Then, we feed the chroma output image as well as the 
original gray-scale image into our rest model to refine the 
correct resolution of chroma and finally produce the colorized 
image. 

A. Modelling 

Our model starts to predict the low-scale chroma maps with 
1/16 size of original images because humans usually start to 

determine a scene with blobs of color in a global sense, and the 
low-scale chroma prediction will be easier to predict correctly. 
Our first-stage model is simply composed of 12-layer 3ൈ3 

convolutions and generates the low-scale chroma output. The 
design of predicting low-scale chroma can reduce the 
complexity of the whole model. The first 11 layers all take the 
ReLU as activation functions whereas the 12୲୦ layer uses tanh 
as activation function, as shown in Fig. 2.  

Once the low-scale chromas are determined, we introduce 
the concept of image pyramids to our second-stage model 
designing, which enables the efficiency improvement of 
models by extracting and analyzing the features of multiple 
scales, as shown in Fig. 3. First, we concatenate the first-stage 
output with a low-scale input image, i.e., 1/16 downsized 
original grayscale images. We also up-scale the concatenated 
first-stage output to a middle-scale image, i.e., 1/4 downsized 
image. Unlike the standard pyramid generating the target layer 
only from contiguous layers, we generate the full size of 
chroma images using all of the lower scales of images directly. 
The concatenated images of low- and middle-scale images go 
through their own CNN networks to extract features in each of 
two scales through two convolutional sub-networks. Both 
outputs of the low and middle scale features are concatenated 
again by de-convolving the smaller size of branches from size 
1/16 output to 1/4 size. After that, the concatenated feature will 
pass through a convolutional network to be deconvolved into 
full-scale chromas map of H and S, which can be then used to 
colorize the gray-scale input image.  

B. Training 

Places365 dataset [7] is used as our training set, which 
contains 365 categories of photos including natural scenery, 
humans, buildings, and so on. The dataset is divided into a 
training set, validation set, and test set. There are 1.8 million 
images in the training set, 18 thousand in the validation set, and 
320 thousand images in the test set. The resolution of each 
image is 256ൈ256. The training and validation sets are used to 
train the first stage and the second stage models. To input an 
image in the form of HSV color space, we convert the color 
space of training images from RGB to HSV, and normalize the 
values of three channels in the range between -1 to 1. V is used 
and set as the input, and HS is set as ground truth. 

 
Fig. 3 Second stage model 
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Ground truth Zhang et al. [3] Iizuka et al. [5] Proposed 

PSNR 21.66 24.15 19.653 

SSIM 0.9076 0.9332 0.8879 

Fig. 4 Colorization results 

Because we find the low-scale 1/16 sized of chroma first and 
use it as a base to find the higher resolution, the training of the 
second-stage model will be affected by the result of first-stage. 
We first train the first-stage model until it converges, and then 
train the second-stage model. To train the first-stage model, the 
size of the first-stage result is in 1/16 size of the original image, 
so the ground truth needs to be shrunk into 1/16 size by bilinear 
interpolation. After training is almost converged, we also fine-
tune the first stage of models during the second stage of model 
training. Adam optimizer is adopted in our model training, 
which easily finds the best solution of models. The weight 
initialization of the model is very important and will affect the 
training accuracy. The He initialization [8] is adopted in our 
training because it has better effect in the model with the ReLU 
activation function. 

In our training model, L1 loss is chosen as the loss function 
as L1 gives better results than L2 in our test, the formula shown 
in (1) and (2). The subscripts p and g indicate the predicted 
result and ground truth, respectively. 𝑆𝐿𝑜𝑠𝑠  represents the 
absolute difference of saturation of predicted ሺ𝑆௣ሻand ground-

truth ሺ𝑆𝑔ሻsaturation. Since the H represents the [-180°,179°] 

of the color ring and is normalized to [-1 to 1], the color ring is 
dis-continuality at ±180 °  of H will cause the problem in 
measuring the color similarity.  For example, a value of -0.9 of 
H in 𝐻𝑝 will have almost the same hue to the ground truth (𝐻𝑔) 
with value 0.9. However, the value of direct subtraction from 
𝐻𝑝to 𝐻𝑔 cannot reflect the difference. To solve this problem, 
we have to subtract a value of two from the absolute difference 
between 𝐻𝑝 and 𝐻𝑔 when the difference is bigger than one, as 
shown in (2). Thus loss function can correctly take into account 
the H similarity.  

𝐿𝑜𝑠𝑠 ൌ 𝑆௅௢௦௦ ൅ 𝜆 ൈ 𝐻௅௢௦௦ (1) 

𝐻௅௢௦௦ ൌ ቊ
ห𝐻௣ െ 𝐻௚ห       , 𝑖𝑓 ห𝐻௣ െ 𝐻௚ห ൑ 1

2 െ ห𝐻௣ െ 𝐻௚ห, 𝑖𝑓 ห𝐻௣ െ 𝐻௚ห ൐ 1
 (2) 

III. EXPERIMENTAL RESULTS 

Table I shows the configuration of our test platform. Usually, 
to evaluate the output quality of image processing algorithms, 
the PSNR and SSIM are used objective image quality 
assessment methods, but in our case, these two metrics cannot 
effectively express the quality of colorized results because 
some objects have various choices of color appearance. Given 
an example in Fig. 4, our result is obviously more natural than 
those of other methods, but our PSNR and SSIM are the lowest. 
Therefore, we can only subjectively assess the coloring results. 

Table I Training environment 

CPU Intel I7-4750K @ 4.00GHz 
GPU NVIDIA GTX 1080 
RAM 12GB 

Deep learning framework Tensorflow 

We would first verify the HSV is a proper color space chosen 
for our model of colorization. We utilize the test set of 
Places365 to compare the results of different color spaces under 
the same network models. To compare the different color 
spaces, we convert the training data into YUV, Lab, and HSV 
color spaces, and then use the same training method to train 
under the same network model. Fig. 5 shows an example of 
generated results. We can observe that the color saturation in 
HSV is significantly higher than those in other color spaces.  

Next, we compare the results of our proposed methods with 
other popular cited existing works [3, 5], and our results look 
much more natural in the test images as shown in Fig. 6. The 
results of other work are a bit dim with low saturation. We can 
also observe the results of [3] also have color bleeding artifacts 
in different areas, such as the indoor scene, the chimney of 
outdoor and humans’ clothes. Compared with [3, 5], our results 
look much closer to the ground truth. 

   

(a) YUV (b) Lab (c) HSV 

Fig. 5 Comparisons of different color spaces 
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(a) 

    

(b) 

    

(c) 

    

 Ground truth Zhang et al. [3] Iizuka et al. [5] Proposed 

Fig. 6 Comparisons of colorization methods 

Since we start predicting the chroma channel in the low-
scale, it is sometimes difficult to predict the corresponding 
correct chroma value when the targets are too small in size. 
This could result in the failure in such areas, such as the objects 
circled in red in Fig. 7. 

  

Ground truth Proposed 
Fig. 7 Failure case 

IV. CONCLUSIONS 

We achieve a colorization algorithm using two-stage multi-
scale convolutional neural networks to predict chroma 
components of HSV. Because the H of HSV is represented by 
a color ring, we design a tailored loss function for it. Our 
algorithm first generates the low-scale chroma components and 
then analyzes multi-scale information through an image 
pyramid alike architecture to yield colorized images. 
Compared with other works, our results are closer to the ground 
truth without the color bleeding artifacts. 
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