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Abstract—Light field imaging is one of the most promising
methods to capture realistic 3D scenes. In this paper, we propose
a deep learning network composed of two sub-networks per-
forming depth estimation and light field image reconstruction,
respectively. We simultaneously train the two sub-networks by
employing a loss function combining the reconstruction loss of
the reconstruction network and the estimation loss of the depth
estimation network. Experimental results demonstrate that the
proposed method accurately estimates the disparity maps of light
field images and also faithfully reconstructs light field images.

I. INTRODUCTION

With increasing demand for augmented and virtual reali-
ties, numerous methods for 3D space capturing have been
proposed. One of the most promising methods is light field
imaging. To capture the light field in 3D space, camera array
systems and microlens array camera systems were proposed.
The camera array systems spatially distribute multiple cameras
in grid structures, and the microlens array camera systems
employ microlens array in front of the sensor. The light
field images captured by the camera array systems are easily
converted to those captured by the microlens array camera
systems and vise versa.

One of the applications of light field images is the depth
estimation using multiple images from different viewpoints,
which uses epipolar plane images (EPIs) [1], [2], [3], angular
patches [4], [5], [6], [7] and deep learning [8], [9], [10],
[11], [12]. The horizontal EPIs are generated by collecting
the horizontal lines from the images by fixing the y image
coordinate at a fixed view coordinate of camera. The vertical
EPIs are generated in a similar manner. As shown in Fig. 1,
each line in EPIs is obtained from the corresponding pixels
at multiple viewpoints. Since the slope of line depends on the
depth of pixel, the depth map can be estimated from EPIs.
Angular patches are generated by collecting all corresponding
pixels from images at all viewpoints with a given candidate
disparity value. If the candidate disparity value is correct, the
intensity of all pixels in an angular patch is identical, and this
characteristics of angular patches can be used to estimate the
depth map.

In this paper, we propose an U-net[13] based network which
estimates the depth map and then reconstructs light field
images from the estimated depth map and the center view
image. We first generate four stacks of images generated by
collecting horizontal, vertical and two diagonal view directions

Fig. 1: An example of light field image with horizontal and
vertical EPIs.

of light field images. Using the generated stacks of images,
the network estimates the depth map. Then, the four stacks of
images are reconstructed using the center view image and the
estimated depth map. The network is trained by minimizing
the estimation error of the depth map and the reconstruction
error of the image stacks. We evaluate the performance of the
proposed method using 4D Light Field Benchmark dataset[14].
It provides 16 training and 12 testing light field images
captured by a camera array system with 9× 9 grid. The main
contribution of this paper is the reconstruction of light field
images at different viewpoints from the center view image and
the estimated depth map.

II. RELATED WORK

We present the related work of depth estimation for light
field images.

A. Epipolar Plane Image Based Methods

Wanner and Goldluecke[1] estimated the depth map from
light field images by measuring the local direction of line in
EPIs. Kim et al.[2] proposed the confidence of the initially es-
timated depth value in EPIs and refined the initially estimated
depth values to get the final depth values. If a certain pixel
has a low edge confidence, the depth value is re-estimated at a
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Fig. 2: The structure of the proposed network.

coarser image resolution. Tao et al.[3] computed a depth value
which has optimal defocus and correspondence response when
shearing EPIs with the candidate depth value.

B. Angular Patch Based Methods

Chen et al.[4] computed an optimal depth value for each
pixel which minimizes the consistency of angular patches
between center view image and the others. Wang et al.[5]
detected the occlusion boundaries using the characteristic that
the edges at occluded regions have the same orientation in
images and angular patches, then they regularized an energy
function estimating the depth map using the occlusion bound-
aries. Jeon et al.[6] proposed the correspondence matching
based methods at sub-pixel accuracy by shifting a pixel in the
Fourier domain. Williem et al.[7] proposed an angular entropy
metric which measures the entropy in the angular patch, and
estimated the depth map by minimizing the angular entropy
metric whether there is occlusion or not.

C. Deep Learning Based Methods

Heber and Pock[8] extracted the patches centered at a query
pixel from the horizontal and vertical EPIs, and used the
convolutional neural network to estimate the depth value of the
query pixel. Heber et al.[9] stacked images at different view
points along the horizontal and vertical directions to create the
EPI volumes, and estimated the depth maps using the convolu-
tional neural network. Shin et al.[10] generated the four stacks
of images by collecting images along the horizontal, vertical
and two diagonal directions of view points, respectively, and
estimated the depth map using multi-stream networks which
take the four image stacks as inputs. Alperovich et al.[11]
proposed Encoder-Decoder networks to estimate the depth
map and to separate light field images into specular and
diffusion layers. Zhou et al.[12] proposed a network which
uses the stack of 115 differently focused center view images
to estimate the depth map.

III. PROPOSED METHODS

Numerous methods based on deep learning trained networks
with additional information such as EPIs[8], [9] and focal
stack[12] to improve the performance of depth estimation.
However, these methods only consider the difference between
the estimated depth map and the ground truth depth map, and
does not consider the reliability of the estimated depth map.
In this paper, we measure not only the difference between the
estimated depth map and the ground truth but the reliability
of the estimated depth map using the reconstructed light field
images which are obtained from the estimated depth map and
the center view image.

A. Network Design

The light field image is represented by using a 4D plenoptic
function I(x, y, s, t), where (x, y) are the image coordinates
and (s, t) are the view coordinates of camera, respectively.
Using the 4D plenoptic function, the relationships between
the center view image I(x, y, 0, 0) and the images at other
viewpoints are given by

I(x, y, 0, 0) = I(x+D(x, y) · s, y +D(x, y) · t, s, t), (1)

where D(x, y) is the disparity of the pixel at (x, y) in
I(x, y, 0, 0). When the disparity D(x, y) and the center view
image I(x, y, 0, 0) are given, non-center view images are
reconstructed based on the Eq. (1). We reconstruct the light
field images with the estimated disparity map and the center
view image, and estimates the disparity map of a given light
field image more reliably using the reconstructed light field
images.

Fig. 2 shows the structure of the proposed network com-
posed of the estimation and reconstruction networks. Similar
to [10], we first generate the four image stacks of light field
images, S0◦ , S45◦ , S90◦ and S135◦ , by collecting the images
along the horizontal, vertical, left and right diagonal directions,
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Fig. 3: The results of the light field image reconstruction. Top and bottom rows show the ground truth and the reconstructed
light field images, respectively, with the horizontal and vertical EPIs. (a) Cotton, (b) Boxes, (c) Sideboard, and (d) Dino.

respectively. Each image stack is represented as 3D tensors
where the shape of tensor is (X,Y, S) where (X,Y ) is the
resolution of image and S is the number of views. The
four image stacks are fed to the estimation network which
has the U-net[13] structure to preserve the information of
high resolution images. The estimation network extracts the
features using the residual blocks with bottle neck design.
Since the image stacks are represented as 3D tensors, the 3D
convolution layers are needed for feature extraction, however
we use 2D convolution layers to extract features to reduce high
computational complexity and GPU memory requirement.
To apply the 2D convolution layers, we change the images
into gray scale and consider the number of views in the
image stacks as the dimension of features. From the extracted
features, we apply a convolution layer with the kernel size
1 and the linear activation function to get the final disparity
map. The reconstruction network has a similar structure with
the estimation network while it takes the estimated disparity
map and the center view image as input to reconstruct the
four image stacks. To train both networks simultaneously, we
combine the loss function of the two networks as

L = l(D̂,D) + λ
∑

d={0◦,45◦,90◦,135◦}

l(Ŝd, Sd), (2)

where D̂ and D denote the estimated and ground truth dis-
parity maps, respectively, and Ŝd and Sd denote the estimated
and ground truth image stacks, respectively. The l(·, ·) is the
mean absolute error (MAE) and λ is a weighting parameter.

TABLE I: The quantitative performance comparison in terms
of MSE (multiplied by 100) and runtime in seconds.

Algorithm MSE Runtime
Median Average Median Average

[1] 5.723 8.240 8.789 8.406
[5] 2.803 6.690 10614.535 10508.469
[6] 7.963 9.128 994.311 1009.756
[7] 2.667 3.730 822.272 832.081
[10] 1.280 2.521 2.032 2.041
[12] 1.913 5.242 85.045 88.194

Proposed 1.344 2.608 0.344 0.355

B. Details of Learning

To train the proposed network, we make 10, 000 mini-
batches for one epoch where the batch size is 16 where
each batch consists of the patches with the size of 32 × 32.
The patches are extracted from random positions of randomly
selected light field images among all the training samples.
We apply the batch normalization[15] to all the convolution
layers and use the PReLU[16] as an activation function for
the convolution layers. We use the Adam optimizer[17] and
set the learning rate to 10−4. The weight parameter λ in
Eq. (2) is set to 1. We implemented the proposed network
in TensorFlow[18] which was trained for several days on a
NVIDIA Titan RTX.

IV. EXPERIMENTAL RESULTS

We evaluated the performance of the proposed method using
4D Light Field Benchmark dataset[14]. The dataset consists
of 28 light field images and each light field image has 9× 9
viewpoints. We trained the proposed network using 16 light
field images. To measure the quantitative performance of the
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depth estimation, we measured the MSE (Mean Squared Error)
multiplied by 100 for all testing light field images. To show
the qualitative results of the light field reconstruction, we used
4 light field images as shown in Fig. 3.

Fig. 3 shows the reconstructed results of the light field
images. Note that we put gray-scale images as input to the
network, and the reconstructed light field images are also gray-
scale. As shown in EPIs, the light field image is not accurately
reconstructed when there are occlusions due to the lack of
information of the center view image. However, the overall
structures of the objects are successfully reconstructed.

We also compared the depth estimation performance of the
proposed method compared with six existing methods: [1],
[5], [6], [7], [10], [12]. Table I shows the MSE multiplied
by 100 and the runtime in seconds. In terms of MSE, the
proposed method outperforms the five methods [1], [5], [6],
[7], [12], and shows a comparable performance to the state-of-
the-art method [10]. Note that the runtime of the algorithms
were reported by the authors and measured under different
computing environments, but we see that the proposed method
outperforms yields the shortest runtime among the compared
methods. Fig. 4 visualizes the estimated disparity maps and
MSE maps. As shown in the figure, the proposed method
successfully estimates the disparity maps, especially on the
homogeneous regions, e.g., the walls behind the objects.

We performed the experiments of light field image recon-
struction and depth estimation with four image stacks, but
the proposed method can be applied with one or two image
stacks as well, e.g. horizontal or vertical image stacks. When
there are fewer numbers of image stacks, we expect that the
performance decreases as [10] reported.

V. CONCLUSIONS

In this paper, we proposed a deep learning network which
performs both of depth estimation and light field image
reconstruction. To estimate the disparity maps more accurately,
we combined the loss functions of the estimation network and
the reconstruction network which are trained simultaneously.
Experimental results showed that the proposed method not
only provided comparable performance of depth estimation
to the state-of-the-art algorithms but also successfully recon-
structed the light field images from the estimated disparity
maps and the center view images.
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Fig. 4: The comparative results of depth estimation. (a) The ground truth disparity maps (top) and the center view images
(bottom). (b-h) The estimated disparity maps (top) obtained by using the compared methods, and the corresponding MSE maps
(bottom) where the white, red, and blue represent the estimated disparity values are correct, too far and too close, respectively.
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