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Abstract—Hyperspectral images are useful in a variety of 
fields such as remote sensing, medical diagnosis, and agriculture. 
But it requires very expensive professional equipment and a lot 
of time to obtain. In this paper, we propose a deep learning 
architecture that reconstructs hyperspectral images from RGB 
images that are easy to acquire in real time. Hyperspectral 
reconstruction is inherently difficult because much information 
is lost when hyperspectral bands are integrated into three RGB 
channels. To effectively overcome the problem of hyperspectral 
restoration, we design a neural network with the following three 
basic principles. First, it adopts a method in which channels are 
gradually increased through several steps to restore 
hyperspectral images. Second, it is learned on a group basis for 
efficient restoration. Hyperspectral bands are divided into three 
groups: R, G, and B. Finally, the concept of channel back 
projection is newly proposed. In the process of gradually 
performing hyperspectral reconstruction, the reconstructed 
image is refined by repeatedly projecting the reconstructed 
hyperspectral to RGB. In the experimental results, these three 
principles proved the performance that exceeds the state-of-the-
art methods. 

I. INTRODUCTION 

Hyperspectral imaging is to obtain multiple images from a 
scene on distinct spectral bands, and the resulting images 
commonly include scene characteristic information which 
cannot be perceived from RGB images. The spectral 
characteristic is often useful in a variety of fields such as 
remote sensing, medical diagnosis, and agriculture. However, 
hyperspectral imaging devices are very expensive, and take 
much more time for image acquisition rather than consumer 
RGB cameras with low cost. They have been primarily used 
as a measurement equipment for research and development. 
Despite the potential benefits of hyperspectral imaging, its 
usage is significantly limited to some specific areas. Thus, we 
need a cheaper and faster way to acquire hyperspectral images 
(HSI). This is the reason that we need a technology to convert 
RGB to hyperspectral images. 

Hyperspectral signals are inherently three-dimensional, and 
it is very time-consuming to acquire those signals with a 2D 
imaging sensor. This considerably restricts either spatial or 
spectral resolution actually, and finer spectral information can 
be obtained at the expense of spatial resolution given time 
duration. Most common visual sensors can only obtain signals 
in a limited wavelength band that includes standard red, green, 
and blue in the visible spectrum to match the tricolor 
perception of the human visual system. Unlike hyperspectral 

imaging, it is easy to obtain RGB images in a real-time way, 
and researches for reconstructing HSI from RGB have been 
conducted in literature. Hyperspectral recovery is inherently 
difficult because much information has been already lost 
when hyperspectral bands are integrated into three RGB 
channels. In other words, it is a severely ill-posed problem 
due to the mapping from three RGB channels to so many 
spectral bands. 

In recent years, the deep learning based approach has been 
studied for hyperspectral recovery, and it accomplishes 
superior performances when compared with the traditional 
vision based approach. But, there are still a few works only to 
adopt a simple network architecture, and they can be further 
improved to solve the severe ill-posed problem. 

In this paper, we propose a novel deep learning architecture 
for hyperspectral recovery from an RGB image. For 
effectively overcoming the ill-posed property of hyperspectral 
recovery, we design a neural network with three underlying 
principles, which are as follows. First, we adopt the concept 
of progressive conversion where three RGB bands are 
gradually increased to multiple hyperspectral ones (e.g., 31 
bands in this work) by several phases, not at a time. This idea 
has been borrowed from image super-resolution where a low-
resolution image is magnified gradually, and progressive 
super-resolution was proved to work effectively. Second, 
hyperspectral conversion is learned on a local group basis for 
efficient recovery. Hyperspectral bands are classified into 
three local groups, and the spectrum of each group 
dominantly belongs to one among R, G and B spectrums. This 
is conceptually similar to the factorization of a complex 

 

Fig. 1   The concept of hyperspectral recovery for (a) the existing 
approach and (b) the proposed method (progressive recovery). 
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problem to several sub-problems. Finally, we propose a novel 
concept of channel back-projection. It is adopted to refine the 
converted signals matched to the RGB input. The gradually 
converted hyperspectral signals are repeatedly back-projected 
to the input RGB bands on spectral axis for consistent 
refinement. 

II. RELATED WORK 

A learning-based approach has been studied for 
hyperspectral recovery from RGB images due to insufficient 
input. It aims to learn the relationship between real 
hyperspectral images (HSI) and their RGB conversion by 
camera spectral sensitivity (CSS). In [1-2], an optimal CSS is 
determined by training a neural network, and the RGB-HSI 
relationship is learned. For the non-deep-learning approach, 
the problem of hyperspectral reconstruction was solved by 
sparse coding [3]. A dictionary is established using 
hyperspectral images collected in advance and is converted 
into its RGB version using the receptor spectral absorbance 
functions. An input RGB image is expressed as a sparse linear 
combination of RGB dictionary vectors, and its hyperspectral 
version can be obtained by replacing the RGB dictionary with 
the hyperspectral. In [4], HSCNN was proposed to reconstruct 
hyperspectral images with a residual based CNN. In [5], it is 
further extended by adding a local residual block (HSCNN-R) 
or a dense block (HSCNN-D). Although HSCNN-R has a 
simple structure in which a residual block is repeated, it 
achieves higher performance than state-of-the-art methods. 
[6] proposed to utilize an adversarial network and used the U-
net architecture for the generator. [7] separately performed 
channel upsampling and reconstruction enhancement. A RGB 
input is first converted to HSI through an upsampling CNN, 
and then, reconstruction is enhanced through a residual CNN. 

III. THE PROPOSED METHOD 

Hyperspectral recovery is significantly challenging because 
31 channels should be reconstructed from just 3 channel RGB. 
It is not efficient to recover hyperspectral images at a time. In 
this paper, we propose to progressively reconstruct 
hyperspectral channels in a coarse-to-fine way.  

The proposed network basically extends HSCNN-R [5] by 
implementing two our contributions (i.e., the concept of local 
group based progressive recovery and channel back-
projection). First, a 64-channel feature map is generated from 
an input RGB using a convolution layer that acts as a spectral 
interpolation. Hyperspectral channels are divided into three 
local groups, and they are separately recovered. This separate 
recovery process between groups probably makes a 
distinction at the border of groups, and thus, the network is 
designed so that three groups might be partially overlapped 
each other as shown in Fig. 3. The smooth reconstruction at 
the group border is ensured by adding a relevant loss. Also, 
the progressive recovery from 3 channels to 31 is done by 
three phases as shown in Fig. 1. We incorporate channel back-
projection which is inspired by resolution back-projection 
used popularly in super-resolution [8]. 

A. Progressive Reconstruction via Channel Grouping 
The visible spectral band is in the range between 400 nm 

and 700 nm as shown in Fig. 2. It is divided into 31 channels 
by 10 nm intervals. In other words, we should reconstruct 31 
hyperspectral images from RGB. The 31 hyperspectral bands 
are grouped by three, which are named by B, G and R as 
shown in Fig. 2. We assign one among B, G and R to each 
hyperspectral band according to the portion of B, G and R 
spectral sensitivity curves on the spectral band. Namely, each 
hyperspectral band belongs to a group whose sensitivity curve 
has the largest portion. 

After grouping hyperspectral bands into B, G, and R, 
hyperspectral images are progressively reconstructed by three 
phases as shown in Fig. 3. In the first phase, 8 channels are 
reconstructed from 3 RGB, and then, 20 and 31 channels are 
reconstructed from the output of the previous phase in a 
sequential way. The 8 channels in the first phase is chosen as 
ones between group borders because they can be 
reconstructed from at least two channels among RGB. It is 
thought that it is better to restore a hyperspectral channel 
whose information is more available to RGB. Four channels 
are produced from B and G, while the other four channels are 
from G and R. In the next phases, we gradually reconstruct 
more hyperspectral channels in both left and right directions 
from 8 ones already obtained in the first phase as shown in 
Fig. 3. Note that in order to keep the reconstruction consistent 
among three local groups, 4 channels are overlapped on both 
RG and BG groups. The overall proposed architecture is 
illustrated in Fig. 4. 

B. Channel Back-Projection 
In channel back-projection of Fig. 5, the concept of back-
projection in super-resolution is applied to the spectral 
domain by converting input hyperspectral images to RGB 
through spectral downsampling. And upsampling the residual 
between the projected version and the ground truth RGB is 
added to the module's input. Spectral downsampling is 
replaced by 1x1 convolution, and when hyperspectral images 
are projected to RGB domain, B, G, and R groups are directly 

 

Fig. 3   Local group based progressive hyperspectral recovery. 

 

Fig. 2   Grouping of hyperspectral bands based on RGB spectral 
sensitivity curves. 
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converted to B, G, and R channels, respectively. After being 
converted to an RGB image, its residual associated with the 
ground truth is obtained and upsampled through convolution 
and channel attention [9] as shown in Fig. 5. 

C. Loss Function 
Mean relative absolute error (MRAE) was adopted as a loss 
function for training. It is generally considered to be suitable 
for measuring errors in hyperspectral images composed of 
multiple channels with different dynamic ranges. 

∑
= 












 −
=

p

j
j

GT

j
GT

j
HS

I

II

p
MRAE

1

1  

 where j
HSI  and j

GTI  are the j th pixel value of the 
reconstructed hyperspectral image and ground truth, 
respectively, and p  is the total number of pixels. The 

proposed network progressively reconstructs hyperspectral 
channels through the three phases, and the loss for each phase 
is added to the total loss function as follows. 

321 LLLL ++=  
where nL  is the MRAE value of the image reconstructed in 

the n th phase. Note that 2L  is calculated before channel 
back-projection, and 3L  is calculated after that. 

IV. EXPERIMENTAL RESULTS 

The proposed network was trained with ICVL Dataset [3]. A 
1392x1300 hyperspectral image is converted to its RGB 
version using the CIE 1960 color matching function (CMF), 
and 50x50 patches are extracted with 80 stride to construct a 
pair of RGB and HSI patches. The proposed network is 
trained for 36 hours using two NVIDIA 2080 Ti GPUs. 
Fig. 6 subjectively compares the reconstruction error for each 
method. The conventional methods have a tendency for errors 
to appear outstandingly in the object at the center of the image, 
but the proposed method can restore the object better in 
particular. In Fig. 7, we plot a hyperspectral curve at a small 
local region. Namely, we plot the average value of a 11x11 
patch for every hyperspectral channel on a spectral axis. We 
can see that the curve shape of the proposed method is very 
close to the ground truth. 

In Table 1, the performance of the proposed method is 
compared with state-of-the-art methods in terms of MRAE 
and root mean square error (RMSE). Even if channel back-
projection is not applied to the proposed network, both 
MRAE and RMSE show a superior performance gain over the 
existing methods including HSCNN-R, so it can be confirmed 
that channel grouping and progressive reconstruction are 
effective for hyperspectral image reconstruction. In addition, 
channel back-projection can contribute to further improve the 

 

Fig. 5   The architecture of channel back-projection. 

 

Fig. 4   The proposed progressive deep learning architecture. 
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performance of MRAE by about 4% and RMSE by about 
11%. 

V. CONCLUSION 

In this paper, we propose a network that can effectively 
reconstruct hyperspectral images from RGB using channel 
grouping and progressive reconstruction. In addition, channel 
back-projection is proposed to further improve the 
performance. Unlike existing methods that perform 
hyperspectral recovery at a time, the proposed method 
gradually reconstructs 8, 20, and 31 channels by three phases. 
This is motivated by the severe ill-posed property of 
hyperspectral recovery. Also, hyperspectral channels are 
partitioned into three groups according to their correlation 
with R, G, and B, and they are separately reconstructed 
progressively. From experimental results, it is confirmed that 
the proposed method can achieve better reconstruction 

performance quantitatively and qualitatively compared to the 
existing methods.  

ACKNOWLEDGMENT 

This work is supported by the National Research 
Foundation of Korea (NRF) grant funded by the Korea 
government (MSIT) (No. 2020R1A4A4079705) 

REFERENCES 

[1] Nie, Shijie, et al. "Deeply learned filter response functions for 
hyperspectral reconstruction." Proceedings of the IEEE 
Conference on Computer Vision and Pattern Recognition. 
2018.J. Clerk Maxwell, A Treatise on Electricity and 
Magnetism, 3rd ed., vol. 2. Oxford: Clarendon, 1892, pp.68-73. 

[2] Fu, Ying, et al. "Joint camera spectral sensitivity selection and 
hyperspectral image recovery." Proceedings of the European 
Conference on Computer Vision (ECCV). 2018. 
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Fig. 7   Comparison of hyperspectral curves. 
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