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Abstract—Recently, encryption-inspired block-wise image
transformation with a secret key was proposed to defend against
adversarial examples. The adversarial defense was also demon-
strated to outperform state-of-the-art defenses. In this work, we
first extend the block-wise image transformation for increasing its
key space by using additional transformation steps. Moreover, the
extended defense is extensively evaluated in terms of robustness
against various attacks under a number of metrics. We also
conduct adaptive attacks with key estimation. In an experiment,
the extended defense is confirmed not only to increases the
key space, but also to improve the performance accuracy, while
maintaining the overall accuracy close to a non-robust model. The
evaluation results also suggest that the extended defense is robust
against both non-adaptive and adaptive attacks as long as its
keys are secret. Furthermore, the extended defense is confirmed
to outperform state-of-the-art adversarial defenses with the noise
distance of 8/255 on CIFAR-10 dataset.

I. INTRODUCTION

Deep neural networks (DNNs) have brought major break-
throughs in computer vision as well as many other fields for
a wide range of applications. Due to their remarkable perfor-
mance, DNN models have been deployed in security-critical
applications such as autonomous vehicles, healthcare, finance,
etc. Therefore, security in DNN has become quintessential in
such applications.

Machine learning in general suffers from attacks such as
model inversion attacks [1], membership inference attacks [2],
and adversarial attacks [3], [4]. DNNs are no exception. In
this work, we focus on adversarial attacks. In particular,
carefully perturbed data points known as adversarial examples
are imperceptible to human, but they cause DNNs to make
erroneous predictions with high confidence. As an example, in
Fig. 1, the network here classified the clean image correctly
as “giant panda” with a probability of 98.92 %. After adding
a small fraction of noise, the network misclassified the giant
panda as “plastic bag” with 98.71 % confidence. Researchers
have proposed numerous ways of constructing adversarial
examples. Such works include [3], [5]–[9]. In the context of
computer vision, these threat models do not match real world
applications [10], [11] because there can be various physical
conditions (e.g., camera angle, lighting/weather), physical lim-
its on imperceptibility, etc. However, it has been proved that
adversarial examples are real threats to DNNs [12]–[16].

To defend against adversarial examples, numerous tech-
niques have been proposed in the literature. Current state-of-
the-art empirically robust defense is adversarial training [9],

[17], [18], but the accuracy of adversarially trained models
is almost half lower than that of non-robust models. Another
ideal desirable defenses are certified/provable defenses [19]–
[21], they are not scalable to larger datasets. Some certified
defenses have been scaled to a certain degree [22]–[24], but
the accuracy is still not comparable to empirically robust
models. Another popular adversarial defense is a preprocessing
approach such as [25]–[28]. They all have been defeated
when accounting for obfuscated gradients (a way of gradient
masking) [29]. To reinforce these weak defense methods, Raff
et al. [30] proposed a stronger defense by combining a large
number of transforms stochastically. However, applying many
transforms drop in accuracy even though the model is not
under attack and is computationally expensive.

Recently, a new insight for adversarial defense has been
given as one of preprocessing techniques [31]–[33]. The work
by [31] bridges cryptography to adversarial defense and [32],
[33] has been inspired by perceptual image encryption meth-
ods, which were proposed for privacy-preserving machine
learning and encryption-then-compression systems [34]–[39].
The encryption-inspired adversarial defense with a secret
key [32] was also confirmed to outperform state-of-the-art
adversarial defenses as long as the key is kept secret. In this
paper, we mainly focus on the adversarial defense with block-
wise encryption in [32]. In the block-wise defense, when a
smaller block-size is chosen, higher accuracy is achieved, but
the key space becomes smaller. In this work, we improve
the work in [32] by extending its key space and evaluate the
extended version in terms of image classification performance
and robustness against various attacks. We make the following
contributions in this paper.

• We extend [32] by adding negative/positive transforma-
tion as an encryption step to increase the key space.

• We apply various state-of-the-art attacks to the extended
defense.

In experiments, the extended defense is confirmed not only to
increase the key space, but also to improve the performance
accuracy. Moreover, the extended defense is robust against
various attacks including adaptive attacks. As a result, the
extended defense is demonstrated to outperform state-of-the-
art defenses.
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Fig. 1. Example of adversarial example.

II. RELATED WORK

A. Adversarial Attacks

Adversarial attacks can be divided into two categories:
poisoning/causative attacks (i.e., training time attacks) and
evasion/exploratory attacks (i.e., test time attacks) [40]. In this
work, we focus on evasion attacks also known as adversarial
examples. An adversarial example is a modified input x′

(visually similar to x) to a classifier f(·) aiming f(x) 6= f(x′).
Techniques of generating adversarial examples are classified
into three groups on the basis of the adversary’s knowledge
towards a model: white-box, black-box and gray-box. Under
white-box settings, an adversary has direct access to the model,
its parameters, and training data. In contrast, the adversary
does not have any knowledge of the model, except the output
of the model in black-box attacks. Between white-box and
black-box methods, there are gray-box attacks that imply that
the adversary knows something about the system (i.e., partial
knowledge of the model such as its architecture, parameters,
or training data).

The adversary finds perturbation δ under certain distance
metric (usually `p norm) to construct an adversarial example.
An attack algorithm usually minimizes the perturbation or
maximizes the loss function, i.e.,

minimize
δ

‖δ‖p , s.t. f(x+ δ) 6= y, or (1)

maximize
δ∈∆

L(f(x+ δ), y), (2)

where ∆ = {δ : ‖δ‖p ≤ ε}. There are many attack
algorithms such as Fast Gradient Sign Method (FGSM) [5],
Projected Gradient Descent (PGD) [9], DeepFool [7], Carlini
and Wagner (CW) [8], etc.

B. Adversarial Defenses

The goal of a defense method is to make a model that
is accurate not only for clean input but also for adversarial
examples. There are many different approaches to defend
against adversarial examples such as certified and provable
defenses [19]–[24], [41], adversarial training [5], [6], [9],
[17], [18], [42], preprocessing techniques [25]–[28], [30],
[43], detection algorithms [44], [45] and others. Most of
conventional adversarial defenses drop in accuracy or are
broken due to obfuscated gradients. In this paper, we propose
a novel preprocessing technique for adversarial defense.

Recently, Taran et al. proposed to apply the concept of
cryptography with a secret key to adversarial defense as a

Fig. 2. Overview of image classification process with extended adversarial
defense with secret keys.

(a) (b) (c)

Fig. 3. Example of transformed images with M = 4. (a) Original image. (b)
Encryption inspired adversarial defense [32]. (c) Extended encryption inspired
adversarial defense.

preprocessing technique under black-box attacks [31]. How-
ever, traditional cryptographic methods cannot be used for
learning a DNN model, so the models trained with a key had
a low performance, even when a simple random permutation
operation was used [31]. In contrast, another key-based ap-
proach by [32] that is inspired by learnable image encryption
methods [34], [46] was demonstrated to outperform state-of-
the-art defense methods under white-box attacks. However,
there is a possibility of brute-force attacks that can be carried
out when block size is small in [32]. Therefore, in this work,
we first extend the work with a key [32] by expanding its key
space and evaluate the extended version extensively int terms
of robustness against various attacks.

III. EXTENSION OF ENCRYPTION INSPIRED ADVERSARIAL
DEFENSE

The encryption-inspired adversarial defense [32] applies a
block-wise transformation with a secret key (KS) to input
images before training and testing a model. In this work, we
extend the adversarial defense by adding block-wise nega-
tive/positive transformation with an additional secret key KNP.
An overview of image classification process with extended
encryption-inspired adversarial defense with keys is depicted
in Fig. 2 and an example of transformed images is shown in
Fig. 3.

A. Extended Transformation

The following are steps for transforming input images by
the extended transformation (Algorithm 2), where c, w and h
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denote the number of channels, width and height of an image
tensor x ∈ [0, 1]

c×w×h.
1) Divide x into blocks with a size of M such that
{B(1,1), . . . , B( w

M , h
M )}.

2) Transform each block tensor Bc×M×M(i,j) into a vector
b(i,j) = [b(i,j)(1), . . . , b(i,j)(c×M ×M)].

3) Generate a random permutation integer vector v =
[v1, . . . , vk, . . . , vk′ , . . . , vc×M×M ] by using key KS,
where vk 6= vk′ , vk ∈ {1, 2, . . . , c×M ×M}, if k 6= k′,
and permutate every vector b(i,j) with v as

b′(i,j)(k) = b(i,j)(vk), (3)

to obtain a shuffled vector b′(i,j) =
[b′(i,j)(1), . . . , b′(i,j)(c×M ×M)]

4) Generate a random binary vector r =
[r1, . . . , rk, . . . , rc×M×M ], rk ∈ {0, 1} by using
key KNP, and inverse the intensity of pixel values in
each shuffled block b′(i,j) with r as

b′′(i,j)(k) =

{
b′(i,j)(k) (rk = 0)

1− b′(i,j)(k) (rk = 1),
(4)

where the value of the occurrence probability P (r(k))
is 0.5.

5) Integrate the shuffled vectors to form a shuffled image
tensor x′ ∈ [0, 1]

c×w×h.

Algorithm 1 Pixel Shuffling
Input: x,KS
Output: x′

1: Divide x into blocks, {B(1,1), . . . , B( w
M , h

M )}
2: Transform blocks to vectors, {b(1,1), . . . , b( w

M , h
M )}

3: Generate v by KS
4: for Each block b(i,j) do
5: b′(i,j)(k)← b(i,j)(vk)
6: end for
7: x′ ← Integrate blocks in b′

Algorithm 2 Extended Transformation
Input: x,KS,KNP
Output: x′

1: Divide x into blocks, {B(1,1), . . . , B( w
M , h

M )}
2: Transform blocks to vectors, {b(1,1), . . . , b( w

M , h
M )}

3: Generate v by KS, and r by KNP
4: for Each block b(i,j) do
5: b′(i,j)(k)← b(i,j)(vk)
6: if r(k) is 0 then
7: b′′(i,j)(k)← b′(i,j)(k)
8: else
9: b′′(i,j)(k)← 1− b′(i,j)(k)

10: end if
11: end for
12: x′ ← Integrate blocks in b′′

B. Differences between Encryption-Inspired Adversarial De-
fense and its Extended Version

In the conventional encryption-inspired adversarial de-
fense [32], only pixel shuffling (Algorithm 1) is utilized
for input transformation. In contrast, the extended defense
uses both pixel shuffling and negative/positive transformation
(Algorithm 2).

By using this extension, the extended defense expands the
key space. The conventional one is on the basis of a block-wise
operation and utilizes the same key for all blocks. Therefore,
its key space is given by

K(c×M ×M) = (c×M ×M)!. (5)

In contrast, the key space of the extended defense is

KE(c×M×M) = (c×M ×M)!× 2(c×M×M). (6)

Therefore, the extended defense can enhance robustness
against brute-force attacks even for M = 2, while maintaining
high classification performance.

IV. EVALUATION

To verify the effectiveness of the extended encryption in-
spired adversarial defense, we ran a number of experiments on
the CIFAR-10 [47] dataset with a batch size of 128 and live
augmentation (random cropping with padding of 4 and random
horizontal flip) on a training set. CIFAR-10 consists of 60,000
color images (dimension of 32×32×3) with 10 classes (6000
images for each class) where 50,000 images are for training
and 10,000 for testing. Both training and test images were
transformed on the basis of the extended transformation (see
Algorithm 2) with secret keys KS and KNP.

We used deep residual networks [48] with 18 layers
(ResNet18) and trained for 200 epochs with cyclic learning
rates. The parameters of the stochastic gradient descent (SGD)
optimizer were: momentum of 0.9, weight decay of 0.0005
and maximum learning rate of 0.2. We trained 4 models
under the use of various block sizes (i.e., M ∈ {2, 4, 8, 16}).
Additionally, we also trained a standard model without any
defense as our baseline.

A. Robustness Against Threat Models

The goal of an adversary is to fool a model by reducing the
classification accuracy (i.e., untargeted attacks). To simulate
this scenario, we deployed well-known threat models under
different metrics (`∞, `2, and `1). The threat models were
projected gradient descent (PGD) [9] for `∞, the Carlini and
Wagner attack (CW) [8] and the DeepFool [7] for the `2
bounded metric, and the elastic-net attack (EAD) [49] for the
`1 bounded metric.

The parameters of PGD adversary were adapted from [17]
with noise distance ε = 8/255, step size α = 2/255, and 10
random restarts for 50 iterations with random initialization.
For the DeepFool attack, we utilized publicly available imple-
mentation1 with 50 iterations. Since we focused on untargeted

1https://github.com/Harry24k/adversarial-attacks-pytorch
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TABLE I
ACCURACY (%) OF THE EXTENDED DEFENSE AGAINST VARIOUS

NON-ADAPTIVE ATTACKS

Model Clean PGD (`∞) DeepFool (`2) CW (`2) EAD (`1)

Standard 95.45 0.00 3.28 0.00 0.00

(M = 2) 94.54 93.14 93.16 94.53 94.54

(M = 4) 92.44 92.07 90.57 92.42 92.40

(M = 8) 86.33 86.06 84.79 86.37 86.30

(M = 16) 76.98 76.95 76.05 76.96 76.99
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Fig. 4. Accuracy vs. noise distance ε.

attacks, CW and EAD were configured with a confidence value
of 0, learning rate of 0.01, binary search steps of 9 and initial
constant of 0.001 for 1000 iterations. We used CW and EAD
with elastic-net (EN) decision rule implementations from [50]
in our experiments.

Table I summarizes results of the extended defense against
different threat models. Obviously, when the model was not
under defense, the accuracy decreased to almost 0 % in all
attacks. In contrast, the models with the extended defense
were robust against all attacks. In particular, the model with
M = 2 achieved the highest accuracy whether or not it
was under attacks. In addition, we carried out PGD attacks
with different noise distances for experiment purposes. The
accuracy dropped as the noise distance increased. The results
are plotted in Fig. 4. From these results, choosing smaller M
provides better performance, although the key space decreases.

B. Comparison with State-of-the-art Defenses

To confirm the effectiveness of the extended defense, we
made a comparison with latent adversarial training (LAT) [42],
adversarial training (AT) [9], and thermometer encoding
(TE) [25], and key-based defenses: standard random permu-
tation (SRP) [31] and encryption inspired adversarial defense
(EIAD) [32] for the CIFAR-10 dataset.

We reproduced the results for key-based methods under
the same settings used in this work. However, for the other
defenses, we used their reported results for comparison. All

LAT [42] TE [26] AT [9] SRP [33] EIAD [34]
(M = 4)

Extended EIAD
(M = 4)

0

20

40

60

80

A
cc

ur
ac

y 
(%

)

87.8 90.0
87.0

65.57

92.26 92.44

53.82

79.0

46.0

64.98

91.75 91.96

Clean Attacked

Fig. 5. Comparison with state-of-the-art defenses under PGD (`∞) with ε =
8/255 for CIFAR-10 dataset.

Fig. 6. Diagram of adaptive PGD attack by using estimated keys, K′
S and

K′
NP .

defenses were evaluated under the PGD (`∞) threat model
with ε = 8/255.

Figure 5 shows the accuracy for both clean images and
attacked images comparing the extended defense model with
M = 4. Key-based methods are effective to defend against
adversarial examples when the keys are secret. Th accuracy
of SRP was low and that of extended defense was slightly
higher than that of [32]. Although LAT [42] and AT [9] are
empirically robust models, the accuracy was low under the
attacks. The accuracy of TE [25] under attacks was 79 %;
however, it reduced to 30 % under adaptive attacks. In contrast,
the extended defense is still resistant against adaptive attacks
as long as the keys are secret.

C. Robustness Against Key Estimation Attacks

As pointed out in [32], an attacker might estimate keys
and carry out an adaptive attack by using the estimated
keys. Briefly, the attacker transforms an input image with the
estimated keys and performs the attack, then, the transformed
image is inverse-transformed, as described in Fig. 6. There
are two ways for estimating the keys: random approach and
heuristic approach.

Random Approach: An attacker randomly generates keys
and performs the attack in Fig. 6. Table II shows processing
time taken for testing random keys in seconds for one time
(column “(One Try) Time”) and performance accuracy under
the attack (see Fig. 6) by using random keys; K ′S for the
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conventional defense [32], and K ′S and K ′NP for the extended
defense (column “Attack”). The processing time taken for
random approach (one try) is almost the same for both con-
ventional defense and extended defense. The processing time
was recorded on a computer we used (Intel Core i9–9900K,
64 GB memory, GeForce RTX2080Ti GPU). We observe that
the random key estimation attack was not effective and all the
models maintained high classification accuracy.

When considering brute-force attacks for the smallest block
size M = 2, the key space for the conventional defense is
K(12) = 12!, and for the extended defense is KE(12) =
12!×212. Therefore, the processing time taken for brute-force
attacks is estimated to be 12!×1.74 = 231, 515.44 (hours) for
conventional defense and 12!× 212× 1.76 = 959, 195, 381.76
(hours) for extended defense on the above computer with a
single process.

Heuristic Approach: Since we consider white-box attacks,
the attacker may improve estimated keys in a heuristic way
by observing the accuracy of the model. After the keys are
heuristically estimated, the attacker may carry out the attack
in Fig. 6 by using the estimated keys. We simulated this
scenario by rearranging two elements: integer permutation
vector v = [v1, v2, . . . , vc×M×M ] and random binary vector
r = [r1, r2, . . . , rc×M×M ], in accordance with improvement
in accuracy (see Algorithm 3). We generated index pairs P ,
as P = {(1, 2), (1, 3), . . . , (c×M×M−1, c×M×M)} in v
and r that are based on random keys K ′S and K ′NP respectively.
The number of possible pairs is given by

|P| =
(

(c×M ×M)

2

)
. (7)

We swap the values in each pair of v and r independently if
the accuracy improves and the swap operation is done one by
one for v and r alternatively.

Table III shows accuracy of the models under the attack with
the heuristic approach. The results suggest that the extended
defense achieved higher accuracy for M = 2 and 4 than the
conventional one [32], even when the attack with the heuristic
approach was applied.

Algorithm 3 Heuristic Approach

Input: Input images with labels
Output: v, r

1: Initialize v and r with random keys, K ′S and K ′NP
2: Generate P
3: for Each pair in P do
4: accuracy ← Calculate accuracy of input images
5: if accuracy improves then
6: Swap pair in v
7: end if
8: accuracy ← Calculate accuracy of input images
9: if accuracy improves then

10: Swap pair in r
11: end if
12: end for

TABLE II
ACCURACY (%) OF PROPOSED DEFENSE AND CONVENTIONAL ONE UNDER

ADAPTIVE ATTACK WITH RANDOM APPROACH, AND PROCESSING TIME
(SECONDS) FOR ONE TRY

Model Conventional [32] Extended
(One Try) Time (s) Accuracy Time (s) Accuracy

(M = 2) 1.74 91.81 1.76 93.16

(M = 4) 1.74 91.56 1.79 91.84

(M = 8) 1.78 86.76 1.77 86.16

(M = 16) 1.76 77.54 1.78 76.86

TABLE III
ACCURACY (%) OF PROPOSED DEFENSE AND CONVENTIONAL ONE UNDER

ADAPTIVE ATTACK WITH HEURISTIC APPROACH

Model Conventional [32] Extended
Accuracy Accuracy

(M = 2) 84.54 92.50

(M = 4) 91.70 92.05

(M = 8) 86.66 86.05

(M = 16) 77.47 76.74

V. CONCLUSION

In this work, we extended an encryption-inspired adversarial
defense with secret keys to increase its key space, and evalu-
ated the performance of models trained by using the extended
defense in terms of image classification accuracy not only for
clean images, but also for adversarial examples with various
attacks in different metrics for CIFAR-10 dataset. As a result,
the extended defense was demonstrated to outperform state-of-
the-art defenses including the conventional encryption-inspired
adversarial defense, whether or not the model is under attacks.
Moreover, the accuracy difference between the extended model
and a standard model (non-robust model) was small (0.91 %),
so the applicability of the extended model in real-world
applications was also suggested.
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