
Realization of 5G Network Slicing Using Open

Source Softwares

Sheng Chen†, Chung-Nan Lee* and Ming-Feng Lee+
National Sun Yat-sen University, Taiwan

†E-mail: patrick021588@gmail.com Tel: + 886-7-5254335
*E-mail: cnlee@mail.cse.nsysu.edu.tw Tel: + 886-7-5252000 ext. 4313

+ E-mail: mflee@mail.nsysu.edu.tw Tel: + 886-7-5252000 ext. 4335

Abstract—With the advent of 5G, billions of devices use the 5G

radio access network. Network slicing is a fundamental

architecture component of the 5G. End-to-end network slicing

leverages the attributes of central virtualization technology in 5G

to flexibly address. In this paper we realize the network slicing

using OpenStack as a cloud platform, Tacker to manage the

required virtual network functions for each service and

OpenFlow switch for slice. We also apply OpenFlow Queue

command to schedule the priority and proportion of each service.

Finally, the actual implementation is carried out via

OpenAirInterface and nextEPC. Experimental results show that

the network slicing is feasible using open sources and the

bandwidth can be assigned using queue. As a result, the QoS is

guaranteed for each slice.

I. INTRODUCTION

The fifth generation (5G) mobile communication system has

the potential to support the communication of billions of

devices at ultra-high speed, and it may change people’s lives.

At present, the construction of 5G in countries around the

world is also in full swing. Unlike the fourth generation (4G)

mobile communication system, which has only one service

type for all customers, 5G can provide different service needs,

such as enhanced Mobile Broadband (eMBB), Ultra Reliable

Low Latency Communications (URLLC), massive Machine

Type Communications (mMTC), for different customers. For
each type of business customer, the most logical way is to build

a dedicated network to provide services, but this is very

uneconomical. The more reasonable and economical way to

support different customers and different services in the same

mobile communication system is network slicing technology.

Network slicing is to run multiple logical networks on the

communication architecture in an efficient and economical

way as an embodiment of almost independent service operation

concepts. Compared with the communication network system,

this is a fundamental change.

The concept of network slicing has been proposed in the

traditional network era, but before 5G, there has not been a

network slicing standard suitable for the new generation of

mobile communications. Many studies have proposed

architectures and suggestions about realization of 5G network

slicing, and the architectures proposed by each research are

different. It was only in recent years that the standard of 3rd

Generation Partnership Project (3GPP) [1] began to make some

clear definitions and preliminary implementation methods for

the 5G network slicing.

The purpose of this study is to implement and verify the

Proof of Concept (PoC) of 5G network slicing using existing

open source softwares. We use OpenStack as a cloud platform,

use Tacker to realize the Virtualized Network Functions

(VNFs) required by each service, and then combine with

OpenFlow switch, and use OpenFlow Queue command to

ensure the priority and proportion of each service slice. The

SDN controller OpenDaylight (ODL) is used to control the

physical/virtual SDN switches, and the OpenFlow commands

is used to implement 5G network slicing through the controller.

In the proposed implementation, the framework of the mobile

communication network is realized through OpenAirInterface

(OAI) and nextEPC. Finally, some experiments are designed to

verify that the proposed implementation in this paper can

comply with the architecture and principles proposed by 3GPP.

The main characteristics of this study are as follows. We

propose an open source network architecture based on OAI,

nextEPC, and OpenStack. On this architecture, we implement

and verify the technical concept of 5G network slicing and

adjust the OpenFlow Queue command at the service end to

ensure the priority and usage ratio of each service. This

effectively improve the utilization of network resources, and

make the architecture more in line with low latency and higher

transmission guarantee. The propoased open source network

architecture makes it easy to modify or adjust the system

through Software Defined Networking (SDN) and Network

Function Virtualization (NFV), which makes the overall

system architecture more versatile and convenient for

management.

The rest of this paper is organized as follows. In Section II,

we review the related works about 5G network slicing. Section

III describes the proposed mechanism realizing network slicing.

Section IV gives experimental results. Conclusions are drawn

in Section V.

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

1549978-988-14768-8-3/20/$31.00 ©2020 APSIPA APSIPA-ASC 2020

II. RELATED WORK

Li et al. [2] mentioned that the 5G network architecture has

higher bandwidth requirements, and can integrate the Cloud

Radio Access Network (C-RAN) architecture on the same

transmission route. They also mentioned that the future

network needs to cope with different applications of multi-

tenants at the same time. They then proposed a network

architecture, and explained the required technology from the

control plane and the data plane, and what conditions need to

be met at each plane. For example, the four conditions that need

to be met at the data plane are as follows.

 Traffic separation: any tenant cannot hear or obtain other

tenants’ traffic or find their usage trends in any way.

 Traffic isolation: the network must be able to guarantee

the quality of service (QoS) of each tenant. Any tenant in

the network will not be affected by the amount of traffic

of other tenants.

 Traffic differentiation: even if different tenants enter the

same network connection point, tenants’ packets can be

forwarded in different ways.

 Statistical multiplexing: the network can simultaneously

handle network traffic of different tenants through

different channels.

Yuki et al. [3] proposed an automated network slicing

system composed of microservices. Since network slices are

used in various scenarios, optimizing the slices becomes a

rather cumbersome part for designers. The main application of

this automated system is that as long as the user gives some

basic restrictions for each slice, it can optimize the slice in a

short time according to the conditions given by the user. Farrel

[10] proposed that NFV, SDN and Service Function Chaining

(SFC) can be used to implement network slicing in 5G

networks, and also proposed several problems that may be

encountered in the integration of these technologies.

Barakabitze et al. [11] collated possible application

scenarios of 5G networks and compared multiple network

slicing architectures and strategies implemented through SDN

and NFV. They finally further explained the problems and

challenge that 5G networks may face. Kwak et al. [5] proposed

an algorithm to implement dynamic network slicing. The

simulation results show that their dynamic slicing algorithm is

superior to the static slicing algorithm in terms of average total

cost and average total delay. Vassilaras et al. [6] pointed out

that the ability to quickly deploy network slicing through SDN

and NFV will be the future development trend of mobile

communications, so how to effectively manage resources and

quickly allocate resources will be the focus of future 5G

networks. They then analyzed network slicing technology from

some algorithmic aspects.

Based on SDN and NFV, Ordonez-Lucena et al. [7]

proposed an architecture that supports multi-tenancy. This

architecture enables the network slicing provider to deploy

network slicing instances for multiple tenants in real time and

provide them with isolation guarantees. Following the

proposed model of network slicing as a service, tenants can

choose the slicing that best suits their needs.

Song et al. [8] implemented the concept of service-oriented

network slicing. They also proposed several calculation

formulas for evaluating slice performance and latency.

Through the simulation, they tested the impact of different

traffic load on the latency of each scenario in the three major

application scenarios of 5G. Through this study, a reliable

numerical method for evaluating the performance of slice can

be learned. Guan et al. [9] used mathematical models to

construct network slice requests and map them to the

infrastructure network. They presented the mathematical

model of deploying end-to-end slices and proposed a network

slice request implementation algorithm. The results show that

the implementation algorithm performed well in terms of

resource efficiency and acceptance ratio.

Afaq et al. [12] used XOS to process the TOSCA file

configuration and the required service configuration,

coordinate the Virtual Machine (VM) and virtual Network (VN)

required by OpenStack configuration through XOS, and define

the QOS of the service configured by XOS through SDN

controller ONOS. In addition, they introduced the concept of

visiting Network Slice Selection Function (vNSSF) to enhance

the concept of slicing, which is used to allow 5G networks to

allow UEs to access more services at the same time.

Salvatore et al. [4] implemented network slicing in the open

source network using the open source software OAI. They

adopted the OAI C-RAN version, used FlexRAN as their

controller to control the switches and achieve network slicing

by issuing OpenFlow commands. Their verification method is

to download packets through two user equipments (UE) at the

same time. One UE increases the download traffic to test

whether the other UE will be affected by it. The result of the

experiment confirm that their architecture has met the concept

of network slicing.

Chien et al. [13] proposed a service-based approach to

provide network slicing, aiming at allocating a slice to each

service. Their architecture mainly integrates OpenStack with

Tacker and other related open source softwares. This research

also introduced a value R to define slice efficiency. By

comparing the resources required by the computing service

with the resources that can actually be given, R can be used to

verify whether the method meets the needs of the three major

application scenarios of 5G, including URLLC and mMTC and

eMBB.

The main research direction of our work is similar to the

studies of [4] and [13]. Compared with [4] and [13], we design

more experiments for verification according to the standard

proposed by 3GPP, so as to ensure that the system can meet the

network slicing criteria. More specifically, the literature [4]

does not provide appropriate experimental scenarios and

experimental verification, nor does it express how to verify the

independence between slices, and the overall architecture is

relatively incomplete. In the literature [13], although a good

architecture is proposed to implement network slicing, it also

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

1550

lacks verification of the independence between slices. This

paper not only provides more complete simulation and

practical tests, but also verifies the independence between

slices and the security under UDP DDoS attacks.

III. PROPOSED MECHANISM REALIZING NETWORK SLICING

A. System architecture

The proposed system architecture is combined with nextEPC

and OpenStack under OAI’s open network architecture. If there

is a complete 5G open source core network in the future, it can

also be used to verify the concept of network slicing under this

architecture. Under the proposed architecture, users with

different needs can be separated by slicing and allocated to

network resources according to service needs and behavior.

The architecture of the proposed implementation mechanism

is shown in Fig. 1. In this architecture, the three types of service

(eMBB, mMTC, URLLC) are planned for three different slices

according to the 5G network specifications. The streaming

server is mainly used to simulate the eMBB scenario that

requires a large bandwidth to transmit images; the IoT server is

mainly used to simulate the mMTC scenario of multiple IoT

devices; finally, the V2X server is used to simulate URLLC

scenario that transmits important signals. Then we use SDN

controller and OpenStack to allocate resources reasonably to

achieve the effective utility of resources.

Fig. 1 Architecture of the proposed implementation mechanism

Fig. 2 gives an example of network topology that may be

used in three types of service applications. Through Fig. 2, it

can be seen that different services cannot communicate with

each other, and service slices can be deployed more according

to demand, not necessarily just the three slices shown in the

figure. Through the SDN controller, we can correctly forward

the packets of each service to the correct router to deploy the

slice.

Fig. 2 Schematic diagram of network slicing in the proposed implementation

mechanism

Fig. 3 illustrates how to implement the virtual network

functions (VNFs) used in the Network Function Virtualization

Infrastructure (NFVI) in 5G core network architecture. There

is mainly NSSF (Network Slice Selection Functions, NSSF)

responsible for slice management; Access and Mobility

Management Function, (AMF) and Session Management

Function (SMF) are used for session authentication;

Authentication Server Function (AUSF) is responsible for the

authentication part with Unified Data Management (UDM)

database, and finally some of the functions needed for this

service such as Policy and Charge Function (PCF) and

Application Function (AF).

Fig.3. Schematic diagram of implementing NFVI through VNFs in 5G core

network architecture

Fig. 4 Realizing NFVI through OAI C-RAN version and nextEPC in the

proposed implementation mechanism

Because it is currently difficult to obtain complete open

source software for the simulated 5G core, the implementation

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

1551

and verification of this research is through 4G softwares, OAI

eNB and nextEPC, where OAI is the C-RAN version, and

nextEPC is used to replace the 5G core network. The proposed

implementation of NFVI architecture is shown in Fig. 4, where

RAN is implemented by OAI eNB, and core network including

Mobility Management Entity (MME), Home Subscriber Server

(HSS), Serving Gateway (S-GW) and Packet Data Network

Gateway (P-GW) are implemented through nextEPC. In the

proposed implementation mechanism, User Plane Function

(UPF) of 5G core is implemented through S-GW and P-GW of

nextEPC. SMF and AMF are implemented through some

session and mobility functions in MME of those are mainly

NSSFs (Network Slice Selection Functions. The authentication

functionality of AUSF is replaced by MME and HSS of

nextEPC. UDM is implemented by HSS of nextEPC.

In addition, we also adopt Virtual eXtensible Local Area

Network (VXLAN) in the proposed implementation

mechanism. VXLAN is a new type of network virtualization

technology. Compared with traditional Virtual LAN (VLAN),

VXLAN can provide better scalability and flexibility. In 5G,

services need to be provided to more users, so it is one of the

reasonable methods to improve large cloud computing

deployments through VXLAN. Based on the OpenStack

architecture, we modify the configuration files of the controller

node, network node, and compute node to implement VXLAN.

B. Control plane

In order to implement the network slicing architecture, the

control plane and the data plane must be separated in practice.

The proposed implementation mechanism realizes the control

plane interface through the open source SDN controller ODL

and OpenFlow protocol.

We implement resource management of network slice

instances (NSIs) through ODL, and transfer signals through

Application Programming Interface (API). In order to realize

that each network slice is isolated from each other, the system

logically separates each slice through NFV and SDN, and each

slice obtains the network functions it needs.

C. Signal processing and slice management

Fig. 5 illustrates the signal processing in the proposed

implementation mechanism. First, the UE sends its resource

requirements to Remote Radio Head (RRH), then RRH passes

the requirements to SDN Conroller and Slice Orchestrator

(SC&SO), and finally SC&SO allocates the required resources

to the UE, and establishes a service-based slice to the UE.

Fig. 5. Signal processing of the proposed system

In different service scenarios of 5G, there are different

process sequences. In the two scenarios of eMBB service and

mMTC service, first of all, the service requirements will be

passed to SC&SO through API. Then SC&SO will set the

required resources for slicing according to the network

resources and space resources owned by the system. In contrast,

if it is a URLLC service, the required resources will be created

directly through the SC, and will not go through the network

functions created by the SO, thus the URLLC service will be

delivered more quickly.

D. Implementation of VNF through Tacker and Queue

Tacker is an official project of OpenStack that builds a

Generic VNF Manager (VNFM) and an NFV Orchestrator

(NFVO) to deploy and operate network services and VNFs on

OpenStack platform. In the proposed implementation

mechanism, we first create a Tacker database, then connect

with OpenStack, and create a Virtualized Infrastructure

Manager (VIM) and VNF through a configuration file. Then

we write the configuration file of the Virtual Network Function

Description (VNFD), and finally we can create the VNF

required by the service through the VNFD configuration file.

OpenFlow commands are used to create Queues to the

corresponding ports, and Weighted Fair Queue (WFQ) is used

to accurately ensure that services with higher priority are first

guaranteed.

IV. EXPERIMENTAL RESULTS

A. Experimental Environment

This section describes the construction and testing

experiments of the proposed implementation mechanism. The

hardware for building this mechanism and the open source

softwares used for development are listed in Table 1.

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

1552

Table 1. Experimental environment

Here we briefly explain the contents of the five experiments

in this paper. Experiment 1 is to test whether the slice

bandwidth is guaranteed by Queue after establishing VXLAN

on OpenStack. Experiment 2 is to test the variation of the

latency of the service requested by the UE according to traffic

load. Experiment 3 is mainly to verify the service guarantee of

the slice. The purpose of experiment 4 is to test the number of

connected MTC devices and packet loss rate of mMTC slice.

Experiment 5 is to test when one slice suffers from User
Datagram Protocol (UDP) Distributed Denial of Service

(DDoS), will other slices be affected?

B. Experimental results

Experiment 1

The purpose of experiment 1 is to verify the error rate of

bandwidth guaranteed by Queue. The test method is to set the

upper and lower limits of the slice bandwidth guaranteed by the

Queue to be the same, then generate traffic flow and measure

the actual throughput through the iperf software. We measured

once every 10 seconds and took the average of the other 10

times except the first measurement.

Fig. 6 shows the measurement before the Queue command
has been issued. At the first second, because iperf is

establishing a connection, the measured data is not accurate.

Therefore, we do not take the measured result of the first

second. After the measurement, the bandwidth is about 95-100

Mbits/sec before the OpenFlow Queue command is issued.

Next, we issued Queue through ODL, and set the upper and

lower slice throughput limits to 5 Mbits/sec and 50 Mbits/sec,

as shown in Figure 7 and Figure 8, respectively.

Fig. 6 Bandwidth measurement before issuing the Queue command

Fig.7 Bandwidth measurement uder the lower throughput limit of 5Mbits/sec

Fig. 8 Bandwidth measurement uder the upper throughput limit of

50Mbits/sec

Fig. 9 shows that the variation ratio between the actual

bandwidth and the Queue setting bandwidth is about 4%-6%,
and the variation ratio is not large. This experiment shows that

it is effective to manage the network resources required by

individual slices through the OpenFlow Queue command.

Fig. 9 Experimental result of bandwidth guarantee

Experiment 2

The purpose of experiment 2 is to explore the end to end

delay of the service slice. The architecture of experiment 2 is

shown in Fig. 10. This experiment is divided into two kinds of

tests. The first test is to check the variation of end to end latency
from UE1 to the Google server (eMBB slice) and that from

UE3 to the Google server (URLLC slice) under normal

transmission conditions. The second test is to observe the

variation of end to end latency by increasing traffic load. To be

more specifically, UE2 and UE4 used iperf to generate heavy

traffic, we then used IP-Tools to observe the end to end latency

from UE1 to the Google server and that from UE3 to the

Google server. Note that in Fig. 10, the setting of URLLC slice

(in red) is to install the core network in the physical machine

instead of in the Virtual Machine (VM) of OpenStack and the

transmission does not go through Open vSwitch (OVS), so it

can reduce the latency slightly.

Experiment environment and equipments

 Operating System: Centos 7

 CPU: Intel® Core™ i7-6700 CPU @ 3.40GHz 3.41GHz

 Main Memory: 16.0 GB

 USRP:Ettus USRP B210、Ettus USRP B200 mini

 4610-3OT -O-AC-F with Pica8 NoS L2+OVS

 Development Software: OpenAirInterface、OpenStack 、

Opendaylight、Mininet、OpenvSwitch

 Experimental Software: Mosquitto、VLC streaming、TFN2K

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

1553

Fig. 11 shows the end to end latency variation under normal

transmission conditions, and Fig. 12 shows the end to end

latency variation under heavy traffic load. Since this

experiment uses nextEPC and OAI eNB to implement, there is

a transmission delay error in the experiment, so the latency of

both eMBB and URLLC performs zigzag style curve under

normal transmission condition in Figure 11. From Fig. 12, it

can be found that both URLLC and eMBB slices have a

significant increase in latency when the traffic load is greater

than 0.6.

Fig. 10 Architecture of experiment 2

Fig. 11 Variation in end to end latency under normal transmission

conditions

Fig. 12 Variation in end to end latency under heavy traffic load

Experiment 3

The purpose of experiment 3 is to test whether the service of

slices can be guaranteed through Queue. The experiment

architecture is shown in Fig. 13.

First, we used Queue to set the upper and lower throughput

limits of of eMBB and mMTC slices, and then injected heavy

traffic flow to the mMTC slice to simulate network congestion,

in order to verify whether the slice service can be guaranteed.

The traffic of eMBB and mMTC slices in this experiment are

all simulated by iperf. The upper and lower limits of slices

throughput are set as follows. The upper throughput limit of

eMBB slice is 70 Mb/sec, the lower limit is 30Mb/sec. The

upper throughput limit of mMTC is 50Mb/sec, and the lower

limit is 30 Mb/sec.

Fig. 13 Architecture of experiment 3

Fig. 14 shows the experimental result of traffic guarantee of
slices. In this experiment, in order to facilitate the experiment

process, we started the mMTC slice service and kept it stable

through the Queue command, and then added the eMBB slice

to verify whether the upper and lower throughput limits were

guaranteed. It can be seen that when the traffic load of mMTC

slice is heavy, the throughput of the mMTC slice gradually

drops to about the guaranteed lower limit, and then does not

continue to decrease. Thus it can be confirmed that the slice

throughput can be guaranteed by Queue. Note that because the

setting bandwidth and the actual measured bandwidth have a

variation rate of about 4%-6% (as shown in experiment 1), the
actual minimum throughput of mMTC slice in Fig. 14 is

slightly lower than the lower limit of 30Mb/sec set by Queue.

Fig. 14 Experimental result of throughput guarantee of slices

Experiment 4

Experiment 4 is to test the number of connected MTC

devices and packet lost rate of mMTC slice. The mMTC

simulation software used in this experiment is Moquette, which

is an open source software Message Queueing Telemetry

Transport (MQTT) broker used to simulate transmission of

MQTT Protocol. This experiment is mainly divided into two

parts. The first part is to test the limit of the number of

connected devices (MQTT subscribers) of mMTC slice in our

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

1554

architecture. The second part is to test the packet lost rate of

mMTC slice when many MTC devices process unlink

transmission at the same time. The architecture of experiment

4 is shown in Fig. 15. The MQTT broker delivers the

publisher’s message to each MQTT subscriber according to the

topics subscribed by the subscriber. During this experiment, all

messages sent are in plain text format. In addition, in order to

verify the error rate, we set MQTT QoS to 0, which means that

each message is only sent once regardless of success or failure.

Fig. 15 Architecture of experiment 4

 We tested MQTT publish/subscribe pattern. On average, each

subscriber sent a message once in 10 seconds, and sent more

than 100 messages per second. In addition, we set that when
the device was disconnected, it started to reconnect after 60

seconds. Table 2 and Table 3 show the results of the first part

and the second part, respectively.

From Table 2, it can be seen that when 5000~6000 MTC

devices are connected, some devices start to be disconnected

and then reconnect. In Table 3, when there are more than 4000

devices, some devices start to disconnect and have packet loss.

When more devices reconnect, the packet loss rate also

increases significantly.

Table 2. Experimental result of the limit of the number of connected

devices of mMTC slice in the proposed architecture

Table 2. Experimental result of packet lost rate of mMTC slice when many

MTC devices process unlink transmission at the same time

Experiment 5

The scenario of experiment 5 is that there are three slices in

the system, two of which are in normal service, and the third

slice suffers from UDP DDoS. The experiment checks whether

the throughput of these two normally operating slices were also
affected by DDoS. The architecture of experiment 5 is shown

in Fig. 16.

First of all, we set the upper and lower limits of the

throughput of three slices. The upper throughput limit of

mMTC slice is 30Mb/s, and the lower limit is 10Mb/s. The

upper throughput limit of eMBB slice is 60Mb/s, and the lower

limit is 30Mb/s. The upper throughput limit of NS slice is

5Mb/s, and the lower limit is 1Mb/s. We then set the priority of

the three slices to be NS>eMBB>mMTC. Note that the NS

slice is created to test and compare other slices and its internal

VNF does not contain EPC core.

Fig. 16 Architecture of experiment 5

In this experiment, three slices mMTC, eMBB and NS were

activated first and the traffic of these three slices is generated

using iperf. Then we used open source software tfn2K to inject
UDP DDoS traffic flow into the mMTC slice from the third

second. Fig. 17 shows the result of experiment 5. From Fig. 17,

it can be seen that when the UDP DDoS attack is launched, the

mMTC slice cannot be connected intermittently after the fourth

second, but it has no effect on the other two slices. eMBB and

NS slices can still provide normal services. Due to the scale

problem, it is not easy to see the throughput variation from Fig.

17, so we present the throughput variation of mMTC slice

separately in Fig. 18. As can be seen from Fig. 18, UDP DDoS

makes the connection of the mMTC slice extremely unstable

after the fourth second. This intermittent connection causes the

throughput of the mMTC slice to oscillate between
approximately 1 Mbps and 0 Mbps. At this time mMTC slice

is difficult to serve normally.

Noted that the guarantee of Queue in this experiment can

only be achieved based on the fact that the switch can properly

handle traffic packets. If the switch shared by the three slices

cannot work because of a larger-scale DDoS, then the

guarantee of all slices will not be able to achieve.

Fig. 17 Experimental result of throughput guarantee under UDP DDoS

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

1555

Fig. 18 Throughput variation of mMTC slice under UDP DDoS

V. CONCLUSIONS

This research integrates various open source softwares, SDN

controller and cloud platform to achieve network slicing. The

proposed implementation mechanism guarantees the priority of

use of each service, and uses VXLAN to cut the network

segment, so as to protect the independence of each service. In

terms of service deployment, Tacker can also be used to

quickly set up the required VNFs to efficiently create different

services. Therefore, it is very convenient to set up different

slices for difference service needs in the proposed

implementation mechanism. In the future research, we hope to

ensure the service resources on the user side and achieve better
network utilization and also add appropriate scheduling

scheme to adaptively improve resource utilization.

ACKNOWLEDGEMENT

This research was supported in part by the Ministry of Science

and Technology of Taiwan under contract No. MOST 107-

2221-E-036-MY3.

REFERENCES

[1] 3GPP, “Study on scenarios and requirements for next

generation access technologies,” 3GPP TR 38.913,

version 14.2.0, release 14, May 2017.

[2] X. Li, R. Casellas, G. Landi, A. de la Oliva, X. Costa-

Perez, A. García-Saavedra, D. Thomas, C. Luca and R.

Vilalta, “5G-crosshaul network slicing enabling multi-

tenancy in mobile transport networks,” IEEE

Communications Magazine, vol. 55, no. 8, pp. 128-137,

2017.

[3] M. Yuki, T. Atsushi, K. Taichi, S. Norio and S. Katsuhiro,

“An architecture and implementation of automatic

network slicing for microservices,” 2018 IEEE/IFIP

Network Operations and Management Symposium

(NOMS 2018), pp. 1-4, Apr 2018.

[4] C. Salvatore, F. Ilhem, A. Nadjib and L. Rami, “DEMO:

SDN-based network slicing in C-RAN,” 2018 15th IEEE

Annual Consumer Communications & Networking

Conference (CCNC 2018), pp. 1-2, Jan 2018.

[5] J. Kwak, J. Moon, H. W. Lee and L. B. Le, “Dynamic

network slicing and resource allocation for

heterogeneous wireless services,” 2017 IEEE 28th

Annual International Symposium on Personal, Indoor,

and Mobile Radio Communications (PIMRC 2017), pp.

1-5, Oct 2017.

[6] S. Vassilaras, L. Gkatzikis, N. Liakopoulos, I. N.

Stiakogiannakis, M. Qi, L. Shi, L. Liu, M. Debbah, and

G. S. Paschos, “The algorithmic aspects of network

slicing,” IEEE Communications Magazine, vol. 55, no. 8,

pp. 112-119, 2017.

[7] J. Ordonez-Lucena, O. Adamuz-Hinojosa, P. Ameigeiras,

P. Munoz, Juan J. Ramos-Munoz, J. F. Chavarria and D.

Lopez, “The creation phase in network slicing: from a

service order to an operative network slice,” 2018

European Conference on Networks and Communications

(EuCNC 2018), pp. 1-6, Jul 2018.

[8] C. Song, M. Zhang, Y. Zhan, D. Wang and L. Guan,

“Hierarchical edge cloud enabling network slicing for 5G

optical fronthaul,” IEEE/OSA Journal of Optical

Communications and Networking, vol. 11, no. 4, pp. B60

- B70, 2019.

[9] W. Guan, X. Wen, L. Wang, Z. Lu and Y. Shen, “Service-

oriented deployment policy of end-to-end network

slicing based on complex network theory,” IEEE Access,

vol. 6, pp. 19691-19701, 2018.

[10] A. Farrel, “Recent developments in Service Function

Chaining (SFC) and network slicing in backhaul and

metro networks in support of 5G,” 2018 20th

International Conference on Transparent Optical

Networks (ICTON 2018), pp. 1-4, Jul 2018.

[11] A. A. Barakabitze, A. Ahmad, R. Mijumbi and A. Hines,

“5G network slicing using SDN and NFV: A survey of

taxonomy, architectures and future challenges,”

Computer Communications, vol. 167, pp. 1- 40, 202.

[12] M. Afaq, J. Iqbal, T. Ahmed, I. U. Islam, M. Khan and M.

S. Khan, “Towards 5G network slicing for vehicular ad-

hoc networks: An end-to-end approach,” Computer

Communications, vol. 149, pp. 252-258, 2020.

[13] H. T. Chien, Y.R. Lin, C. L. Lai and C. T. Wang, “End-

to-end slicing as a service with computing and

communication resource allocation for multi-tenant 5G

systems,” IEEE Wireless Communications, vol. 26, no.

15, pp. 104-112, 2019.

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

1556

