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Abstract—With the advent of 5G, billions of devices use the 5G 

radio access network. Network slicing is a fundamental 

architecture component of the 5G. End-to-end network slicing 

leverages the attributes of central virtualization technology in 5G 

to flexibly address. In this paper we realize the network slicing 

using OpenStack as a cloud platform, Tacker to manage the 

required virtual network functions for each service and 

OpenFlow switch for slice. We also apply OpenFlow Queue 

command to schedule the priority and proportion of each service. 

Finally, the actual implementation is carried out via 

OpenAirInterface and nextEPC. Experimental results show that 

the network slicing is feasible using open sources and the 

bandwidth can be assigned using queue. As a result, the QoS is 

guaranteed for each slice. 

I. INTRODUCTION 

The fifth generation (5G) mobile communication system has 

the potential to support the communication of billions of 

devices at ultra-high speed, and it may change people’s lives. 

At present, the construction of 5G in countries around the 

world is also in full swing. Unlike the fourth generation (4G) 

mobile communication system, which has only one service 

type for all customers, 5G can provide different service needs, 

such as enhanced Mobile Broadband (eMBB), Ultra Reliable 

Low Latency Communications (URLLC), massive Machine 

Type Communications (mMTC), for different customers. For 
each type of business customer, the most logical way is to build 

a dedicated network to provide services, but this is very 

uneconomical. The more reasonable and economical way to 

support different customers and different services in the same 

mobile communication system is network slicing technology. 

Network slicing is to run multiple logical networks on the 

communication architecture in an efficient and economical 

way as an embodiment of almost independent service operation 

concepts. Compared with the communication network system, 

this is a fundamental change. 

The concept of network slicing has been proposed in the 

traditional network era, but before 5G, there has not been a 

network slicing standard suitable for the new generation of 

mobile communications. Many studies have proposed 

architectures and suggestions about realization of 5G network 

slicing, and the architectures proposed by each research are 

different. It was only in recent years that the standard of 3rd 

Generation Partnership Project (3GPP) [1] began to make some 

clear definitions and preliminary implementation methods for 

the 5G network slicing. 

The purpose of this study is to implement and verify the 

Proof of Concept (PoC) of 5G network slicing using existing 

open source softwares. We use OpenStack as a cloud platform, 

use Tacker to realize the Virtualized Network Functions 

(VNFs) required by each service, and then combine with 

OpenFlow switch, and use OpenFlow Queue command to 

ensure the priority and proportion of each service slice. The 

SDN controller OpenDaylight (ODL) is used to control the 

physical/virtual SDN switches, and the OpenFlow commands 

is used to implement 5G network slicing through the controller. 

In the proposed implementation, the framework of the mobile 

communication network is realized through OpenAirInterface 

(OAI) and nextEPC. Finally, some experiments are designed to 

verify that the proposed implementation in this paper can 

comply with the architecture and principles proposed by 3GPP. 

The main characteristics of this study are as follows. We 

propose an open source network architecture based on OAI, 

nextEPC, and OpenStack. On this architecture, we implement 

and verify the technical concept of 5G network slicing and 

adjust the OpenFlow Queue command at the service end to 

ensure the priority and usage ratio of each service. This 

effectively improve the utilization of network resources, and 

make the architecture more in line with low latency and higher 

transmission guarantee. The propoased open source network 

architecture makes it easy to modify or adjust the system 

through Software Defined Networking (SDN) and Network 

Function Virtualization (NFV), which makes the overall 

system architecture more versatile and convenient for 

management. 

The rest of this paper is organized as follows. In Section II, 

we review the related works about 5G network slicing. Section 

III describes the proposed mechanism realizing network slicing. 

Section IV gives experimental results. Conclusions are drawn 

in Section V. 
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II. RELATED WORK 

Li et al. [2] mentioned that the 5G network architecture has 

higher bandwidth requirements, and can integrate the Cloud 

Radio Access Network (C-RAN) architecture on the same 

transmission route. They also mentioned that the future 

network needs to cope with different applications of multi-

tenants at the same time. They then proposed a network 

architecture, and explained the required technology from the 

control plane and the data plane, and what conditions need to 

be met at each plane. For example, the four conditions that need 

to be met at the data plane are as follows. 

 Traffic separation: any tenant cannot hear or obtain other 

tenants’ traffic or find their usage trends in any way. 

 Traffic isolation: the network must be able to guarantee 

the quality of service (QoS) of each tenant. Any tenant in 

the network will not be affected by the amount of traffic 

of other tenants. 

 Traffic differentiation: even if different tenants enter the 

same network connection point, tenants’ packets can be 

forwarded in different ways. 

 Statistical multiplexing: the network can simultaneously 

handle network traffic of different tenants through 

different channels. 

Yuki et al. [3] proposed an automated network slicing 

system composed of microservices. Since network slices are 

used in various scenarios, optimizing the slices becomes a 

rather cumbersome part for designers. The main application of 

this automated system is that as long as the user gives some 

basic restrictions for each slice, it can optimize the slice in a 

short time according to the conditions given by the user. Farrel 

[10] proposed that NFV, SDN and Service Function Chaining 

(SFC) can be used to implement network slicing in 5G 

networks, and also proposed several problems that may be 

encountered in the integration of these technologies.  

Barakabitze et al. [11] collated possible application 

scenarios of 5G networks and compared multiple network 

slicing architectures and strategies implemented through SDN 

and NFV. They finally further explained the problems and 

challenge that 5G networks may face. Kwak et al. [5] proposed 

an algorithm to implement dynamic network slicing. The 

simulation results show that their dynamic slicing algorithm is 

superior to the static slicing algorithm in terms of average total 

cost and average total delay. Vassilaras et al. [6] pointed out 

that the ability to quickly deploy network slicing through SDN 

and NFV will be the future development trend of mobile 

communications, so how to effectively manage resources and 

quickly allocate resources will be the focus of future 5G 

networks. They then analyzed network slicing technology from 

some algorithmic aspects. 

Based on SDN and NFV, Ordonez-Lucena et al. [7] 

proposed an architecture that supports multi-tenancy. This 

architecture enables the network slicing provider to deploy 

network slicing instances for multiple tenants in real time and 

provide them with isolation guarantees. Following the 

proposed model of network slicing as a service, tenants can 

choose the slicing that best suits their needs. 

Song et al. [8] implemented the concept of service-oriented 

network slicing. They also proposed several calculation 

formulas for evaluating slice performance and latency. 

Through the simulation, they tested the impact of different 

traffic load on the latency of each scenario in the three major 

application scenarios of 5G. Through this study, a reliable 

numerical method for evaluating the performance of slice can 

be learned. Guan et al. [9] used mathematical models to 

construct network slice requests and map them to the 

infrastructure network. They presented the mathematical 

model of deploying end-to-end slices and proposed a network 

slice request implementation algorithm.  The results show that 

the implementation algorithm performed well in terms of 

resource efficiency and acceptance ratio. 

Afaq et al. [12] used XOS to process the TOSCA file 

configuration and the required service configuration, 

coordinate the Virtual Machine (VM) and virtual Network (VN) 

required by OpenStack configuration through XOS, and define 

the QOS of the service configured by XOS through SDN 

controller ONOS. In addition, they introduced the concept of 

visiting Network Slice Selection Function (vNSSF) to enhance 

the concept of slicing, which is used to allow 5G networks to 

allow UEs to access more services at the same time. 

Salvatore et al. [4] implemented network slicing in the open 

source network using the open source software OAI. They 

adopted the OAI C-RAN version, used FlexRAN as their 

controller to control the switches and achieve network slicing 

by issuing OpenFlow commands. Their verification method is 

to download packets through two user equipments (UE) at the 

same time. One UE increases the download traffic to test 

whether the other UE will be affected by it. The result of the 

experiment confirm that their architecture has met the concept 

of network slicing. 

Chien et al. [13] proposed a service-based approach to 

provide network slicing, aiming at allocating a slice to each 

service. Their architecture mainly integrates OpenStack with 

Tacker and other related open source softwares. This research 

also introduced a value R to define slice efficiency. By 

comparing the resources required by the computing service 

with the resources that can actually be given, R can be used to 

verify whether the method meets the needs of the three major 

application scenarios of 5G, including URLLC and mMTC and 

eMBB. 

The main research direction of our work is similar to the 

studies of [4] and [13]. Compared with [4] and [13], we design 

more experiments for verification according to the standard 

proposed by 3GPP, so as to ensure that the system can meet the 

network slicing criteria. More specifically, the literature [4] 

does not provide appropriate experimental scenarios and 

experimental verification, nor does it express how to verify the 

independence between slices, and the overall architecture is 

relatively incomplete. In the literature [13], although a good 

architecture is proposed to implement network slicing, it also 
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lacks verification of the independence between slices. This 

paper not only provides more complete simulation and 

practical tests, but also verifies the independence between 

slices and the security under UDP DDoS attacks. 

III. PROPOSED MECHANISM REALIZING NETWORK SLICING 

A. System architecture 

The proposed system architecture is combined with nextEPC 

and OpenStack under OAI’s open network architecture. If there 

is a complete 5G open source core network in the future, it can 

also be used to verify the concept of network slicing under this 

architecture. Under the proposed architecture, users with 

different needs can be separated by slicing and allocated to 

network resources according to service needs and behavior. 

The architecture of the proposed implementation mechanism 

is shown in Fig. 1. In this architecture, the three types of service 

(eMBB, mMTC, URLLC) are planned for three different slices 

according to the 5G network specifications. The streaming 

server is mainly used to simulate the eMBB scenario that 

requires a large bandwidth to transmit images; the IoT server is 

mainly used to simulate the mMTC scenario of multiple IoT 

devices; finally, the V2X server is used to simulate URLLC 

scenario that transmits important signals. Then we use SDN 

controller and OpenStack to allocate resources reasonably to 

achieve the effective utility of resources. 

Fig. 1 Architecture of the proposed implementation mechanism 

Fig. 2 gives an example of network topology that may be 

used in three types of service applications. Through Fig. 2, it 

can be seen that different services cannot communicate with 

each other, and service slices can be deployed more according 

to demand, not necessarily just the three slices shown in the 

figure. Through the SDN controller, we can correctly forward 

the packets of each service to the correct router to deploy the 

slice. 

Fig. 2 Schematic diagram of network slicing in the proposed implementation 

mechanism 

Fig. 3 illustrates how to implement the virtual network 

functions (VNFs) used in the Network Function Virtualization 

Infrastructure (NFVI) in 5G core network architecture. There 

is mainly NSSF (Network Slice Selection Functions, NSSF) 

responsible for slice management; Access and Mobility 

Management Function, (AMF) and Session Management 

Function (SMF) are used for session authentication; 

Authentication Server Function (AUSF) is responsible for the 

authentication part with Unified Data Management (UDM) 

database, and finally some of the functions needed for this 

service such as Policy and Charge Function (PCF) and 

Application Function (AF). 

Fig.3.  Schematic diagram of implementing NFVI through VNFs in 5G core 

network architecture 

 

Fig. 4 Realizing NFVI through OAI C-RAN version and nextEPC in the 

proposed implementation mechanism 

Because it is currently difficult to obtain complete open 

source software for the simulated 5G core, the implementation 
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and verification of this research is through 4G softwares, OAI 

eNB and nextEPC, where OAI is the C-RAN version, and 

nextEPC is used to replace the 5G core network. The proposed 

implementation of NFVI architecture is shown in Fig. 4, where 

RAN is implemented by OAI eNB, and core network including 

Mobility Management Entity (MME), Home Subscriber Server 

(HSS), Serving Gateway (S-GW) and Packet Data Network 

Gateway (P-GW) are implemented through nextEPC. In the 

proposed implementation mechanism, User Plane Function 

(UPF) of 5G core is implemented through S-GW and P-GW of 

nextEPC. SMF and AMF are implemented through some 

session and mobility functions in MME of those are mainly 

NSSFs (Network Slice Selection Functions. The authentication 

functionality of AUSF is replaced by MME and HSS of 

nextEPC. UDM is implemented by HSS of nextEPC. 

In addition, we also adopt Virtual eXtensible Local Area 

Network (VXLAN) in the proposed implementation 

mechanism. VXLAN is a new type of network virtualization 

technology. Compared with traditional Virtual LAN (VLAN), 

VXLAN can provide better scalability and flexibility. In 5G, 

services need to be provided to more users, so it is one of the 

reasonable methods to improve large cloud computing 

deployments through VXLAN. Based on the OpenStack 

architecture, we modify the configuration files of the controller 

node, network node, and compute node to implement VXLAN. 

B. Control plane 

In order to implement the network slicing architecture, the 

control plane and the data plane must be separated in practice. 

The proposed implementation mechanism realizes the control 

plane interface through the open source SDN controller ODL 

and OpenFlow protocol. 

We implement resource management of network slice 

instances (NSIs) through ODL, and transfer signals through 

Application Programming Interface (API). In order to realize 

that each network slice is isolated from each other, the system 

logically separates each slice through NFV and SDN, and each 

slice obtains the network functions it needs. 

C. Signal processing and slice management 

Fig. 5 illustrates the signal processing in the proposed 

implementation mechanism. First, the UE sends its resource 

requirements to Remote Radio Head (RRH), then RRH passes 

the requirements to SDN Conroller and Slice Orchestrator 

(SC&SO), and finally SC&SO allocates the required resources 

to the UE, and establishes a service-based slice  to the UE. 

 
Fig. 5. Signal processing of the proposed system 

In different service scenarios of 5G, there are different 

process sequences. In the two scenarios of eMBB service and 

mMTC service, first of all, the service requirements will be 

passed to SC&SO through API. Then SC&SO will set the 

required resources for slicing according to the network 

resources and space resources owned by the system. In contrast, 

if it is a URLLC service, the required resources will be created 

directly through the SC, and will not go through the network 

functions created by the SO, thus the URLLC service will be 

delivered more quickly. 

D. Implementation of VNF through Tacker and Queue 

Tacker is an official project of OpenStack that builds a 

Generic VNF Manager (VNFM) and an NFV Orchestrator 

(NFVO) to deploy and operate network services and VNFs on 

OpenStack platform. In the proposed implementation 

mechanism, we first create a Tacker database, then connect 

with OpenStack, and create a Virtualized Infrastructure 

Manager (VIM) and VNF through a configuration file. Then 

we write the configuration file of the Virtual Network Function 

Description (VNFD), and finally we can create the VNF 

required by the service through the VNFD configuration file. 

OpenFlow commands are used to create Queues to the 

corresponding ports, and Weighted Fair Queue (WFQ) is used 

to accurately ensure that services with higher priority are first 

guaranteed. 

IV. EXPERIMENTAL RESULTS 

A. Experimental Environment 

This section describes the construction and testing 

experiments of the proposed implementation mechanism. The 

hardware for building this mechanism and the open source 

softwares used for development are listed in Table 1. 

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

1552



Table 1. Experimental environment  

 
Here we briefly explain the contents of the five experiments 

in this paper. Experiment 1 is to test whether the slice 

bandwidth is guaranteed by Queue after establishing VXLAN 

on OpenStack. Experiment 2 is to test the variation of the 

latency of the service requested by the UE according to traffic 

load. Experiment 3 is mainly to verify the service guarantee of 

the slice. The purpose of experiment 4 is to test the number of 

connected MTC devices and packet loss rate of mMTC slice. 

Experiment 5 is to test when one slice suffers from User 
Datagram Protocol (UDP) Distributed Denial of Service 

(DDoS), will other slices be affected? 

B. Experimental results 

Experiment 1 

The purpose of experiment 1 is to verify the error rate of 

bandwidth guaranteed by Queue. The test method is to set the 

upper and lower limits of the slice bandwidth guaranteed by the 

Queue to be the same, then generate traffic flow and measure 

the actual throughput through the iperf software. We measured 

once every 10 seconds and took the average of the other 10 

times except the first measurement. 

Fig. 6 shows the measurement before the Queue command 
has been issued. At the first second, because iperf is 

establishing a connection, the measured data is not accurate. 

Therefore, we do not take the measured result of the first 

second. After the measurement, the bandwidth is about 95-100 

Mbits/sec before the OpenFlow Queue command is issued. 

Next, we issued Queue through ODL, and set the upper and 

lower slice throughput limits to 5 Mbits/sec and 50 Mbits/sec, 

as shown in Figure 7 and Figure 8, respectively. 

 
Fig. 6 Bandwidth measurement before issuing the Queue command 

 
Fig.7 Bandwidth measurement uder the lower throughput limit of 5Mbits/sec 

 
Fig. 8  Bandwidth measurement uder the upper throughput limit of 

50Mbits/sec 

Fig. 9 shows that the variation ratio between the actual 

bandwidth and the Queue setting bandwidth is about 4%-6%, 
and the variation ratio is not large. This experiment shows that 

it is effective to manage the network resources required by 

individual slices through the OpenFlow Queue command. 

 
Fig. 9 Experimental result of bandwidth guarantee 

Experiment 2 

The purpose of experiment 2 is to explore the end to end 

delay of the service slice. The architecture of experiment 2 is 

shown in Fig. 10. This experiment is divided into two kinds of 

tests. The first test is to check the variation of end to end latency 
from UE1 to the Google server (eMBB slice) and that from 

UE3 to the Google server (URLLC slice) under normal 

transmission conditions. The second test is to observe the 

variation of end to end latency by increasing traffic load. To be 

more specifically, UE2 and UE4 used iperf to generate heavy 

traffic, we then used IP-Tools to observe the end to end latency 

from UE1 to the Google server and that from UE3 to the 

Google server. Note that in Fig. 10, the setting of URLLC slice 

(in red) is to install the core network in the physical machine 

instead of in the Virtual Machine (VM) of OpenStack and the 

transmission does not go through Open vSwitch (OVS), so it 

can reduce the latency slightly.  

Experiment environment and equipments 

 Operating System: Centos 7 

 CPU: Intel® Core™ i7-6700 CPU @ 3.40GHz 3.41GHz 

 Main Memory: 16.0 GB 

 USRP:Ettus USRP B210、Ettus USRP B200 mini 

 4610-3OT -O-AC-F with Pica8 NoS L2+OVS  

 Development Software: OpenAirInterface、OpenStack 、

Opendaylight、Mininet、OpenvSwitch 

 Experimental Software: Mosquitto、VLC streaming、TFN2K 
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Fig. 11 shows the end to end latency variation under normal 

transmission conditions, and Fig. 12 shows the end to end 

latency variation under heavy traffic load. Since this 

experiment uses nextEPC and OAI eNB to implement, there is 

a transmission delay error in the experiment, so the latency of 

both eMBB and URLLC performs zigzag style curve under 

normal transmission condition in Figure 11. From Fig. 12, it 

can be found that both URLLC and eMBB slices have a 

significant increase in latency when the traffic load is greater 

than 0.6. 

 
Fig. 10 Architecture of experiment 2 

 
Fig. 11 Variation in end to end latency under normal transmission 

conditions 

Fig. 12 Variation in end to end latency under heavy traffic load 

Experiment 3 

The purpose of experiment 3 is to test whether the service of 

slices can be guaranteed through Queue. The experiment 

architecture is shown in Fig. 13. 

First, we used Queue to set the upper and lower throughput 

limits of of eMBB and mMTC slices, and then injected heavy 

traffic flow to the mMTC slice to simulate network congestion, 

in order to verify whether the slice service can be guaranteed. 

The traffic of eMBB and mMTC slices in this experiment are 

all simulated by iperf.  The upper and lower limits of slices 

throughput are set as follows. The upper throughput limit of 

eMBB slice is 70 Mb/sec, the lower limit is 30Mb/sec. The 

upper throughput limit of mMTC is 50Mb/sec, and the lower 

limit is 30 Mb/sec. 

 
Fig. 13 Architecture of experiment 3  

Fig. 14 shows the experimental result of traffic guarantee of 
slices. In this experiment, in order to facilitate the experiment 

process, we started the mMTC slice service and kept it stable 

through the Queue command, and then added the eMBB slice 

to verify whether the upper and lower throughput limits were 

guaranteed. It can be seen that when the traffic load of mMTC 

slice is heavy, the throughput of the mMTC slice gradually 

drops to about the guaranteed lower limit, and then does not 

continue to decrease. Thus it can be confirmed that the slice 

throughput can be guaranteed by Queue. Note that because the 

setting bandwidth and the actual measured bandwidth have a 

variation rate of about 4%-6% (as shown in experiment 1), the 
actual minimum throughput of mMTC slice in Fig. 14 is 

slightly lower than the lower limit of 30Mb/sec set by Queue. 

 
Fig. 14 Experimental result of throughput guarantee of slices 

Experiment 4 

Experiment 4 is to test the number of connected MTC 

devices and packet lost rate of mMTC slice. The mMTC 

simulation software used in this experiment is Moquette, which 

is an open source software Message Queueing Telemetry 

Transport (MQTT) broker used to simulate transmission of 

MQTT Protocol. This experiment is mainly divided into two 

parts. The first part is to test the limit of the number of 

connected devices (MQTT subscribers) of mMTC slice in our 
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architecture. The second part is to test the packet lost rate of 

mMTC slice when many MTC devices process unlink 

transmission at the same time. The architecture of experiment 

4 is shown in Fig. 15. The MQTT broker delivers the 

publisher’s message to each MQTT subscriber according to the 

topics subscribed by the subscriber. During this experiment, all 

messages sent are in plain text format. In addition, in order to 

verify the error rate, we set MQTT QoS to 0, which means that 

each message is only sent once regardless of success or failure. 

 
Fig. 15 Architecture of experiment 4 

  We tested MQTT publish/subscribe pattern. On average, each 

subscriber sent a message once in 10 seconds, and sent more 

than 100 messages per second. In addition, we set that when 
the device was disconnected, it started to reconnect after 60 

seconds. Table 2 and Table 3 show the results of the first part 

and the second part, respectively. 

From Table 2, it can be seen that when 5000~6000 MTC 

devices are connected, some devices start to be disconnected 

and then reconnect. In Table 3, when there are more than 4000 

devices, some devices start to disconnect and have packet loss. 

When more devices reconnect, the packet loss rate also 

increases significantly. 

Table 2. Experimental result of the limit of the number of connected 

devices of mMTC slice in the proposed architecture 

 

Table 2. Experimental result of packet lost rate of mMTC slice when many 

MTC devices process unlink transmission at the same time 

 

Experiment 5 

The scenario of experiment 5 is that there are three slices in 

the system, two of which are in normal service, and the third 

slice suffers from UDP DDoS. The experiment checks whether 

the throughput of these two normally operating slices were also 
affected by DDoS. The architecture of experiment 5 is shown 

in Fig. 16.  

First of all, we set the upper and lower limits of the 

throughput of three slices. The upper throughput limit of 

mMTC slice is 30Mb/s, and the lower limit is 10Mb/s. The 

upper throughput limit of eMBB slice is 60Mb/s, and the lower 

limit is 30Mb/s. The upper throughput limit of NS slice is 

5Mb/s, and the lower limit is 1Mb/s. We then set the priority of 

the three slices to be NS>eMBB>mMTC. Note that the NS 

slice is created to test and compare other slices and its internal 

VNF does not contain EPC core. 

 
Fig. 16 Architecture of experiment 5 

In this experiment, three slices mMTC, eMBB and NS were 

activated first and the traffic of these three slices is generated 

using iperf. Then we used open source software tfn2K to inject 
UDP DDoS traffic flow into the mMTC slice from the third 

second. Fig. 17 shows the result of experiment 5. From Fig. 17, 

it can be seen that when the UDP DDoS attack is launched, the 

mMTC slice cannot be connected intermittently after the fourth 

second, but it has no effect on the other two slices. eMBB and 

NS slices can still provide normal services. Due to the scale 

problem, it is not easy to see the throughput variation from Fig. 

17, so we present the throughput variation of mMTC slice 

separately in Fig. 18. As can be seen from Fig. 18, UDP DDoS 

makes the connection of the mMTC slice extremely unstable 

after the fourth second. This intermittent connection causes the 

throughput of the mMTC slice to oscillate between 
approximately 1 Mbps and 0 Mbps. At this time mMTC slice 

is difficult to serve normally. 

Noted that the guarantee of Queue in this experiment can 

only be achieved based on the fact that the switch can properly 

handle traffic packets. If the switch shared by the three slices 

cannot work because of a larger-scale DDoS, then the 

guarantee of all slices will not be able to achieve. 

 
Fig. 17 Experimental result of throughput guarantee under UDP DDoS 
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Fig. 18 Throughput variation of mMTC slice under UDP DDoS  

V. CONCLUSIONS 

This research integrates various open source softwares, SDN 

controller and cloud platform to achieve network slicing. The 

proposed implementation mechanism guarantees the priority of 

use of each service, and uses VXLAN to cut the network 

segment, so as to protect the independence of each service. In 

terms of service deployment, Tacker can also be used to 

quickly set up the required VNFs to efficiently create different 

services. Therefore, it is very convenient to set up different 

slices for difference service needs in the proposed 

implementation mechanism. In the future research, we hope to 

ensure the service resources on the user side and achieve better 
network utilization and also add appropriate scheduling 

scheme to adaptively improve resource utilization. 
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