
EXTENDING CONDITIONAL CONVOLUTION
STRUCTURES FOR ENHANCING

MULTITASKING CONTINUAL LEARNING
Cheng-Hao Tu∗, Cheng-En Wu∗ and Chu-Song Chen∗†‡

∗ Institute of Information Science, Academia Sinica, Taipei, Taiwan
E-mail: {andytu28, chengen, song}@iis.sinica.edu.tw

† Research Center for Information Technology Innovation, Academia Sinica, Taipei, Taiwan
‡ MOST Joint Research Center for AI Technology and All Vista Healthcare, Taipei, Taiwan

Abstract—Conditional operations have received much atten-
tion in recent deep learning studies to facilitate the prediction
accuracy of a model. A recent advance toward this direction
is the conditional parametric convolutions (CondConv), which
is proposed to exploit additional capacities provided by the
deep model weights to enhance the performance, whereas the
computational complexity of the model is much less influenced.
CondConv employs input-dependent fusion parameters that can
combine multiple columns of convolution kernels adaptively for
performance improvement. At runtime, the columns of kernels
are on-line combined into a single one, and thus the time com-
plexity is much less than that of employing multiple columns in a
convolution layer under the same capacity. Although CondConv
is effective for the performance enhancement of a deep model,
it is currently applied to individual tasks only. As it has the nice
property of adding model weights with computational efficiency,
we extend it for multi-task learning, where the tasks are presented
incrementally. In this work, we introduce a sequential multi-task
(or continual) learning approach based on the CondConv struc-
tures, referred to as CondConv-Continual. Experimental results
show that the proposed approach is effective for unforgetting
continual learning. Compared to current approaches, CondConv
is advantageous to offer a regular and easy-to-implement way
to enlarge the neural networks for acquiring additional capacity
and provides a cross-referencing mechanism for different task
models to achieve comparative results.

Index Terms—Convolutional Neural Network (CNN), Multi-
task Learning, Continual Learning, Conditional Computation,
Deep Learning

I. INTRODUCTION

Continual learning of multiple tasks is essential for many
applications in computer vision. In continual learning, the
tasks are presented in a sequential manner, and each task is
learned only based on its own training data without accessing
to the data of previous or future tasks. Although fine-tuning the
model learned from previous tasks usually provides satisfiable
performance on the current task, it also drastically degrades
the model’s original performance on previous tasks. Such
phenomenon is called catastrophic forgetting [1], [2] and is
the major challenge in continual learning.

To resolve this issue, many approaches have been proposed
in recent years [3], [4], [5], [6], [7], [8] to mitigate or avoid

forgetting on previous tasks while learning the current task. In
this paper, we introduce an architecture-expansion approach
for unforgetting continual learning, which is based on the
conditional parametric convolution (CondConv) structure pro-
posed in [9]. As the CondConv operation can acquire capacity
of the model without adding much computational complexity,
it is potentially highly suitable for multitask learning. In this
paper, we utilize this technique for sequential multitasking and
propose a new method for continual learning.

The proposed approach has several characteristics. First, it
can avoid forgetting based on the additional capacity acquired
for new tasks. The function mappings learned for predicting
the labels of previous tasks remain exactly unchanged for the
sequential tasks, without much influencing the time complexity
for the model inference. Second, it can exploit the model
weights learned for previous tasks to improve the current
task by taking advantage of the CondConv structure for
input adaptive model combination. In the experiments, we
compare our approach with several state-of-the-art methods
(such as [10], [11], [12], [13], [5], [14]) and show that our
approach obtains more favorable results, in the cases with
or without task boundaries. Our source code is available at
https://github.com/ivclab/CondConvContinual.

The rest of this paper is organized as follows. In Section II,
we give a survey of the related works. In Section III, we review
the principle of conditionally parametric convolution (Cond-
Conv). In Section IV, we introduce the proposed approach of
this work. Experimental results are presented in Section V.
Finally, conclusions are given in Section VI.

II. RELATED WORK

In this section, we review the related work including con-
tinual lifelong learning and conditional structures.

A. Continual Lifelong Learning

Existing continual learning literature can be divided into
three categories, regularization, memory replay and adaptive
architectures, according to the way on how they overcome the
problem of catastrophic forgetting.

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

1605978-988-14768-8-3/20/$31.00 ©2020 APSIPA APSIPA-ASC 2020

Regularization-based methods [3], [4], [15], [16] limit the
network from updating too much on the current task to avoid
deviating too much from previous tasks. Although the methods
lessen the catastrophic forgetting, they usually fail to solve the
forgetting problem well and perform non-favorably when the
sequence of tasks is long.

In contrast, memory-replay methods [17], [18], [19], [5]
store images of previous tasks through a generative model,
so that the training data can be re-generated or re-synthesized
to train together with the data of future tasks. Although the
above methods alleviate the forgetting to a certain extent, they
cannot guarantee unforgetting of previous tasks because when
re-training all of the tasks, the capacity of the original model
could be insufficient, and a model growing or adaptation would
be required. Besides, retraining all tasks need to take more
resources, which could not be affordable in practice for a long
sequence of tasks.

To ensure unforgetting, architecture-adaptation methods [6],
[7], [20], [21], [8] assign each sub-network of a large network
to a task and memorize the previous tasks by keeping their
parameters unchanged. In this research direction, Progres-
siveNet [10] and CPG [8] expand the feature channels of
layers to acquire additional capacity for learning new tasks.
Learning to Grow [21] utilizes NAS (Network Architecture
Search) to decide suitable structures to expand. However,
network expansion in feature channels usually accompanies
with increasing the model size and inference time. In particu-
lar, computational resources are extremely valuable when we
would like to deploy our models to embedding devices. Thus,
these methods usually introduce network compression [11],
[8] or smaller structures [21] to limit their model capacity
and make trade-off between accuracy and inference speed.
In this paper, we utilize conditional computation [9] in our
convolutional layers to gain the model capacity equal to a
new full model but the inference time can also be controlled
at the same time.

B. Conditional Structures

Conditional computation aims at expanding the model ca-
pacity while keeping the inference speed under control. The
major idea is to activate a sub-net of the full network via
adaptive routing functions for different input samples.

However, routing functions are usually discrete functions
that is extremely challenging to learn. SkipNet [22] and
BlockDrop [23] use reinforcement learning to skip blocks
within a network for various input examples. To enforce the
idea that similar examples should be processed by similar
sub-nets, Gross et al. [24] introduce an two-stage learning
approach by first clustering images into groups and then
feeding them into different branches of the network. Unlike
them, CondConv [9] utilize soft routing functions by applying
fully connected layers on the global feature maps followed by
sigmoid activations. Therefore, CondConv is much easier to
optimize via the standard gradient descent algorithm.

In continual learning, data from different tasks can essen-
tially have different distributions, which makes them suitable

to be processed by different sub-nets like conditional compu-
tation; thus maintain the inference speed at the same time. In
this paper, we utilize CondConv as our conditional structure
due to its simplicity in optimization and implementation.

III. CONDITIONAL CONVOLUTION

Given an input image x, a conditional convolution (Cond-
Conv) layer [9] consists of n kernels and computes its output
feature maps as follows:

CondConvn(x) = σ((α1W1 + α2W2 + · · ·+ αnWn) ∗ x),
(1)

where Wi are the kernels conditionally combined with param-
eters αi, ∗ denotes the convolution operation, and σ(·) denotes
the activation function.

In Eq. 1, if the combination coefficients {α1:n} are fixed,
the linear combination yields an operation equivalent to only
a single kernel, which provides the weight capacity no larger
than the application of a single kernel. In CondConv, the
coefficients {α1:n} are non-fixed but adaptive to the input x.
Each αi (i = 1 · · ·n) is an input-dependent scalar computed
via a global average polling followed by a fully-connected
layer as follows:

αi = Sigmoid(GlobalAveragePool(x)Ri + bi), (2)

where Ri and bi are learnable routing weight and bias that
adaptively assign conditional parameters based on the global
feature maps. Because {α1:n} are input-dependent, CondConv
is thus a non-linear operation via the conditional combination.

CondConv introduces n convolutional kernels to increase
model weight capacity. As multiple kernels are used, the model
capacity of a CondConv layer is larger than that of the ordi-
nary convolution layer. Therefore, CondConv offers a more
abundant representation power than the standard convolution.
Although the representation space is large, CondConv is still
more efficient to compute than a convolution layer contain-
ing multiple parallel kernels. Since the nonlinear activation
function is executed after the linear kernels in Eq. 1, the
kernels can be combined into a single kernel at first in the
forward mapping. Thus, the convolution is only computed
once (instead of n times). The output size of a CondConv layer
is maintained to be the same as that of a single-kernel con-
volution. Compared to the convolution operation, the global
average pooling followed by a routing weight combination in
Eq. 2 consumes much less computational complexity.

Although the model size is n-times larger than a single-
column model, running the model in existing frameworks
(such as PyTorch [25] or TensorFlow [26]) remains efficient
and manageable. It has been shown in [9] that the computation
is still effectively feasible even when a large number of kernels
are combined, such as n = 32.

IV. SEQUENTIAL MULTITASKING CONTINUAL LEARNING

In this section, we first formulate the problems in Sec-
tion IV-A, and then present our approach in Section IV-B.

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

1606

Output of Layer

CONVOLUTION

ROUTING FN for Task

Output of Layer

CONVOLUTION

ROUTING FN for Task

Remain UnchangedTask
 Arrives

Newly Expand

Fig. 1. An illustration of using CondConv structures for sequential multitask-
ing. When the next task Tk+1 arrives, for each CondConv layer, we expand a
new kernel Wl

k+1 and initialize a new set of task-specific routing parameters
{αk+1

1:(k+1)
}l. During the learning of task Tk+1, the task-specific routing

parameters {αk+1
1:(k+1)

}l and the newly added kernel Wl
k+1 are updated

while other kernels {Wl
1,W

l
2, · · · ,Wl

k} remain unchanged. Therefore,
our method completely avoids forgetting because the function mappings are
exactly preserved.

A. Problem Statement

Assume that there are N sequentially coming tasks T =
{T1, T2, · · · , TN}. Each task Tk has its corresponding dataset
Dk = {(xi,yi)}nk

i=1. For the task Tk, we can only access its
dataset Dk, and the dataset becomes unavailable once we start
to learn the next task Tk+1. Under this setting, our objective
is to build a model M capable of performing all the N tasks.

Specifically, given an input image xi along with its be-
longing task k, M(xi, k) outputs the predictions for xi under
task k. Such a sequential multitasking setting is referred to
as continual learning with task boundary. Another more chal-
lenging setting only inputs the image xi and M(xi) outputs
its prediction in the absence of the task-index information
(i.e. without task boundary). In this paper, we focus on solving
the case with task boundary. However, our approach can also
be extend to the case without task boundary via a simple
modification (as demonstrated in our experiments).

B. Conditional Convolution on Sequential Multitasking

To incorporate conditional convolution structures in sequen-
tial multitasking learning, we employ a deep neural network
model containing a backbone part and a predictor (classifier)
part. We use CondConv layers in the backbone part to extract
features using conditionally combined kernels learned from
different tasks. Specifically, consider a deep model Mk for the
task Tk. It contains a backbone network B and a task-specific
classifier Ck to perform predictions. In our approach, each
CondConv layer consists of k kernels after learning the task

Tk. Let L be the number of CondConv layers in B. We denote
Wl

i as the i-th kernel of the l-th layer,Wi = {W1
i , · · · ,WL

i },
and use W1:k to represent

⋃k
i=1Wi.

As different tasks may have images from different distri-
butions, we employ task-specific routing parameters {αk

1:k}l
(l = 1 · · ·L) for the task Tk so that they can combine
the kernels based on the feature maps more accurately. Let
Ak =

⋃L
l=1{αk

1:k}l be the set of all task-specific routing
parameters for task Tk in all CondConv layers. Once the
next task Tk+1 is coming, we allocate a new classifier Ck+1

and routing parameters {αk+1
1:(k+1)}

l and expand a new kernel
Wl

k+1 for each layer, l = 1 · · ·L. The prediction for Tk+1

given an image x is then computed as

Mk+1(x) = Ck+1(B(x;W1:(k+1),Ak+1)), (3)

where all the previous kernels W1:k are co-used and con-
ditionally combined with the newly added kernel, Wk+1,
via {αk+1

i |i = 1 · · · (k + 1)}l in layers l = 1 · · ·L. More
specifically, during the training of task Tk+1, we aim at solving
the optimization problem defined as follows:

argmin
Wk+1,Ak+1,Ck+1

∑
(x,y)∈Dk+1

lk+1(Mk+1(x),y), (4)

where lk+1 is the loss function of task Tk+1.
Note that only the newly expanded kernelsWk+1 is updated

in Eq. 4, whereas W1:k remain fixed, as shown in Fig 1.
Hence, the models M1:k (and the associated deep function
mappings) learned for the old tasks keep unchanged. Thus,
our method exactly maintains the performance of previously
learned tasks and achieves unforgetting continual learning
when the task is specified in the inference stage (i.e. with
task boundary). In addition, as the previous kernels are co-
used, our method can exploit the learned experience of old
tasks to facilitate the learning of new tasks under the full
expansion of model capacity. Compared to the approaches
increasing the columns parallelly for continual learning (such
as ProgressiveNet [10]), our method leverages the conditional
structure in an incremental manner and exploits additional
capacities with computational efficiency.

We refer to our method as the CondConv-Continual ap-
proach. A series of experiments are conducted to verify its
performance in the next section.

V. EXPERIMENTS

To demonstrate the effectiveness of the proposed continual
learning with CondConv, we perform the experiments under
three different settings as follows.
Twenty Tasks of CIFAR-100: In the first setting, we use
CIFAR-100 dataset [27] and separate it into 20 independent
tasks. We show that our approach is competitive against
state-of-the-art methods, such as CPG [8], when scaling up
to twenty tasks. CPG is an unforgetting continual learning
approach assuming the existence of task boundary. We use
the CPG code released by the authors for the implementation1

1https://github.com/ivclab/CPG

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

1607

TABLE I
THE RESULTS OF CIFAR-100 TWENTY TASKS

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 Avg.

Scratch 65.4 76.0 75.0 78.0 83.0 77.8 79.2 81.8 82.2 86.8 83.4 79.4 84.2 78.4 48.0 68.2 63.8 70.2 85.8 88.6 76.8
Finetuning 65.4 75.4 74.5 74.7 81.2 77.2 73.2 80.4 81.0 84.8 86.0 76.6 81.6 77.5 46.6 67.2 63.2 69.7 84.4 88.6 75.5
CPG[8] 63.6 76.8 76.2 74.4 83.0 79.6 79.2 82.2 80.6 87.0 85.2 77.6 82.4 81.6 51.0 67.8 68.4 67.2 85.8 90.2 77.0

Ours 65.4 77.4 75.2 78.4 81.4 77.6 77.6 82.2 82.2 86.8 85.4 77.8 83.8 80.2 50.6 71.0 67.8 69.8 86.8 91.2 77.4

TABLE II
STATISTICS OF THE FINE-GRAINED DATASETS

Dataset #Train #Eval #Classes

ImageNet 1,281,167 50,000 1,000
CUBS 5,994 5,794 200
Stanford Cars 8,144 8,041 196
Flowers 2,040 6,149 102
WikiArt 42,129 10,628 195
Sketch 16,000 4,000 250

in the experiment and compare it with our approach in terms
of both the prediction accuracy and inference speed. In this
setting, the sizes of training datasets among tasks are similar.
Fine-grained Image Classification Tasks: In the second
experiment, we follow the setting in PackNet [11] and Pig-
gyBack [12] on six fine-grained datasets, including the entire
ImageNet [28], CUBS [29], Stanford Cars [30], Flowers [31],
Wikiart [32] and Sketch [33]. ImageNet serves as the first
task, followed by five relatively smaller-scale datasets. This
experiment aims to show the performance of our approach
based on a large-scale first task. We compare our method with
PackNet [11], PiggyBack [12], and CPG [8].
Five Tasks of ImageNet-50: The last experiment follows the
setting in the recent studies of continual learning [5] and [14].
The ImageNet-50 dataset is split into five 10-way classification
tasks, and the experiments focus on continual learning without
task boundary. In this experiment, we extend our approach
to a task-boundary-free version simply via a random-weight
strategy. As the code of [14] are not available yet, we compare
our approach with them based on the results shown in [14],
and demonstrate that our approach is highly competitive and
can achieve better performance.

A. CIFAR-100 Twenty Tasks Results

We divide CIFAR-100 into 20 tasks based on their super
classes. Each task is a 5-way classification problem. In each
task, we randomly split the dataset so that each category
contains 400 images for training, 100 images for validation and
100 images for testing. A 4-layer convolutional neural network
(CNN) is adopted as our backbone. Each layer outputs 64-
channel feature maps followed by batch normalization, ReLU
and max pooling layers.

The results are shown in Table I. In this table, ‘Scratch’
means that each task is trained independently from scratch
using the 4-layer CNN. ‘Finetuning’ is also referred to as the
case where each task in the sequence is learned independently,
but the results are obtained by fine-tuning from the CNN

models of all previous tasks; the average fine-tuning perfor-
mance is reported. ‘CPG’ means that we run the codes released
from the authors of CPG [8] with the 4-layer CNN model to
obtain the results. As CPG repeats a loop of weight-picking,
weight-pruning and model-growing for unforgetting continual
learning, the model will be expanded in the learning process.
In CPG, the model expansion is performed by increasing the
number of both the input and output nodes of a layer, instead of
adding a parallel column. Additional binary masks have to be
recorded in CPG (one mask per task) to choose the fragmental
weights associated with each task in the runtime for inference.
In the following, we report the comparison results on both the
classification accuracy and inference time.

As shown in Table I, the performance of ‘Scratch’ is better
than that of ‘Finetuning’ on the classification accuracy (%),
indicating that there exists negative transfer among tasks.
Nevertheless, our method that conditionally combines kernels
trained on different tasks can still extract suitable features
based on input samples, achieving more favorable results. In
addition, our approach also performs better than the state-of-
the-art approach, CPG, on unforgetting continual learning.

As for the model size (in terms of the number of weights),
because the 4-layer CNN model contains less redundancy to
be exploited than a large model, CPG grows about 16.34
times larger. Our model grows 20 times larger; however, as
depicted in Section III, the output size of each layer is the
same as that of a single-column convolution layer and thus
our model remains efficient. We further measure the execution
time by running 10,000 forward passes using batch size 64
on a NVIDIA Tesla V100 GPU, and found that CPG takes
78.99 seconds while our model takes only 59.10 seconds,
which is 33% faster. This result demonstrates that our model
is more computationally efficient and thus can acquire better
performance by exploiting larger model capacity.

B. Fine-grained Six Tasks Results

In this experiment, we follow the standard setting used in
Piggyback [12] and CPG [8], where six fine-grained clas-
sification datasets are used in a continual learning pipeline.
The statistics of these datasets are listed in Table II. In this
experiment, the base model used is ResNet-50 [34] for all of
the approaches compared.

The results are shown in Table III. In this table, ‘Finetuning’
means that the tasks are fine-tuned from the model of the first
task, ImageNet. As ImageNet is a large-scale dataset, it gives
a strong pre-trained model for the other tasks. We use the
‘Finetuning’ result as the baseline for comparison in the table.

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

1608

TABLE III
THE RESULTS OF FINE-GRAINED SIX TASKS

Dataset ImageNet CUBS Stanford Cars Flowers WikiArt Sketch Total Gain

Finetuning - 83.41 92.85 97.12 74.19 79.7 -
Scratch 76.16 42.03 62.94 46.24 55.12 69.48 −151.46
ProgressiveNet[10] 76.16 78.94 89.21 93.41 74.94 76.35 −14.42
PackNet[11] 76.16 81.59 89.62 94.77 71.33 79.91 −10.05
Piggyback[12] 76.16 81.59 89.62 94.77 71.33 79.91 −10.05
CPG[8] 75.81 83.59 92.80 96.62 77.15 80.33 +2.87

Ours 76.16 84.26 92.61 97.16 78.32 80.77 +5.85

TABLE IV
THE RESULTS OF IMAGENET-50 FIVE
TASKS (WITHOUT TASK BOUNDARY)

Method Accuracy

DGMw[5] 17.82
DGMa[5] 15.16
CCGN[14] 35.24

Ours 61.32

As can be seen, unlike the previous case of 20 even tasks,
the ‘Finetuning’ results considerably outperform the ‘Scratch’
results in this experiment.

In our approach, the six tasks are continually learned and
thus resulting in six kernels in each CondConv layer in
our model. Similarly, for each of the second to last tasks,
instead of conditionally combining with all previous tasks, we
combine them with the first task (i.e. ImageNet) only. Since
ImageNet is a large-scale dataset, it enables the learned kernels
to extract powerful features that can be easily transferred
to other tasks. As shown in Table III, our model surpasses
ProgressiveNet [10], PackNet [11] and Piggyback [12] by a
large margin. Our model even manages to outperform CPG [8]
by gaining an additional 3% accuracy. As each task only com-
bines with ImageNet, we only need to load the corresponding
kernels in CondConv layers instead of all kernels and thus
greatly decrease the on-line memory usages.

This also provides another direction of improvement of our
method that we can consider only conditional combination
with the most related tasks to further boost the inference speed.
In this setting, we have the knowledge that ImageNet provides
easy-to-transfer features by observing the performance differ-
ences between ‘Scratch’ and ‘Finetuning’, and also from the
other approaches such as PiggyBack and PackNet. However,
automatically and efficiently selecting related tasks still re-
mains challenging, and we leave this as our future work.

C. ImageNet-50 Five Tasks Results (Without Task Boundary)

In this experiment, we follow the setting in [14] and
[5], which breaks the task boundary (i.e., assumes that no
task information is given) in the inference stage. A subset
of ImageNet [28] is constructed by randomly sampling 50
classes, and we split them into five tasks so that each task is a
10-way classification problem. In each category, the training
and validation images of ILSVRC-2012 dataset are used for
training and evaluation, respectively.

Note that our approach is an unforgetting continual learning
that assumes the existence of task boundary, and we aim
to break the task boundary without retraining the networks.
Specifically, once a new task Tk is coming and after learning
its model Mk using our approach, we simply use this model
to predict not only the labels of the task Tk, but the labels of
all tasks T1:N , so as to avoid requiring the task information
in the inference time. Because the labels of tasks T{1:N}\{k}
are newly added in the final classification layer of our model

Mk, we merely set the corresponding new weights associated
with the newly added labels as random numbers. As an input
image can be predicted by N models, the final prediction is
made by selecting the class with the largest score among the
N predictions. Such a easy-to-implement strategy is a post
processing of our models, and is tested on the case without
task boundary.

Through the simple modification as depicted above, our
method outperforms other methods significantly on breaking
the task boundary, as shown in Table IV. The idea behind
this simple strategy is that images of the k-th tasks have
different distributions than images of the others. The model
of k-th task predicts peak scores if input images come from
a distribution similar to the training distribution; otherwise
it tends to predict uniformly distributed scores. Therefore,
selecting the class with the largest score still helps, even when
there exists un-trained weights of new classes in each task.
Leveraging on a strong unforgetting model, the results reveal
that a simple modification can yield favorable performance for
the case without task boundary. This technique is essentially
a post processing of our predictions and can be regarded as a
strong baseline for continual learning without task boundary.

VI. CONCLUSION AND FUTURE WORK

In this paper, we introduce a new approach, CondConv-
Continual, which can achieve unforgetting continual learning
for multiple tasks. Our approach leverages the celebrated
structure, CondConv, which can provide additional capacities
for a deep CNN model to enhance the performance with much
less influence on the computational complexity. Experimental
results show that our approach is highly competitive and
performs better than existing ones on unforgetting continual
learning with task boundary. Besides, when a simple random-
weight strategy is applied to our model, the performance
is more favorable than the recent approaches without task
boundary. The results reveal that CondConv-Continual has a
high potential to be used for continual learning.

In the future, we plan to study the relationships among the
sequential tasks so that we can pick the relevant kernels from
previous tasks to simplify the model.

ACKNOWLEDGMENT

The authors gratefully acknowledge the financial sup-
port from the Ministry of Science and Technology, Tai-
wan (MOST 109-2634-F-001-009) and National Center for

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

1609

High-performance Computing (NCHC) of National Applied
Research Laboratories (NARLabs) in Taiwan for providing
computational and storage resources.

REFERENCES

[1] J. L. McClelland, B. L. McNaughton, and R. C. O’reilly, “Why there
are complementary learning systems in the hippocampus and neocortex:
insights from the successes and failures of connectionist models of
learning and memory.” Psychological review, 1995.

[2] B. Pfulb and A. Gepperth, “A comprehensive, application-oriented study
of catastrophic forgetting in dnns,” in Proceedings of the International
Conference on Learning Representations, 2019.

[3] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins,
A. A. Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska
et al., “Overcoming catastrophic forgetting in neural networks,” Pro-
ceedings of the national academy of sciences, 2017.

[4] A. Chaudhry, P. K. Dokania, T. Ajanthan, and P. H. Torr, “Riemannian
walk for incremental learning: Understanding forgetting and intransi-
gence,” in Proceedings of the European Conference on Computer Vision,
2018.

[5] O. Ostapenko, M. Puscas, T. Klein, P. Jahnichen, and M. Nabi, “Learning
to remember: A synaptic plasticity driven framework for continual
learning,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2019.

[6] A. Rosenfeld and J. K. Tsotsos, “Incremental learning through deep
adaptation,” IEEE transactions on pattern analysis and machine intelli-
gence, Early Access, 2018.

[7] G. I. Parisi, X. Ji, and S. Wermter, “On the role of neurogenesis
in overcoming catastrophic forgetting,” in Proceedings of NeurIPS
Workshop on Continual Learning, 2018.

[8] S. C. Y. Hung, C.-H. Tu, C.-E. Wu, C.-H. Chen, Y.-M. Chan, and C.-
S. Chen, “Compacting, picking and growing for unforgetting continual
learning,” in Proceedings of Advances in Neural Information Processing
Systems, 2019.

[9] B. Yang, G. Bender, Q. V. Le, and J. Ngiam, “Condconv: Conditionally
parameterized convolutions for efficient inference,” in Proceedings of
Advances in Neural Information Processing Systems, 2019.

[10] A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick,
K. Kavukcuoglu, R. Pascanu, and R. Hadsell, “Progressive neural
networks,” arXiv, 2016.

[11] A. Mallya and S. Lazebnik, “Packnet: Adding multiple tasks to a single
network by iterative pruning,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2018.

[12] A. Mallya, D. Davis, and S. Lazebnik, “Piggyback: Adapting a single
network to multiple tasks by learning to mask weights,” in Proceedings
of the European Conference on Computer Vision, 2018.

[13] C.-Y. Hung, C.-H. Tu, C.-E. Wu, C.-H. Chen, Y.-M. Chan, and C.-
S. Chen, “Compacting, picking and growing for unforgetting continual
learning,” in Proceedings of Advances in Neural Information Processing
Systems, 2019.

[14] D. Abati, J. Tomczak, T. Blankevoort, S. Calderara, R. Cucchiara, and
B. E. Bejnordi, “Conditional channel gated networks for task-aware
continual learning,” Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2020.

[15] P. Dhar, R. V. Singh, K.-C. Peng, Z. Wu, and R. Chellappa, “Learn-
ing without memorizing,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2019.

[16] J. Schwarz, W. Czarnecki, J. Luketina, A. Grabska-Barwinska, Y. W.
Teh, R. Pascanu, and R. Hadsell, “Progress & compress: A scalable
framework for continual learning,” in Proceedings of the International
Conference on Machine Learning, 2018.

[17] H. Shin, J. K. Lee, J. Kim, and J. Kim, “Continual learning with deep
generative replay,” in Proceedings of Advances in Neural Information
Processing System, 2017.

[18] M. Riemer, T. Klinger, D. Bouneffouf, and M. Franceschini, “Scalable
recollections for continual lifelong learning,” in Proceedings of AAAI
Conference on Artificial Intelligence, 2019.

[19] M. Riemer, I. Cases, R. Ajemian, M. Liu, I. Rish, Y. Tu, and G. Tesauro,
“Learning to learn without forgetting by maximizing transfer and mini-
mizing interference,” in Proceedings of the International Conference on
Learning Representations, 2019.

[20] S. C. Hung, J.-H. Lee, T. S. Wan, C.-H. Chen, Y.-M. Chan, and C.-
S. Chen, “Increasingly packing multiple facial-informatics modules in
a unified deep-learning model via lifelong learning,” in Proceedings of
International Conference on Multimedia Retrieval, 2019.

[21] X. Li, Y. Zhou, T. Wu, R. Socher, and C. Xiong, “Learn to grow:
A continual structure learning framework for overcoming catastrophic
forgetting,” in Proceedings of the International Conference on Machine
Learning, 2019.

[22] X. Wang, F. Yu, Z.-Y. Dou, T. Darrell, and J. E. Gonzalez, “Skipnet:
Learning dynamic routing in convolutional networks,” in Proceedings
of the European Conference on Computer Vision, 2018.

[23] Z. Wu, T. Nagarajan, A. Kumar, S. Rennie, L. S. Davis, K. Grauman, and
R. Feris, “Blockdrop: Dynamic inference paths in residual networks,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018.

[24] S. Gross, M. Ranzato, and A. Szlam, “Hard mixtures of experts for large
scale weakly supervised vision,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2017.

[25] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An im-
perative style, high-performance deep learning library,” in Proceedings
of Advances in Neural Information Processing Systems, 2019.

[26] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for large-
scale machine learning,” in 12th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 16), 2016.

[27] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
Tech. Rep., 2009.

[28] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[29] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie, “The
Caltech-UCSD Birds-200-2011 Dataset,” California Institute of Tech-
nology, Tech. Rep. CNS-TR-2011-001, 2011.

[30] J. Krause, M. Stark, J. Deng, and L. Fei-Fei, “3d object representations
for fine-grained categorization,” in 4th International IEEE Workshop on
3D Representation and Recognition (3dRR-13), Sydney, Australia, 2013.

[31] M.-E. Nilsback and A. Zisserman, “Automated flower classification over
a large number of classes,” in Proceedings of the Indian Conference on
Computer Vision, Graphics and Image Processing, Dec 2008.

[32] B. Saleh and A. Elgammal, “Large-scale classification of fine-art paint-
ings: Learning the right metric on the right feature,” in ICDMW, 2015.

[33] M. Eitz, J. Hays, and M. Alexa, “How do humans sketch objects?” ACM
Trans. Graph., vol. 31, no. 4, 2012.

[34] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016.

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

1610

