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Abstract—In this paper, we focus on incorporating the semantic
information into the structure of academic networks to enrich
the dimensionality of extracted features. We propose a cross-
layer scholar-paper network that can capture the characteristics
of heterogeneous academic networks. In addition, we leverage
the BERT model, which is widely used in the realm of natural
language processing (NLP), to integrate the semantic information
of the scholar papers. We also introduce a new concept, “close
collaborator”, to tackle data leakage issues. This can be used in
many downstream tasks such as automatic detection of conflict of
interests among scholars. Extensive experiments on two datasets
show that our enhanced cross-layer model is both effective and
lightweight, and outperforms three strong baselines. Further
analysis shows that our model successfully combines the semantic
information and the topology of the whole network.

Keywords—Heterogeneous information network (HIN), aca-
demic network, graph convolutional networks (GCN), link pre-
diction, pre-trained language model

I. INTRODUCTION

Heterogeneous information networks (HINs) that differenti-
ate node and edge types are almost everywhere in our daily life:
social networks, road traffic, academic collaboration, etc. By
modeling the entities (nodes) and their interactions as graphs,
researchers have extended the theory of network analysis by
integrating it with machine learning and network embedding
algorithms. Recently, the success of deep learning has boosted
in the graph domain. Specifically, the graph neural networks
(GNNs) are utilize to solve different tasks, such as similarity
search [1], node clustering [2], [3] and link prediction[4], [5]
so as to capture the hidden information behind the data with
non-Euclidean structure. Among the aforementioned tasks,
link prediction plays an important role in recommendation
systems like e-commerce (Amazon, Taobao) and social media
(Facebook, Twitter, Weibo) platform.

In this paper, we focus on academic networks, which is
of crucial significance. By analyzing the academic networks,
we can provide paper recommendations to scholars, explore
the cooperation mode of different academic teams, and help
journals to analyze the conflicts of interest between scholars.

With the recent trend of graph convolutional networks
(GCNs) [6], there are several attempts to combine GCNs with
heterogeneous information networks, such as [7], [8], [9]. To
model heterogeneity in academic networks (papers, authors,
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Fig. 1: An overview of the proposed heterogeneous architecture.
The input consists of a cross-layer network and the semantic
information, which is then fed into a GCN encoder. The encoder
is responsible of learning the hidden representation z for each
node, and the decoder calculates whether certain relationships
exists between two given nodes based on z.

institutions, venues, etc.), the latest Heterogeneous Graph
Transformer (HGT) model [9] adopts node-type and edge-
type dependent parameters to characterize the heterogeneous
attention over each edge, empowering HGT to maintain
dedicated representations for different types of nodes and edges.
However, these existing works on heterogeneous networks only
distinguish the types of different nodes and edges and ignore
that information from different domains can enrich the extracted
features. As for the study of academic networks, current
research mainly perform network analysis using the structure
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features such as meta-path [1] and the more advanced graph
neural network [7], [8]. They have the following characteristics
and disadvantages:

1) Current models, trained on deep neural networks, are of-
ten of high complexity, which demand strong computing
power and cost lots of training time.

2) Manual definition of meta path is labor-intensive and
hard to generalize.

3) Current works on academic networks do not include
semantic information (such as title and abstract of an
article), which can provide rich connotations for the
model from another perspective.

In light of all these, we propose a lightweight cross-layer
model that takes advantage of both network topology and
semantic information, as shown in Fig. 1. We summarize our
contributions as follow:

1) We enrich the dimension of information in traditional het-
erogeneous networks by introducing the content informa-
tion of the article, and propose the Cross-layer Academic
Network with Semantic INformation (CANSIN).

2) We collect and construct two datasets of scholars with
different time spans, including the institutions of scholars,
close collaborators, paper citation information, papers
published in journals, paper titles and abstract contents,
etc.

3) Our simulation results show that the proposed model is
both effective and lightweight. Given the aforementioned
dataset, compared with other heterogeneous graph models
such as HGT, our proposed CANSIN model gains an
average increase of 5% in prediction accuracy while
using 90% fewer parameters.

II. RELATED WORKS

A. Metapath in Academic Network

To capture the features of heterogeneous academic graphs,
one of the classical paradigms is to define and utilize meta
paths to model heterogeneous structures, such as PathSim [1].
The meta-path is a path that defines the coincidence relationship
between two objects in the network. Given a pattern with entity
A and relation R, the path form of Ai to Al+1 is denoted as:

A1
R1−→ A2

R2−→ · · · Rl−→ Al+1. (1)

The meta-path defines a complex relationship between
A1, A2, . . . , Al+1:

R = R1 ◦R2 ◦ · · · ◦Rl (2)

Where ◦ represents the composition operator.
For example, authors can be connected via the

“Author→Paper→Author” (APA) meta-path and the
“Author→Paper→Venue→Paper→Author” (APVPA) mata-
path, while authors and venues can be linked via the
“Author→Paper→Venue” (APV) mata-path. However, the
manual design of meta paths requires specific domain
knowledge, and is thus difficult to generalize to other
problems.

B. Network Embedding

Network embedding is usually designed to represent the
nodes in a network as vectors. Embedding methods usually
are based on the assumption that the similarity between nodes
should be reflected in the learned feature representations. Popu-
lar methods include matrix decomposition [10], [11], DeepWalk
[12], large-scale information network embedding [13] and
node2vec [14]. With the contained attribute information and
topological information of nodes in the network, network
embeddings can be applied to tasks such as classification,
clustering, prediction and generation.

C. Graph Neural Networks and Heterogeneity

The research of GNNs, especially on heterogeneous infor-
mation networks, has attracted much attention in the fields of
machine learning and data mining, and is closely related to
our work.

Specifically, the Graph Convolutional Network (GCN) [6] is
targeted at generating the representation of node v from both
its own feature xv and its neighbor’s (N(v)) feature xu, where
u ∈ N(v), so as to extract the whole representation of the
node by stacking several graphic convolutional layers. Each
layer encapsulates the hidden representation of the node by
aggregating feature information from its neighbors. Through
the K-stack step, the final hidden representation of each node
can contain the characteristic information of the neighbor up
to K. Based on GCN, an unsupervised learning framework
called Variational Graph Auto-encoder (VGAE) is introduced
in [15]. A VGAE framework encodes nodes in the Graph into
a hidden D-dimension vector space using a GCN encoder, and
then reconstructs the original Graph data based on the encoded
hidden information using decoder. This model makes use of
latent variables and is capable of learning interpretable latent
representations for undirected graphs.

Recently, in view of graph neural networks’ (GNNs) success
[16], [17], there are several attempts to adopt deep neural
networks to heterogeneous graphs [7], [8], [9]. A latest
architecture, Heterogeneous Graph Transformer (HGT) [9],
models Web-scale dynamic heterogeneous graphs on Open
Academic Graph (OAG) [18]. Similar to previous works, the
goal of HGT is to aggregate the information of source node
s to obtain the context representation of target node t. This
process can be decomposed into three parts: 1) heterogeneous
mutual attention, 2) heterogeneous message passing, and 3)
target-specific aggregation. The obtained representation for
each node can be then utilized in many downstream tasks such
as node clustering and link prediction.

D. Sentence Embedding and Pre-trained Model

In word embedding, each word is mapped to a low-
dimensional vector. The characteristics of each word are
preserved in the latent space by aligning similarity in corpus
with vector dot product similarity.

Usually, a pre-trained model on a large corpus needs to
be introduced for generating word and sentence embeddings.
Popular word-level pre-trained models include word2vec [19]
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and GloVe [20]. Word embedding achieves huge success,
but still fails to extract semantics and logics at sentence or
paragraph level. Recently, researchers start to focus on pre-
training at higher level. Some successful attempts include
Embedding from Language Models (ELMo) [21] proposed
by AllenNLP and GPT model [22] proposed by OpenAI.

Bidirectional Encoder Representation form Transformers
(BERT) [23] is a revolutionary language representation model
proposed by Google AI, which is the first truly bidirectional
unsupervised model pre-trained on massive plain text data.
BERT is trained with two tasks: (1) masked language modeling,
i.e., fill in the blanks in one sentence; (2) next sentence
prediction, i.e., determine whether one sentence is the next
sentence of another. In summary, BERT model generates a
vector representation for each sentence input. This vector is
contextualized, and maintains the semantics of the sentence,
which ca be applied to downstream tasks, such as link
prediction. It brings natural language processing (NLP) to
a new era by making its massively pre-trained language model
readily available to all researchers, saving time, resources and
knowledge.

III. THE PROPOSED CANSIN FRAMEWORK

A. Modeling of Cross-layer Academic Networks

Motivation Taking a certain scholar C as an example,
suppose we have the following information:
• the institution in which scholar C works, and possibly his

specific laboratory as affiliations;
• the articles he has published, illustrated as orange circles

outlined with solid black lines in Fig. 2;
• the basic information of the paper, such as the year of

publication, the journal, the title of the article and the
abstract information;

• the references of this article, namely the lines inside the
orange circle in Fig. 2; and

• interaction between scholar C and other scholars, such as
close collaborators.

Based on the above information, we can build the academic
network in Fig. 2 with a cross-layer model and abundant
semantic information.

Fig. 2 is a schematic diagram of the modelling of our
academic network. The model is divided into two layers, with
blue-green triangles at the top layer representing the network
of scholars and orange circles below forming the network of
academic papers.

The upper layer Each blue-green triangle (node) in the top
network refers to one scholar. For each link in this layer and
its two corresponding scholars, depending on their affiliations
and their closeness in cooperation, their relationship can be
classified into three types (r1, r2, r3):
r1- they are affiliated with the same institute but not the

same lab;
r2- they are in the same lab in the same institute;
r3- they have co-authored at least n articles in m consecutive

years and are close collaborators.
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Fig. 2: A two-layer academic network where both semantic
information and network structure are considered. Blue-green
triangles at the upper layer form the network of scholars, and
orange circles at the lower layer form the network of academic
papers. The two networks are connected by a publishing
relationship.

Note that r1 and r2 are mutually exclusive, but r3 and can
be superimposed on r1 or r2. Take node C in Fig. 2 as an
example, from left to right he/she:

• works closely with scholar X, so that only r3 exists
between node C and X;

• works in the same lab as scholar Y, but have not
established a close collaboration relationship, so that only
r2 exists between node C and Y; and

• belongs to the same institution with Scholar Z but not in
the same lab, and are close collaborators, so that both r1
and r3 exist between node C and Z.

The lower layer Each orange node in the lower layer
corresponds to a published scholar paper, and each node is
represented by word vectors of the corresponding article’s title
and abstract, initially generated using BERT. A link between
two nodes in the lower layer represents paper-paper citation
relationship (r5), and a link connecting a node in the upper
layer and a node in the lower layer represents the scholar-paper
publication relationship (r4).

B. Task Definition

In total, there are five types of links defined in the network.
Namely, three relationships among scholars (r1, r2, r3), author-
paper publishing relationship (r4), and paper-paper citation
relationship (r5). The task of our work is to predict all five
possible link relationships in cross-layer academic networks.

We formally define our task as follow: for each node vi ∈
V = {Vscholar, Vpaper}, we have the labeled edges (relation-
ships) rij ∈ R = {r1, r2, r3, r4, r5} with its neighbour vj ∈
Nvi , forming a graph G = (V,R). For each triplet (vi, rij , vj)
and all possible relation types rij ∈ {r1, r2, r3, r4, r5}, the
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Fig. 3: One layer of our GCN encoder that is responsible of
updating the hidden state of node C at the (k+1)-th layer based
on the representations at the k-th layer. The annotations are
consistent with Fig. 2 and Eq. 4.

model should generate a binary prediction

P ij
r = P (rij |G, x(vi), x(vj)) ∈ {0, 1} (3)

as accurately as possible, to predict whether or not rij exists
as r1, r2, r3, r4, and r5 respectively. Here x(vi) and x(vj) are
the feature representations node of vi and vj . Among them,
the feature vectors of scholars are randomly initialized, while
the those of academic paper are initialized by the word vectors
obtained from BERT [23].

C. System Design

Our system design is inspired by a multi-drug framework,
Decagon [24], which is proposed to predict polypharmacy
side effects with graph convolutional networks. Motivated by
the Decagon model, we propose an encoder-decoder based
Cross-layer Academic Network with Semantic INformation
(CANSIN).

Graph Convolutional Encoder In the graph encoder, the
proposed model takes the cross-layer network G and its
additional node feature vector xv as input, and generates a
d dimensional node embedded zi ∈ Rd for each node in the
graph (scholars and academic papers).

Our graph encoder is a stack of two GCN layers. The
encoder propagates the adjacent node feature information
between the graph edges while considering the type of edge
r ∈ r1, r2, r3, r4, r5). As is shown in Fig. 3, each single layer
of this neural network model adopts the following form:

h
(k+1)
i = ReLU

∑
r

∑
j∈N i

r

cijr W
(k)
r h

(k)
j + cirh

(k)
i

 ,

(4)

where h(k+1)
i is the hidden state of vi at the (k+1)-th layer, d(k)

is the dimension of the k-th layer, and cijr , c
i
r are normalization

factors. Weight W(k)
r , dependent on r, is the trainable matrix

to be learned. N i
r is the set of vi’s neighbour that connected

via r, with r ∈ {r1, r2, r3, r4, r5} indicating the edge type. By
taking sum over N i

r and r, the graph encoder updates hki by
aggregating the feature vectors of its neighbors depending on
relation types.

Such operation is then applied K times in a row so
that the encoder can effectively convolve the information in
the K-th neighborhood into the embedded representation of
the current node. At the same time, for each type of link
relationship, a specific transformation matrix is trained to keep
the heterogeneity.

Graph Decoder Based on the node embedding obtained
from the above graph encoder, the decoder reconstructs labeled
edges. Specifically, it generates a probability for each possible
edge based on the node vector of the last hidden layer from
the encoder (zi).

For each candidate triplet
(
vi, r

ij , vj
)
, the decoder predicts

its likelihood using a scoring function g
(
vi, r

ij , vj
)
. According

to zi and zj , the scoring function g yields a continuous score
(∈ [0, 1]) indicating the probability that nodes vi and vj interact
through the candidate relationship type rij . The decoder can
be written as

pijr = σ(g
(
vi, r

ij , vj
)
) = σ(zTi Mrzj), (5)

where Mr is a type-dependent trainable parameter matrix that
models interactions between two hidden representations, and
σ is a sigmoid function that introduces non-linearity to the
model.

Finally, we need to binarize the continuous probability
that falls between 0 and 1 for prediction and evaluation
purposes. We set the threshold as 0.5 and map all pijr s
(r ∈ {r1, r2, r3, r4, r5}) to binary ones.

Loss Function During the training step, we adopt cross-
entropy loss to optimize the parameters. The loss function can
be written as follows:

Jr(i, j) = − logP ij
r − En∼prij log

(
1− P in

r

)
. (6)

For each training iteration, only one type of relation r is
optimized. Specifically, iteration No. (5N + k) is responsible
for relation type r = rk, where N is an arbitrary natural number
and k ∈ {1, 2, 3, 4, 5}.

The final loss function of all relation types Rk, k ∈
{1, 2, 3, 4, 5} can be written as:

J =
∑
r∈Rk

Jr(i, j). (7)

D. Evaluation Metrics

We choose three evaluation indexes most suitable for
link prediction and our specific task: AUROC, AUPRC, and
accuracy, where acccuracy is defined as the number of correct
predictions over the total sample size. AUROC is the area under
the ROC curve, and AUPRC is calculated as the area under the
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PRC curve. The ROC curve shows the tradeoff between true
positive rate (TPR, on the x-axis) and false positive rate (FPR,
on the y-axis) at different decision thresholds. The x-axis of
the PRC is precision and the y-axis is recall.

IV. EXPERIMENTAL SETUP

A. Dataset construction

For data constraction, we leverage the Aminer citation
dataset1, which includes academic papers from DBLP, ACM,
etc. In order to obtain the corresponding cross-layer academic
network, we preprocess and then manually annotate the citation
dataset on Aminer:

1) Close Collaboration: Since all co-authorship information
has been included in author-paper links, we construct a “close
collaboration” relationship, which is impossible to directly
infer from existing links. To this end, we include temporal
information - if and only if scholar A and Scholar B have
coauthored at least m articles for n consecutive years, they are
defined as close collaborators. In this experiment, we set n to
2 and m to 2 in order to avoid data leakage issues.

2) Affiliation: Although the Aminer dataset provides the
author’s affiliation information, the descriptions are all un-
structured text provided by individual scholars. Even for the
same laboratory from the same university, the texts filled
out by authors vary. We therefore use keyword matching to
group authors in coarse granularity first, and then manually
mark specific labs affiliated to more than 70 major research
institutions.

3) Overall Statistics: We obtained two datasets of different
sizes in the data mining field, one is the academic network
with papers published on SIGKDD from 2002 to 2007, the
other is the academic network with papers published on several
conferences in the data mining field from 2002 to 2010. The
specific information is as follows:

i. SIGKDD
- Including academic papers published at SIGKDD only
- year: 2002 ∼ 2007
- 1699 authors and 876 articles
- 70 influential institutions and 8 specific laboratories
- author-author relationship: 733 affiliation relations (r1

and r2) and 202 close collaboration relations (r3)
- 2639 author-paper relations (r4)
- 780 paper-paper citations (r5)

ii. Data Mining (DM)
- Including academic papers published at several data

mining related venues.
- year: 2002 ∼ 2010
- 6887 authors and 3695 articles
- 74 influential institutions and 34 specific laboratories
- author-author relationship: 1836 affiliation relations (r1

and r2) and 1036 close collaboration relations (r3)
- 11110 author-paper relations (r4)
- 3350 paper-paper citations (r5)

1https://www.aminer.cn/citation

TABLE I: Hyper-parameter settings

Name Value

Negative sample size 1
Dropout rate 0.1
Learning rate 0.075

Batch size 32
Train: valid: test 77.5:7.5:15

B. Baseline Models

Our experiment has three baseline models: PathPredict,
Heterogeneous Graph Transformer (HGT) and Decagon. In this
section, we first introduce the PathPredict method, and then
discuss some adjustments to the latter two, which have already
been introduced in Section II and III, for fair comparison.

PathPredict We follow the steps of PathPredict, a supervised
metapath based relationship prediction model proposed in [25].
First, metapath based topological features are extracted from
the heterogeneous academic network, such as path count and
random walk. Then, we use a supervised logistic regression
model to learn the best weights associated with different
features in deciding the relationships.

HGT In addition to the attention mechanism and information
transmission and integration, HGT also applies 1) relative
temporal encoding (RTE) to process the temporal information,
and 2) sub-sampling techniques to deal with web-scale networks
efficiently. Considering the fact that our dataset is static and
relatively small in size, the RTE and sub-sampling techniques
are not introduced. The adjusted HGT model is composed
of heterogeneous mutual attention, message passing and
aggregation.

Decagon Considering the fact that a large number (963)
of side effects of polypharmacy are sparsely and unevenly
distributed in the drug-protein network, the original Decagon
model adopts AP@50 (Average percision at top 50) as
evaluation index. For the link prediction task in our academic
network, where there are a total of 5 possible relationships,
AP@50 is no longer suitable. For each of the five relationships,
we chose AUROC (area under ROC curve), AUPRC (area
under PRC curve) and accuracy as our evaluation metrics, as
mentioned in Section III-D.

C. Implementation Details

We manually tune the hyper-parameters and list the best
values of our hyper-parameters in TABLE I.

In order to find the best dimension of the two hidden layers
in the decoder step, we try three combinations, i.e. 16-8,
32-16 and 64-32. We then plot the training loss, validation
accuracy and validation AUC to select the best combination
of hidden dimensions. Due to space limit, we only show one
representative group in Fig. 4. As can be seen, the accuracy
and AUC values on the validation set of the first model, with
dimension 16-8, are about 80% and 75%, while the training
error is at least 0.3. The accuracy and AUC of the second
model, with the dimension of 32-16, are 80% ∼ 85%. The
training loss is also lower. The performance of the last model,
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SIGKDD 16-8 SIGKDD 32-16 SIGKDD 64-32

Fig. 4: Learning curves of close collaborator relationship on the SIGKDD dataset

TABLE II: Performance on SIGKDD dataset

Model performance
on SIGKDD dataset CANSIN PathPredict HGT Decagon

AUROC 0.927 0.826 0.923 0.889
AUPRC 0.924 0.806 0.885 0.871r1

Accuracy 0.853 0.717 0.827 0.781
AUROC 0.714 0.613 0.645 0.701
AUPRC 0.645 0.632 0.662 0.724r2

Accuracy 0.609 0.520 0.565 0.620
AUROC 0.908 0.819 0.861 0.805
AUPRC 0.911 0.812 0.849 0.801r3

Accuracy 0.870 0.738 0.801 0.779
AUROC 0.851 0.724 0.784 0.790
AUPRC 0.858 0.727 0.741 0.782r4

Accuracy 0.805 0.652 0.758 0.754
AUROC 0.785 0.760 0.701 0.710
AUPRC 0.741 0.660 0.570 0.576r5

Accuracy 0.799 0.682 0.773 0.761

with dimension of 64-32, outperforms the former two by hitting
over 85% on accuracy and 90% on AUC.

Based on our simulation results, we then conclude that
as the dimension of the hidden layer increases, the model
effect gradually gets better. However, when we further increase
the model dimension, the improvement in performance is not
significant. Therefore, a 64-32 combination of hidden layer
dimensions is ideal.

V. RESULTS AND ANALYSIS

A. Main results

Recall that we construct two datasets from the Aminer
citation dataset and repeat all the experiments four times to
avoid random factors. For each dataset, the mean of three
indexes: AUROC, AUPRC and accuracy of all models are
reported in TABLE II and TABLE III, respectively..

As can be seen, our CANSIN model achieves satisfactory
results on most relation prediction tasks. For example, the
accuracy of the our model in relationship (r1) reached 85.3%
and 87.5%, which is 7.2% and 2.5% higher than Decagon. The
accuracy of the enhanced model in the scholar-paper authorship
(r4) is 80.5% and 80.8%, i.e. 5.0% and 3.3% higher than
Decagon, and 4.6% and 1.7% higher than HGT. PathPredict
on the other hand gets relatively low scores as it is merely a

TABLE III: Performance on Data Mining (DM) dataset

Model performance
on DM dataset CANSIN PathPredict HGT Decagon

AUROC 0.956 0.857 0.937 0.943
AUPRC 0.952 0.846 0.945 0.933r1

Accuracy 0.876 0.754 0.858 0.851
AUROC 0.724 0.635 0.744 0.617
AUPRC 0.685 0.609 0.801 0.666r2

Accuracy 0.661 0.551 0.550 0.571
AUROC 0.972 0.823 0.905 0.913
AUPRC 0.969 0.816 0.908 0.908r3

Accuracy 0.923 0.732 0.862 0.866
AUROC 0.840 0.717 0.787 0.776
AUPRC 0.835 0.693 0.738 0.747r4

Accuracy 0.808 0.649 0.790 0.775
AUROC 0.857 0.744 0.799 0.816
AUPRC 0.773 0.696 0.698 0.712r5

Accuracy 0.844 0.733 0.815 0.806

regression model of observed metapath features. Among the
five tasks of link prediction, our proposed cross-layer CANSIN
model is consistently better than the other three baseline models,
with exception only for the r2 relationship. We notice that the
total sample size of relationship r2 is in the order of hundreds,
with even fewer samples in the test set, meaning that one single
correct (or wrong) prediction can have a significant impact on
the final performance.

Based on the results in TABLE II and TABLE III, we observe
that

1) Our proposed graph convolutional encoder and type-
dependent decoder are the best at capturing node features
and link prediction tasks.

2) After adding semantic information into heterogeneous
network (CANSIN), the performance for various relation
types are improved. It indicates that semantic information
(one representative type of multi-source information) is
highly useful for current settings.

The significance of semantic information After adding
semantic information to articles, the improvement in the smaller
dataset (SIGKDD) is much more obvious than that in larger
dataset (Data Mining). A possible explanation is that compared
with the smaller dataset, the Data Mining dataset contains richer
amount of direct and latent information, hence the semantic
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information from an unseen domain makes less contribution to
the overall richness of data. Namely, for smaller datasets, the
introduction of semantic information will greatly increase the
dimensionality of input data and thereby improves the accuracy
of the model more significantly.

B. Complexity Analysis

To further understand the advantages and disadvantages of
CANSIN compared to other deep learning models, we compute
the number of parameters of CANSIN, HGT can Decagon
in TABLE IV. Note that although CANSIN leverages the
embeddings obtained from BERT, we exclude the parameters of
pre-trained BERT because the operation to obtain the sentence
embedded representation is one-off and should be regarded as
the initialization or pre-processing part.

TABLE IV: Statistics of model parameter size

Model CANSIN Decagon HGT

No. Params 0.546 M 0.504 M 7.44 M

The number of parameters of the enhanced model is 546,000,
which is about 40,000 more than that of the Decagon model,
but it is far smaller than the 7.44-million parameter size of the
HGT model. In other words, the complexity and training time
of CANSIN or Decagon is less than 10% of that of HGT.

C. Comparison and Discussion

According to section V-A and section V-B, both HGT and
Decagon are suitable for cross-network link prediction. The
modified HGT is composed of message passing and aggregation,
and the advanced attention mechanism. On the other hand, the
CANSIN/Decagon model is a simple combination of graph
encoder and decoders. The HGT model, despite its more
complex design and a larger number of parameters (a stronger
fitting ability), performs moderately in this task – its prediction
performance on 5 out of 10 relation types is better than that
of the Decagon model. In this section, we further analyze the
features of CANSIN, Decagon and HGT.

First, the attention mechanism and parameter size of HGT
does not give full play to its advantages. In theory, the
addition of attention should intuitively help HGT to learn the
weight of each feature, and thus help HGT to more accurately
locate important information. However, the real-world meaning
of node connections in the current network is very clear
(close collaborator, co-authorship, reference, paper publication
relationship, etc.). Whether two nodes are interconnected and
the type of link can naturally transfer the significance carried
in each node.

Second, in our academic network, there are more than one
edge types between certain nodes. Our type-dependent bilinear
decoder in the CANSIN model is specially designed to predict
the existence of multiple relation types. Besides, the possible
5 edge types are more densely and uniformly distributed. Our
proposed CANSIN model is most suitable for such topology.
HGT does not support high dimensional heterogeneity in edge

types, while the Decagon model is targeted at link prediction
on a skewed dataset with more than 900 candidates.

Lastly, the original HIN models (our two baselines) only
considers network features, while the CANSIN model takes
advantage of both network features and semantic meanings.
Based on the results shown in TABLE II and TABLE III,
CANSIN has an average advantage of 5.9% over Decagon and
an average advantage of 5.0% over HGT. We can conclude
that the content of each article is definitely crucial because it
contributes to a more diverse dataset with richer perspectives.

D. Visualization of Article Embeddings

To get a more intuitive understanding of the learning process,
we select 2 groups of articles and plot the change of their node
embeddings before and after the training stage. Specifically, we
map the 768-dimensional vectors to 2-dimensional space using
the t-SNE method, and use arrows to indicate the direction of
changes. For the first group, we select one academic paper as
center node, along with its nine neighbours: three references
(Ref 1 ∼ 3 in Fig. 5(a)) and six future works that cite this
article (Future work 1 ∼ 6 in Fig. 5(a)). For the second group,
we randomly select 10 articles that do not each other and plot
the changes of embeddings for each node in Fig. 5(b).

For each node representation, the initial embedding (obtained
from pre-trained BERT) is purely semantic oriented. while
the final node embedding contains both semantic information
of the articles and the structure of whole academic network.
As can be seen in Fig. 5(a), the sub-graph becomes more
concentrated because the 10 nodes are all inter-connected.
Their representations becomes closer after training, where the
model learns to incorporate the network topology with the
original semantic features. In contrast, the nodes in Fig. 5(b)
move much more stochastically, as they are randomly selected
and do not have any correlation, meaning that our model indeed
learns the topology of the academic network in a correct way.

VI. CONCLUSION

This paper focuses on link prediction tasks in academic
networks by fusing the semantic information with cross-
layer networks. We obtain the embeddings of titles and
abstracts of academic papers using BERT, and then incorporate
these contextualized embeddings to the encoder-decoder-based
CANSIN model. In addition, our model is not limited to the
realm of academic networks, and can be easily extended to
other domains, such as social networks and molecular networks
as long as there are extra features at hand.

To the best of our knowledge, we are the first to define close
collaborators based on temporal information. This concept
can not be simply derived from the affiliation or cooperative
papers and effectively avoids data leakage problems. Finally, the
enhanced cross-layer model, CANSIN, achieves good results
on the above datasets – the accuracy of CANSIN is in average
5.9% ( or 5.0%) higher than that of Decagon (or HGT). The
complexity analysis also shows that CANSIN is lightweight
and costs relatively small computational resources.
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Fig. 5: Comparison3 of how the node embeddings of (a)
10 inter-connected and (b) 10 randomly sampled articles
change before and after training. We map the 768-dimensional
vectors to 2-dimensional space using the t-SNE method, and
use arrows to indicate the direction of changes. The bigger
stars/triangles/dots represent the updated embeddings while
the smaller ones represent the initial ones. We also plot the
network topology on the right-bottom corner of each sub-figure.
The solid arrows link the center article with its references, and
the dotted arrows link the center article with future works that
cite itself. Comparatively, the points in sub-figure (a) gather
together after training, while the nodes move stochastically in
sub-figure (b).

Future directions include building dynamic cross-layer
networks and exploring real-world applications of the CANSIN
model. For example, the link prediction of close collaborators
automatically analyzes whether there is conflict of interest
between two scholars, which can therefore facilitate the
automatic assignment of conference/journal reviewers.
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