
NITES: A Non-Parametric Interpretable Texture
Synthesis Method

Xuejing Lei, Ganning Zhao and C.-C. Jay Kuo
University of Southern California, USA

E-mail: {xuejing, ganningz, jckuo}@usc.edu

Abstract—A non-parametric interpretable texture synthesis
method, called NITES, is proposed in this work. Although
automatic synthesis of visually pleasant texture can currently be
achieved by deep neural networks, the associated generation mod-
els are mathematically intractable and their training demands
higher computational cost. NITES offers a new texture synthesis
solution to address these shortcomings. NITES is mathematically
transparent and efficient in training and inference. The input is
a single exemplary texture image. The NITES method crops out
patches from the input and analyzes the statistical properties of
these texture patches to obtain their joint spatial-spectral repre-
sentations. Then, the probabilistic distributions of samples in the
joint spatial-spectral spaces are characterized. Finally, numerous
texture images that are visually similar to the exemplary texture
image can be generated automatically. Experimental results are
provided to show the superior quality of generated texture images
and efficiency of the proposed NITES method in terms of both
training and inference time.

I. INTRODUCTION

Automatic synthesis of visually pleasant texture that resem-
bles exemplary texture finds applications in computer graphics.
Texture synthesis has been studied for several decades since it
is also of theoretical interest in texture analysis and modeling.
Texture can be synthesized pixel-by-pixel [1], [2], [3] or
patch-by-patch [4], [5], [6], [7], [8] based on an exemplary
pattern. For the pixel-based synthesis, a pixel conditioned on
its squared neighbor was synthesized using the conditional
probability and estimated by a statistical method in [2].
Generally, patch-based texture synthesis yields higher quality
than pixel-based texture synthesis. Yet, searching the whole
image for patch-based synthesis is extremely slow [2], [5]. To
speed up the process, small patches of the exemplary texture
can be stitched together to form a larger region [4], [6], [9].
Although these methods can produce texture of higher quality,
the diversity of produced textures is limited. Besides texture
synthesis in the spatial domain, texture images from the spatial
domain can be transformed to the spectral domain with certain
filters (or kernels), thus exploiting the statistical correlation of
filter responses for texture synthesis. Commonly used kernels
include the Gabor filters [10] and the steerable pyramid filter
banks [11].

We have witnessed amazing quality improvement of syn-
thesized texture over the last five to six years due to the
resurgence of neural networks. Texture synthesis based on
deep learning (DL), such as Convolutional Neural Networks
(CNNs) and Generative Adversarial Networks (GANs), yield
visually pleasing results. DL-based methods learn transform

kernels from numerous training data [12], [13], [14], [15],
[16], [17], [18] through end-to-end optimization. However,
these methods have two main shortcomings: 1) a lack of math-
ematical transparency and 2) a higher training and inference
complexity. To address these drawbacks, we investigate a non-
parametric and interpretable texture synthesis method, called
NITES.

NITES consists of three steps. First, it analyzes the exem-
plary texture to obtain its joint spatial-spectral representations.
Second, the probabilistic distributions of training samples
in the joint spatial-spectral spaces are characterized. Finally,
new texture images are generated by mimicking probabilities
of source texture images. In particular, we adopt a data-
driven transform, known as the channel-wise (c/w) Saab trans-
form [19], which provides a powerful representation in the
joint spatial-spectral space. The c/w Saab transform is derived
from the successive subspace learning (SSL) theory [20], [21],
[22], [23]. We will show that NITES can generate high quality
texture at lower complexity.

The rest of the paper is organized as follows. The framework
of successive subspace embedding and generation is described
in Sec. II. The NITES method is proposed in Sec. III. Exper-
imental results are shown in Sec. IV. Concluding remarks are
given in Sec. V.

II. SUCCESSIVE SUBSPACE EMBEDDING AND
GENERATION

In this section, we explain the idea behind the NITES
method, which is called the successive subspace embedding
and generation principle. Consider an input signal space
denoted by S̃0, and a sequence of subspaces denoted by
S̃1, · · · , S̃n. Their dimensions are denoted by D̃0, D̃1, · · · ,
D̃n. They are related with each other by the constraint –
any element in S̃i+1 is formed by an affine combination of
elements in S̃i, where i = 0, · · · , n− 1.

An affine transform can be converted to a linear transform
by augmenting vector ã in S̃i via a = (ãT , 1)T . We use Si

to denote the augmented space of S̃i and Di = D̃i +1. Then,
we have the following embedding relationship

Sn ⊂ Sn−1 ⊂ · · · ⊂ S1 ⊂ S0, (1)

and
Dn < Dn−1 < · · · < D1 < D0. (2)

This concept is illustrated in Fig. 1.

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

1698978-988-14768-8-3/20/$31.00 ©2020 APSIPA APSIPA-ASC 2020

Subspace n-1 Subspace nSubspace 1

S0
… Sn Sn

Sn-1S1

Subspace Embedding

S1 S0

Source Space

……

E0
1 𝐸1

2 𝐸𝑛−2
𝑛−1 𝐸𝑛−1

𝑛

𝐺𝑛
𝐺𝑛
𝑛−1𝐺𝑛−1

𝑛−2𝐺2
1𝐺1

0

Fig. 1. Illustration of the concept of successive subspace embedding and generation. A sequence of subspace S1, . . . , Sn is successively embedded into source
space S0 through subspace embedding processes indicated by blue arrows. Red arrows indicate subspace generation processes.

We use texture embedding and generation as an example
to explain this concept. To generate homogeneous texture, we
collect a number of texture patches cropped out of exemplary
texture as the input set. Suppose that each texture patch has
three RGB color channels, and a spatial resolution N × N .
The input set then has a dimension of 3N2 and its augmented
space S0 has a dimension of D0 = 3N2 + 1. If N = 32,
we have D0 = 3073 which is too high to find an effective
generation model directly.

To address this challenge, we build a sequence of embedded
subspaces S0, S1, · · · , Sn with decreasing dimensions. We call
S0 and Sn the ”source” space and the ”core” subspace, respec-
tively. We need to find an effective embedded subspace Si+1

from Si, and such an embedding model is denoted by Ei+1
i .

Proper subspace embedding is important since it determines
how to decompose an input space into the direct sum of two
subspaces in the forward embedding path. Although we choose
one of the two for further processing, we also need to record
the probabilistic relationship of the two decomposed subspaces
so that samples of diversity and fidelity can be generated in
the reverse generation path. This forward embedding process
is called Successive Subspace Embedding (SSE).

In the reverse generation path, we begin with the generation
of samples in Sn by studying its own statistics. This is
accomplished by generation model Gn. The process is named
Core Subspace Generation (CSG). Then, conditioned on a
generated sample in Si+1, we generate a new sample in Si

through a generation model denoted by Gi
i+1. This process is

called Successive Subspace Generation (SSG). In Fig. 1, we
use blue and red arrows to indicate a sequence of subspace
embedding and generation processes, respectively. This idea
can be implemented as a non-parametric method since we
can choose subspaces S1, · · · , Sn, flexibly in a feedforward
manner. One specific design is elaborated in the next section.

III. PROPOSED NITES METHOD

The proposed NITES method is presented in this sec-
tion. To begin with, we provide a system overview of the
NITES method in Sec. III-A. Next, we discuss the Successive
Subspace Embedding (SSE) scheme based on the c/w Saab
transform in Sec. III-B. After that, we examine the problem
of Core Subspace Generation (CSG) in Sec. III-C. Finally, we

describe the Successive Subspace Generation (SSG) process
in Sec. III-D.

A. System Overview

An overview of the NITES method is given in Fig. 2.
The exemplary color texture image has a spatial resolution
of 256 × 256 and three RGB channels. We are interested in
generating multiple texture images that are visually similar to
the exemplary texture. By randomly cropping texture patches
of size 32×32 out of the source image, we obtain a collection
of texture samples, which serves as the input to the NITES
system. The dimension of these patches is 32×32×3 = 3072.
Their augmented vectors form source space S0. The NITES
system is designed to generate texture patches of the same size
that are visually similar to samples in S0. This is feasible if we
can capture both global and local patterns of these samples.
There are two paths in Fig. 2. The blue arrows go from left
to right, denoting the successive subspace embedding process.
The red arrows go from right to left, denoting the successive
subspace generation process. We can generate as many texture
patches as desired using this procedure. In order to generate a
texture image of a larger size, we perform image quilting [4]
based on synthesized patches.

B. Successive Subspace Embedding (SSE)

The global structure of an image (or an image patch) can be
well characterized by spectral analysis, yet it is weak in cap-
turing local detail such as boundaries between regions. Joint
spatial-spectral representations offer an ideal solution to the
description of both global shape and local detail information.
Embedding model E1

0 finds a proper subspace, S1, in S0 while
embedding model E2

1 finds a proper subspace, S2, in S1. As
shown in Fig. 2, NITES applies two-stage transforms. They
correspond to E1

0 and E2
1 , respectively. Specifically, we can

apply the c/w Saab transform in each stage to achieve the
Successive Subspace Embedding (SSE) task. In the following,
we provide a brief review on the Saab transform [22] and the
c/w Saab transform [19].

We partition each input patch into non-overlapping blocks,
each of which has a spatial resolution of I0 × I0 with K0

channels. We flatten 3D tensors into 1D vectors, and decom-
pose each vector into the sum of one Direct Current (DC)
and multiple Alternating Current (AC) spectral components.

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

1699

…
…

…
…

…
…

.

.

.

Cluster 0

𝑝0

𝑝𝑁−1

Cluster 𝑁 − 1

……

Core Subspace Generation 256x256

Collected Patches

Successive Subspace Generation

S0 S1 S2

𝐼0 × 𝐼0 , 𝐾0

𝐼1 × 𝐼1 , 𝐾1

𝐺1
0

𝐺2
1

𝐺2

𝐸0
1 𝐸1

2
𝐾2

Fig. 2. An overview of the proposed NITES method. A number of patches are collected from the exemplary texture image, forming source space S0. Subspace
S1 and S2 are constructed through embedding model E1

0 and E2
1 . Input filter window sizes to Hop-1 and Hop-2 are denoted as I0 and I1. Selected channel

numbers of Hop-1 and Hop-2 are denoted as K1 and K2. A block of size Ii × Ii of Ki channels in space/subspace Si is converted to the same spatial
location of Ki+1 channels in subspace Si+1. Red arrows indicate the generation process beginning from core subspace generation followed by successive
subspace generation. The model for core subspace generation is denoted as G2 and the models for successive subspace generation are denoted as G1

2 and
G0

1.

The DC filter is a all-ones filter weighted by a constant.
AC filters are obtained by applying the principal component
analysis (PCA) to DC-removed residual tensor. By setting
I0 = 2 and K0 = 3, we have a tensor block of dimension
2 × 2 × 3 = 12. Filter responses of PCA can be positive
or negative. There is a sign confusion problem [20], [21] if
both of them are allowed to enter the transform in the next
stage. To avoid sign confusion, a constant bias term is added
to all filter responses to ensure that all responses become
positive - leading to the name of the ”subspace approximation
with adjusted bias (Saab)” transform. The Saab transform is
a date-driven transform, which is significantly different from
traditional transforms (e.g. Fourier and wavelet transforms)
which are data independent. We partition AC channels into two
low- and high-frequency bands. The energy of high-frequency
channels (shaded by gray color in Fig. 2) is low and they
are discarded for dimension reduction without affecting the
performance much. The energy of low-frequency channels
(shaded by blue color in Fig. 2) is higher. For a tensor of
dimension 12, we have one DC and 11 AC components.
Typically, we select K1 = 6 to 10 leading AC components
and discard the rest. Thus, after E1

0 , one 12D tensor becomes
K1-D vector, which is illustrated by dots in subspace S1. The
K1-D response vectors are fed into the next stage for another
transform.

The channel-wise (c/w) Saab transform [19] exploits the
weak correlation property between channels so that the Saab
transform can be applied to each channel separately (see
the middle part of Fig. 2). The c/w Saab transform offers

an improved version of the standard Saab transform with a
smaller model size.

One typical setting used in our experiments is shown below.

• Dimension of the input patch (D̃0): 32× 32× 3 = 3072;
• Dimension of subspace S̃1 (D̃1): 16 × 16 × 10 = 2560

(by keeping 10 channels in Hop-1);
• Dimension of subspace S̃2 (D̃2): 8× 8× 27 = 1728 (by

keeping 27 channels in Hop-2).

Note that the ratio between D̃1 and D̃0 is 83.3% while that
between D̃2 and D̃1 is 67.5%. We are able to reduce the
dimension of the source space to that of the core subspace
by a factor of 56.3%. In the reverse path indicated by red
arrows, we need to develop a multi-stage generation process.
It should also be emphasized that users can flexibly choose
channel numbers in Hop-1 and Hop-2. Thus, NITES is a non-
parametric method.

The first-stage Saab transform provides the spectral infor-
mation on the nearest neighborhood, which is the first hop of
the center pixel. By generalizing from one to multiple hops,
we can capture the information in the short-, mid- and long-
range neighborhoods. This is analogous to increasingly larger
receptive fields in deeper layers of CNNs. However, filter
weights in CNNs are learned from end-to-end optimization via
backpropagation while weights of the Saab filters in different
hops are determined by a sequence of PCAs in a feedforward
unsupervised manner.

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

1700

C. Core Subspace Generation (CSG)

We begin with the generation of samples in Sn, which
is accomplished by generation model Gn, in the reverse
generation path. In the current case, n = 2. We need to
characterize the sample statistics in core subspace S2 for the
purpose of synthesis. The statistics of a large texture image
can be complicated. We leverage the semi-periodic property
of texture so as to focus on patches of size 32 × 32, whose
statistics can be analyzed more easily.

After the two-stage c/w Saab transform, the dimension of
S2 is typically less than 2000. S2 is in form of c/w Saab
coefficients. We flatten these coefficients into a 1D vector,
denoted by z, which is a random vector in S2. To simplify
the distribution characterization of a high-dimensional random
vector, we cluster training samples into clusters and transform
random vectors in each cluster into a set of independent
random variables. This is inspired by the divide-and-conquer
principle; namely, breaking down a difficult problem into
several easier sub-problems and solving them individually.

We adopt a hierarchical K-Means clustering algorithm [24]
to cluster the training samples of z into N clusters, which are
denoted by {Ci}, i = 0, · · · , N − 1. Rather than modeling
probability P (z) directly, we model condition probability
P (z | z ∈ Ci) with a fixed cluster index. The probability,
P (z), can be written as

P (z) =

N−1∑
i=0

P (z | z ∈ Ci) · P (z ∈ Ci), (3)

where P (z ∈ Ci) is the percentage of data points in cluster
Ci. It is abbreviated as pi, i = 0, . . . , N−1 (see the right part
of Fig. 2).

Typically, a set of independent Gaussian random variables
is used for image generation. To do the same, we need to
convert a collection of correlated random vectors into a set
of independent Gaussian random variables. To achieve this
objective, we transform random vector z in cluster Ci into
a set of independent random variables through independent
component analysis (ICA), where non-Gaussianity serves as
an indicator of statistical independence. ICA finds applications
in noise reduction [25], face recognition [26], and image
infusion [27].

Our implementation is detailed below.
1) Apply PCA to z in cluster Ci for dimension reduction

and data whitening.
2) Apply FastICA [28], which is conceptually simple,

computationally efficient and robust to outliers, to the
PCA output.

3) Compute the cumulative density function (CDF) of each
ICA component of random vector z in each cluster based
on its histogram of training samples.

4) Match the CDF in Step 3 with the CDF of a Gaussian
random variable (see the right part of Fig. 2), where
the inverse CDF is obtained by resampling between
bins with linear interpolation. To reduce the model size,
we quantize N-dimensional CDFs, which have N bins,

with vector quantization (VQ) and store the codebook
of quantized CDFs.

We encode P (z ∈ Ci) in Eq. (3) to be the length of a
segment in the unit interval, [0, 1]. All segments are concate-
nated in order to build the unit interval. The segment index
is the cluster index. These segments are called the interval
representation. To draw a sample from subspace S2, we use the
uniform random number generator to select a random number
from interval [0, 1]. This random number indicates the cluster
index on the interval representation.

To generate a new sample in S2, we perform the following
steps:

1) Select a random number from the uniform random
number generator to determine the cluster index.

2) Draw a set of samples independently from the Gaussian
distribution.

3) Match histograms of the generated Gaussian samples
with the inverse CDFs in the chosen cluster.

4) Repeat Steps 1-3 if the generated sample of Step 3 has
no value larger than a pre-set threshold.

5) Perform the inverse transform of ICA and the inverse
transform of PCA.

6) Reshape the 1D vector into a 3D tensor and this tensor
is the generated sample in S2.

D. Successive Subspace Generation (SSG)

In this section, we examine generation model Gi
i+1, whose

role is to draw a sample in Si given a sample in Si+1. The CSG
process can generate a sample that captures the global structure
of an image patch but lacks in local detail such as boundaries
between regions. Embedding model, Ei+1

i , provides a good
description of local detail, which is obtained by the c/w Saab
transform. Thus, in the generation process, we conduct the
inverse c/w Saab transform on the generated sample in Si+1.

It is worth noting that both Saab and c/w Saab transforms
have the forward and the inverse transforms. If no high-
frequency channels are removed, they are lossless transforms.
If some high-frequency channels are removed, they become
lossy transforms. In the current case, we use lossy transforms
for dimension reduction in the successive subspace embed-
ding process and lossy inverse transforms in the successive
subspace generation process. The inverse c/w Saab transform
is a deterministic one once the forward transform is decided.
It can be used for signal reconstruction.

In the following, we take generation model G1
2 from S2

and to S1 as an example to explain the generation process. A
generated sample in S2 can be partitioned into K1 groups as
shown in the left part of Fig. 3. Each group of channels is
composed of one DC channel and several low-frequency AC
channels. The kth group of channels in S2, whose number
is denoted by K

(k)
2 , is derived from the kth channel in S1.

We apply the inverse c/w Saab transform to each group
individually. The inverse c/w Saab transform converts the
tensor at the same spatial location across K

(k)
2 channels

(represented by white dots in Fig. 3) in S2 into a block of
size Ii× Ii (represented by the white parallelogram in Fig. 3)

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

1701

…

S0S1

𝐼0 × 𝐼0 , 𝐾0
𝐼1 × 𝐼1 , 𝐾1

𝐺1
0

…
…

…
…

𝐺2
1

S2

𝐾1𝑡ℎ

1𝑠𝑡

2𝑛𝑑

𝐾2

Fig. 3. Illustration of successive subspace generation process. K2 channels in
subspace S2 are cut into K1 groups. G1

2 converts the same spatial location
of each group of channels to a block of size I1 × I1 at each of K1 channels
in space/subspace S1. G0

1 converts the same spatial location of K1 channels
to a block of size I1 × I1 of three RGB channels.

in S1, using the DC and AC components obtained in the
successive subspace embedding process. After the inverse c/w
Saab transform, the Saab coefficients in S1 form a generated
sample in S1. The same procedure is repeated between S1 and
S0.

Examples of several generated textures in core subspace S0,
intermediate subspace S1 and source space S0 are shown in
Fig. 4, where we display the generated DC channel of group
1 (the first channel in Fig. 3) in S2 and S1 and the generated
texture patch in S0. These DC channels offer gray-scale low-
resolution patterns of a generated sample. NITES can generate
samples containing more local detail gradually.

IV. EXPERIMENTS

A. Experimental Setup

The following hyper parameters (see Fig. 2) are used in our
experiments.

• Input filter window size to Hop-1: I0 = 2,
• Input filter window size to Hop-2: I1 = 2,
• Selected channel numbers in Hop-1 (K1): 6 ∼ 10,
• Selected channel numbers in Hop-2 (K2): 20 ∼ 30.

The window size of embedding filter is the same as the
generation window size. All windows are non-overlapping
with each other. The actual channel numbers K1 and K2 are
texture-dependent. That is, we examine the energy distribution
based on the PCA eigenvalue plot and choose the knee point
where the energy becomes nearly flat.

B. An Example: Brick Wall Texture Generation

We show generated brick wall texture patches of size
32 × 32 and 64 × 64 in Figs. 5(a) and (c). We performed
two-stage c/w Saab transforms on 32× 32 patches and three-
stage c/w Saab transforms on 64 × 64 patches, whose core
subspace dimensions are equal to 1728 and 4032, respectively.
Patches in these figures were synthesized by running the
NITES method in one hundred rounds. Randomness in each
round primarily comes from two factors: 1) random cluster
selection, and 2) random seed vector generation.

Generated patches retain the basic shape of bricks and the
diversity of brick texture. We observe some unseen patterns
generated by NITES, which are highlighted by red squared
boxes in Figs. 5 (a) and (c). As compared with generated
32 × 32 patches, generated 64 × 64 patches were sometimes
blurry (e.g., the one in the upper right corner) due to a higher
source dimension.

As a non-parametric generation model, NITES freely
chooses multiple settings under the same pipeline. For ex-
ample, it can select different channel numbers in S̃1 and S̃2

to derive different generation results. Four settings are listed
in Table I. The corresponding generation results are shown in
Fig. 6. Dimensions decrease faster from (a) to (d). The quality
of generated results becomes poorer due to smaller dimensions
of the core subspace, S̃2, and the intermediate subspace, S̃1.

TABLE I
THE SETTINGS OF OUR FOUR GENERATION MODEL.

Setting D̃0 D̃1 D̃2

a 3072 2560 2048
b 3072 1536 768
c 3072 1280 512
d 3072 768 192

To generate larger texture images, we first generate 5,000
texture patches and perform image quilting [4] with them.
The results after quilting are shown in Figs. 5 (b) and (d).
All eight images are of the same size, 256 × 256. They are
obtained using different initial patches for the image quilting
process. By comparing the two sets of stitched images, the
global structure of the brick wall is better preserved using
larger patches (i.e. of size 64× 64) while its local detail is a
little bit blurry sometimes.

C. Performance Benchmarking with CNN-based Methods

Visual Quality Comparison. The quality of synthesized
texture is usually evaluated by human eyes. A diversity loss
function was proposed to measure texture diversity for CNN-
based methods [18], [15]. Yet, NITES dose not have a loss
function. Thus, we show synthesis results of two CNN meth-
ods and NITES side by side in Fig. 7. Exemplary texture im-
ages are collected from those in [12], [17], [11] or the Internet
for illustration purposes. The two benchmarking CNN methods
were proposed by Gatys et al. [12] and Ustyuzhaninov et al.
[17]. We ran the codes provided by them, and show their
results in the second and third columns of Fig. 7, respectively.
We used the default setting of the iteration number, which is
2000 in [12] and 4000 in [12] for visualization. Two results
generated by NITES are shown in the last two columns. They
were obtained in two different runs. For texture meshed, we
see the brown fog artifact in [12], [17], which is visually
apparent. However, it does not show up in our generation. As
demonstrated by these examples, NITES can generate high
quality and visually pleasant texture images.

Comparison of Texture Generation Time. It is worthwhile
to compare the synthesis time of different texture image
generation methods. The results are shown in Table II. All

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

1702

S0S1S2

Fig. 4. Examples of several generated textures in core subspace S0, intermediate subspace S1 and source space S0.

experiments were conducted in the same machine composed of
12 CPUs (Intel Core i7-5930K CPU at 3.50GHz) and 1 GPU
(GeForce GTX TITAN X). No GPU was needed in our model
but it was needed in [12], [17]. We set the iteration number to
1000 for [12] and 100 for [17]. NITES generated 5,000 32×32
texture patches, 81 of which were stitched into the final texture
image. For all three methods, we measured the time needed in
generating one image of size 256×256. As shown in Table II,
NITES generates one texture image in 213.04 seconds while
Gatys’ method and Ustyuzhaninov’s method demand 513.98
and 949.64 seconds, respectively. NITES is significantly faster.

TABLE II
COMPARISON OF TIME NEEDED TO GENERATE ONE TEXTURE IMAGE.

Methods Time (seconds)
Gatys et al. [12] 513.98
Multi-Scale [17] 949.64
NITES (Ours) 213.04

Breakdown of NITES’ Generation Time. We can break
down the texture generation time of NITES into three parts: 1)
successive subspace embedding (i.e., the forward embedding
path), 2) core and successive subspace generations (i.e., the
reverse generation path) and 3) the quilting process. The

time required for each part is shown in Table III. Three
parts demand 24.24, 108.03 and 8.08 seconds, respectively.
To generate multiple texture images from the same exemplary
texture, we need to run the first part once but the second and
third parts multiple times (one run for one new synthesis).
Thus, it is fair to focus on the last two parts only for single
texture image generation, which is equal to 116 seconds. In
contrast, the two benchmarking CNN methods do not have
such a breakdown. They need to go through the whole pipeline
to generate one new texture image.

TABLE III
THE TIME OF THREE PROCESSES IN OUR METHOD.

Process Time (seconds)
Forward Embedding 24.24
Reverse Generation 108.03

Quilting 8.08

V. CONCLUSION AND FUTURE WORK

A non-parametric interpretable texture synthesis (NITES)
method was proposed based on a new texture analysis and
synthesis framework in this study. Texture can be analyzed
and represented effectively using the multi-stage c/w Saab

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

1703

(a) Synthesized 32x32 Patches

(c) Synthesized 64x64 Patches

(b) Stitched using 32x32 Patches

(d) Stitched using 64x64 Patches

Fig. 5. Examples of generated brick wall texture patches and stitched images of larger sizes, where the image in the bottom-left corner is the exemplary
texture image and the patches highlighted by red squared boxes are unseen patterns.

transforms that offer a sequence of joint spatial-spectral repre-
sentations. The sample distribution in the core subspace was
carefully studied, which allows us to build a core subspace
generation model. Furthermore, a successive subspace gen-
eration model was developed to build a higher-dimensional
subspace based on a lower-dimensional subspace. As a result,
new texture samples can be generated by mimicking probabil-
ities and/or conditional probabilities of source texture patches.
Extensive experimental results were conducted to demonstrate
the power of the proposed NITES method. It can generate
visually pleasant texture images effectively, including some
unseen patterns.

Future research should be extended in several directions.
Controlling the growth of subspace dimensions in the gen-
eration process appears to be an important objective. Is it
beneficial to introduce more intermediate subspaces between
the source and the core? Can we apply the same model for
the generation of other types of images such as human faces,
digits, scenes and objects? Is it possible to generalize the
framework to image inpainting? How does our generation
model compare to GANs? These are all open and interesting
questions for further investigation.

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

1704

3072→2560→2048

(a) (b) (c) (d)

3072→1536→768 3072→1280→512 3072→768→192

Fig. 6. Generated patches using different subspace settings of our non-parametric generation model. The numbers above the figure indicates the dimensions
of S0, S1 and S2, respectively.

ACKNOWLEDGMENT

This research was supported by a gift grant from Mediatek.
Computation for the work was supported by the University of
Southern California’s Center for High Performance Computing
(hpc.usc.edu).

REFERENCES

[1] J. S. De Bonet, “Multiresolution sampling procedure for analysis and
synthesis of texture images,” in Proceedings of the 24th annual con-
ference on Computer graphics and interactive techniques, pp. 361–368,
1997.

[2] A. A. Efros and T. K. Leung, “Texture synthesis by non-parametric
sampling,” in Proceedings of the seventh IEEE international conference
on computer vision, vol. 2, pp. 1033–1038, IEEE, 1999.

[3] L.-Y. Wei and M. Levoy, “Fast texture synthesis using tree-structured
vector quantization,” in Proceedings of the 27th annual conference on
Computer graphics and interactive techniques, pp. 479–488, 2000.

[4] A. A. Efros and W. T. Freeman, “Image quilting for texture synthesis
and transfer,” in Proceedings of the 28th annual conference on Computer
graphics and interactive techniques, pp. 341–346, 2001.

[5] L. Liang, C. Liu, Y.-Q. Xu, B. Guo, and H.-Y. Shum, “Real-time texture
synthesis by patch-based sampling,” ACM Transactions on Graphics
(ToG), vol. 20, no. 3, pp. 127–150, 2001.

[6] M. F. Cohen, J. Shade, S. Hiller, and O. Deussen, “Wang tiles for image
and texture generation,” ACM Transactions on Graphics (TOG), vol. 22,
no. 3, pp. 287–294, 2003.

[7] V. Kwatra, A. Schödl, I. Essa, G. Turk, and A. Bobick, “Graphcut
textures: image and video synthesis using graph cuts,” ACM Transactions
on Graphics (ToG), vol. 22, no. 3, pp. 277–286, 2003.

[8] Q. Wu and Y. Yu, “Feature matching and deformation for texture
synthesis,” ACM Transactions on Graphics (TOG), vol. 23, no. 3,
pp. 364–367, 2004.

[9] V. Kwatra, I. Essa, A. Bobick, and N. Kwatra, “Texture optimization for
example-based synthesis,” in ACM SIGGRAPH 2005 Papers, pp. 795–
802, 2005.

[10] D. J. Heeger and J. R. Bergen, “Pyramid-based texture analy-
sis/synthesis,” in Proceedings of the 22nd annual conference on Com-
puter graphics and interactive techniques, pp. 229–238, 1995.

[11] J. Portilla and E. P. Simoncelli, “A parametric texture model based on
joint statistics of complex wavelet coefficients,” International journal of
computer vision, vol. 40, no. 1, pp. 49–70, 2000.

[12] L. Gatys, A. S. Ecker, and M. Bethge, “Texture synthesis using convo-
lutional neural networks,” in Advances in neural information processing
systems, pp. 262–270, 2015.

[13] G. Liu, Y. Gousseau, and G.-S. Xia, “Texture synthesis through con-
volutional neural networks and spectrum constraints,” in 2016 23rd
International Conference on Pattern Recognition (ICPR), pp. 3234–
3239, IEEE, 2016.

[14] E. Risser, P. Wilmot, and C. Barnes, “Stable and controllable neural
texture synthesis and style transfer using histogram losses,” arXiv
preprint arXiv:1701.08893, 2017.

[15] Y. Li, C. Fang, J. Yang, Z. Wang, X. Lu, and M.-H. Yang, “Diver-
sified texture synthesis with feed-forward networks,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 3920–3928, 2017.

[16] Y. Li, C. Fang, J. Yang, Z. Wang, X. Lu, and M.-H. Yang, “Universal
style transfer via feature transforms,” in Advances in neural information
processing systems, pp. 386–396, 2017.

[17] I. Ustyuzhaninov, W. Brendel, L. A. Gatys, and M. Bethge, “What does
it take to generate natural textures?,” in ICLR (Poster), 2017.

[18] W. Shi and Y. Qiao, “Fast texture synthesis via pseudo optimizer,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 5498–5507, 2020.

[19] Y. Chen, M. Rouhsedaghat, S. You, R. Rao, and C.-C. J. Kuo, “Pix-
elhop++: A small successive-subspace-learning-based (ssl-based) model
for image classification,” arXiv preprint arXiv:2002.03141, 2020.

[20] C.-C. J. Kuo, “Understanding convolutional neural networks with a
mathematical model,” Journal of Visual Communication and Image
Representation, vol. 41, pp. 406–413, 2016.

[21] C.-C. J. Kuo, “The cnn as a guided multilayer recos transform [lecture
notes],” IEEE signal processing magazine, vol. 34, no. 3, pp. 81–89,
2017.

[22] C.-C. J. Kuo, M. Zhang, S. Li, J. Duan, and Y. Chen, “Interpretable
convolutional neural networks via feedforward design,” Journal of Visual
Communication and Image Representation, 2019.

[23] Y. Chen and C.-C. J. Kuo, “Pixelhop: A successive subspace learning
(ssl) method for object recognition,” Journal of Visual Communication
and Image Representation, p. 102749, 2020.

[24] D. Nister and H. Stewenius, “Scalable recognition with a vocabulary
tree,” in 2006 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’06), vol. 2, pp. 2161–2168, Ieee, 2006.

[25] A. Hyvärinen, P. O. Hoyer, and E. Oja, “Sparse code shrinkage:
Denoising by nonlinear maximum likelihood estimation,” in Advances
in Neural Information Processing Systems, pp. 473–479, 1999.

[26] M. S. Bartlett, J. R. Movellan, and T. J. Sejnowski, “Face recognition
by independent component analysis,” IEEE Transactions on neural
networks, vol. 13, no. 6, pp. 1450–1464, 2002.

[27] N. Mitianoudis and T. Stathaki, “Pixel-based and region-based image
fusion schemes using ica bases,” Information fusion, vol. 8, no. 2,
pp. 131–142, 2007.

[28] A. Hyvärinen and E. Oja, “Independent component analysis: algorithms
and applications,” Neural networks, vol. 13, no. 4-5, pp. 411–430, 2000.

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

1705

Original Gatys et al. [12]

flower

Multi-Scale [17] Ours

brick wall

marble

seeds

rock porous

garbanzo

cloud

meshed

carpet

grunge

Fig. 7. Comparison of synthesized texture images using two CNN-based methods and NITES (from left to right): exemplary texture images, texture images
generated by [12] texture images generated by [17] and two texture images generated by NITES.

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

1706

