
Fast-Parallel Singular Value Thresholding for Many
Small Matrices based on Geometric Feature of

Singular Values
Takayuki Sasaki∗, Ryuichi Tanida∗, Masaki Kitahara∗, Hideaki Kimata†
∗ NTT Media Intelligence Laboratories, NTT Corporation, Yokosuka, Japan

E-mail: {takayuki.sasaki.fb, ryuichi.tanida.pc, masaki.kitahara.ve}@hco.ntt.co.jp Tel: +81-46-859-8967
† Kogakuin University, Tokyo, Japan

E-mail: kimata@ieee.org

Abstract—This paper proposes a singular value thresholding
(SVT) method called fast-parallel SVT for many small matrices
that is based on the geometric feature of singular values. By
discovering the geometric feature of singular values, SVT is
expressed in a completely different format from conventional
SVT methods. The new format does not require singular value
decomposition, which is the calculation bottleneck with conven-
tional SVT methods, so the amount of floating-point calculation
can be reduced. The new format can also be described almost
linearly, allowing many matrices to be processed in data in
parallel. Through an experiment, the proposed method calculated
SVT up to 162.84 times faster with higher calculation accuracy
than conventional SVT methods.

I. INTRODUCTION

Low-rankness is important for modeling analysis targets
such as data and physical phenomena. Many analysis targets
may have low-rankness. When the rank of the matrix derived
from the analysis target is extremely small compared with the
number of its rows and columns, such a matrix is said to
be low-rank. Many researchers have been studying low-rank
analysis in computer vision [1]–[6], image processing [7], [8],
genome data analysis [9], and graph analysis [10].

However, the direct use of the rank function to low-rank
optimization is not a good policy for the following two
reasons.

• The rank function is discontinuous, non-differentiable,
and non-convex. Therefore, the optimization problem
based on the rank function is NP-hard combinatorial
optimization.

• The actual analysis targets are not exactly low-rank but
are approximately low-rank. Therefore, using the rank
function is too restrictive to model the targets.

For these reasons, many researchers have used a relaxation
approach that regularizes the nuclear norm instead of the
rank function. The nuclear norm is the convex envelope of
the rank function [11]. Therefore, the optimization problem
regularizing the nuclear norm can promote low-rankness.

Iterative calculation based on a first-order method, such as
alternating direction method of multipliers [12], can solve the
optimization problem including the nuclear norm. The first-
order method repeatedly executes singular value thresholding

TABLE I
TYPES OF LOW-RANK OPTIMIZATION AND SPEEDUP METHODS

1) Few large matrices 2) Many small matrices

Application

Robust PCA [1], [2]
Image interpolation [3], [4]
Optical flow estimation [5], [6]
Dynamic MRI analysis [7]
Genome data analysis [9]

Color-artifact removal [8]
Graph simplification [10]

Speedup FSVT [13], FRSVT [14] FPSVT(proposed)

(SVT), which is the proximal mapping of the nuclear norm.
However SVT is a computationally intensive process because
it includes calculation of singular value decomposition (SVD),
which requires a large amount of calculation.

We classify each application field by the number and size
of matrices to which low-rank optimization is applied (Table
I). There are two types of optimization problems;

1) the problem of regularizing a few large matrices
2) the problem of regularizing many small matrices
With this classification, we can understand the difference

between high-speed processing methods of SVT. For opti-
mization problem 1), methods for speeding up SVT have been
proposed. Cai et al. [13] proposed Fast SVT (FSVT), which
calculates SVT without SVD. Oh et al. [14] proposed Fast
Randomized SVT (FRSVT), which reduces the SVD input
size and speeds up SVT by approximating a large matrix to
the product of an orthogonal matrix and a small core matrix.
Both methods reduce the amount of calculation when the input
matrix size is large (number of rows, number of columns
=500 - 2000) and show significant increase in SVT speed.

For optimization problem 2), a method for speeding up SVT
has not been developed. Even if one applies such a method
for problem 1) to problem 2), its effectiveness will be limited.
In fact, FSVT is about 20 times slower and FRSVT is about
4 times slower than the method using SVD. In addition, these
methods cannot use a data-parallel approach to simultaneously
process many matrices. Therefore, they cannot effectively use
the resources of recent parallel computing architectures such
as central-processing-unit and graphics-processing-unit single
instruction, multiple data functions.

We now discuss the requirements for the number and

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

1978-988-14768-9-0/21/$31.00 ©2021 APSIPA APSIPA-ASC 2021

size of matrices for many small matrices. For color-artifact
removal [8], an input image is divided into blocks that allow
overlapping, and the pixel values of the blocks are arranged
to form a matrix. Let L be the number of blocks, M be the
number of pixels of a block, and N be the number of color
channels. Then the number of matrices is L and the size of
matrices is M ×N . Assuming an RGB color image, we can
estimate that L is several thousand, M is several hundred, and
N is 3. For graph simplification [10], if the number of vertices
with degree 2 is L, then the number of matrices is L, and the
matrix size is 2× 2. If we assume that the number of vertices
in the graph is several thousand, L is also several thousand.
From the above, we need to consider SVT with thousands of
matrices and a matrix size of several hundred × 2 or 3.

We propose Fast-parallel SVT (FPSVT), which calculates
SVT in data parallel with reduced computational complexity.
FPSVT involves calculating SVT without requiring SVD and
reduces the complexity and parallelizes data at the same
time. FPSVT can speed up the SVT for L matrices of size
M × 2. Although it only partially satisfies the aforementioned
requirements for matrix size, the performance is sufficient to
speed up graph simplification. The calculation accuracy is
high because it is not an approximation method. The core of
this derivation is based on the discovery that we can represent
the nuclear norm geometrically with an L∞,2 mixed norm
when the size of the matrix is limited to M×2. We conducted
an experiment to evaluate the speed and accuracy of FPSVT.

There are two contributions for this paper. The first is the
derivation of several theorems for SVD and SVT. The second
is the derivation of fast SVT computations for many small
matrices.

The remainder of the paper is organized as follows. In
Section II, we discuss the low-rank optimization by nuclear
norm regularization as prior knowledge. In Section III we
derive FPSVT. In Section IV, we discuss our experiment
and present the experimental results. Finally, we conclude the
paper in Section V.

II. LOW-RANK OPTIMIZATION BY NUCLEAR NORM
REGULARIZATION

A. Notation and definition

The function vec is a linear transformation that rearranges
the input matrix X = [x1,x2] ∈ RM×2 into a column

vector vecX =

[
x1

x2

]
∈ R2M . Conversely, vecT is an adjoint

transform of vec, which transforms a vector into a matrix
(X=vecTvecX).

The subspace ImY = {Yx =
∑N

i=1 xiyi|x ∈ RN} ⊂ RM

is called the image of Y= [y1, · · · ,yN]∈RM×N . From this
definition, y1, · · · ,yN ∈ ImY holds.

A function that non-negatively clips each element of a
vector or matrix is called a ramp function and is denoted
as (·)+. For example, if Y = X+, each component is
yi,j = xi,j(if xi,j ≥ 0), 0(otherwise).

The Euclidean norm of a vector or the Frobenius norm of a
matrix is simply represented as the norm ∥ · ∥. For a function

g and positive real number µ > 0, the proximal mapping [15]
is defined as

proxµg(Y) = arg min
Z∈RM×N

g(Z) +
1

2µ
∥Z−Y∥2. (1)

Several functions are known for efficient computation of
proximal mappings, and such functions are called proximable.

B. Formulation and solution of optimization problems

We summarize low-rank optimization, which is the subject
of this study. Let σi(X), i = 1, · · · ,K =min(M,N) be the
ith largest singular value of matrix X ∈RM×N . The nuclear
norm is defined as the sum of singular values

∥X∥∗ =

K∑
i=1

σi(X). (2)

Since the nuclear norm is a convex envelope of the function
rankX, it promotes low-rankness by regularizing it [11].

We focus on an optimization problem in which many small
matrices are regularized with a nuclear norm. Typically, this is
an optimization problem of the following form for the variable
x in Hilbert space X ;

min
x∈X

f(x) + λ

L∑
i=1

∥Φi(x)∥∗, (3)

where the first term of the objective function is a fidelity term,
and the second term is a low-rank regularization term using
the nuclear norm. The function Φi : X →RM×N is a low-rank
matrix-generation function, typically a linear mapping.

For the low-rank regularization of the second term, it is
enough to introduce an auxiliary variable Yi=Φi(x) for each
i and compute the proximal mapping of g(Y1, · · · ,YL) =∑L

i=1 ∥Yi∥∗. This can be computed independently for each
Yi, and

proxµ∥·∥∗
(Yi), i = 1, · · · , L (4)

can be computed separately. Cai et al. [3] showed that the
proximal mapping of the nuclear norm ∥ · ∥∗ is equivalent to
SVT. SVT is calculated as

proxµ∥·∥∗
(Y) = U(Σ− µI)+V

T (5)

where Y = UΣVT (6)

for the input matrix Y, where (6) is SVD 1.
Therefore, the proximal mapping (4) of the function

g(Y1, · · · ,YL) requires L times of SVT calculation (5) and
(6), and it is necessary to calculate SVD repeatedly with a
first-order method. SVD calculation is generally more com-
putationally intensive than other processes, and about 99% of
the calculation time is spent on SVD calculation.

1SVD in this article is ”thin SVD”. Therefore, for Y ∈RM×N and K =
min(M,N), the singular vectors are U ∈ RM×K and V ∈ RN×K . The
calculation of K+1 and subsequent singular vectors is omitted. The singular
value matrix Σ is a K×K diagonal matrix.

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

2

III. FAST-PARALLEL SINGULAR VALUE THRESHOLDING

In this section, we discuss in more detail FPSVT, which
processes many SVT calculations at high speed. This method
is based on the discovery of a geometric property in which
the nuclear norm is characterized by the distance of a vector
in a subspace. Because of this property, we can represent
the nuclear norm without singular values. We obtain new
SVT without SVD. Since we can describe most of this SVT
calculation with linear transformation, data-parallel algorithms
can be derived.

With FPSVT, we limit the size of the input matrix to
M ×2 and 2×N . Since proxµ∥·∥∗

(Y) = (proxµ∥·∥∗
(YT))T

holds, we can limit the size of the input to M ×2 without
loss of generality. Therefore, in the following subsections, we
consider the SVT of a vertically long M×2 matrix.

A. Geometric properties of singular values and new SVT
representations

This subsection describes the geometric properties of the
singular values and representation of SVT that does not require
SVD, which make up the core of FPSVT derivation. This
subsection presents only the results, and we give derivation
details in the appendix. Let Y=[y1,y2]∈RM×2,y1,y2∈RM

be the input matrix, and let σ1, σ2(σ1≥σ2≥0) be its singular
values.

Proposition 1 The sum and difference of singular values σ1±
σ2 are

σ1±σ2=

√
trYTY±2

√
detYTY (7)

=∥y1∓Ry2∥, (8)

where R∈RM×M is a rotation matrix that rotates the vector
on ImY by π/2 rad around the origin. This rotation matrix
is characterized by the following conditions.

Ry∈ ImY, ∥Ry∥=∥y∥,yTRy=0,RTRy=RRTy = y
(9)

for any y∈ ImY.
The direction that reaches the shortest distance from y1 to

y2 is the positive direction of rotation, as shown in Fig. 1.

We give the proof in Appendix A. Proposition 1 claims that
the sum and difference of singular values is the Euclidean
distance between vectors y1 and ±Ry2. The intermediate
representation (7) is easy to calculate because YTY is a 2×2
matrix; YTY =

[
yT
1 y1 yT

1 y2

yT
1 y2 yT

2 y2

]
.

From Proposition 1 and the definition of the nuclear norm
(2), we can immediately find the following corollary.

Corollary 2 Nuclear norm ∥Y∥∗ can be represented as

∥Y∥∗ = ∥AvecY∥∞,2, (10)

where matrix A∈R2M×2M is

A =

[
I −R
I R,

]
(11)

𝐲𝐲1

𝐑𝐑𝐲𝐲2

𝐲𝐲1 − 𝐑𝐑𝐲𝐲2
= 𝜎𝜎1 + 𝜎𝜎2 = 𝐘𝐘 ∗

𝜃𝜃

−𝐑𝐑𝐲𝐲2

𝐲𝐲2

𝐲𝐲1 + 𝐑𝐑𝐲𝐲2
= 𝜎𝜎1 − 𝜎𝜎2

+

Im𝐘𝐘

Fig. 1. Geometric properties of nuclear norm

and ∥ · ∥∞,2 is the L∞,2 mixed norm 2 .

Corollary 2 claims that the nuclear norm can be represented
without using singular values. This suggests that SVT, which
is the proximal mapping of the nuclear norm, is also obtained
without SVD. In fact, combining Corollary 2 with Lemmas 7
and 8 in the Appendix yields the following proposition.

Proposition 3 For the SVT of matrix Y,

proxµ∥·∥∗
(Y)=vecTATproxµ∥·∥∞,2

(
1

2
AvecY

)
(12)

holds.

The proof is given in Appendix B. This gives a new
representation of SVT, which is a composition of linear
transformation Avec(·) and L∞,2 norm proximal mapping
proxµ∥·∥∞,2

(·), where the proximal mapping proxµ∥·∥∞,2
(·)

is nonlinear but can be described as a linear transformation
that depends on the input x as follows.

Proposition 4 For x =

[
x1

x2

]
,x1,x2 ∈ RM ,

proxµ∥·∥∞,2
(x) =

[
k1x1

k2x2

]
where

(k1, k2)=

(
(∥x1∥+∥x2∥−µ)+

2∥x1∥ , (∥x1∥+∥x2∥−µ)+
2∥x2∥

)
if |∥x1∥ − ∥x2∥| ≤ µ(
1− µ

∥x1∥ , 1
)

if ∥x1∥ − ∥x2∥ > µ(
1, 1− µ

∥x2∥

)
if ∥x1∥ − ∥x2∥ < −µ

(13)

holds 3 .

The proof of this proposition (Appendix C) is based on
the Moreau decomposition [16] and projection onto the L1,2

mixed norm sphere [17].
From the above, it was clarified that SVT can be represented

by linear transformation, excluding calculation of coefficients

2L∞,2 mixed norm is a composite function of L∞ norm and L2 norm.
For any x = [xT

1 ,x
T
2]

T, ∥x∥∞,2=max(∥x1∥, ∥x2∥) holds.
3It is kixi = (0/0)0 if xi = 0, but here it is exceptionally kixi = 0.

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

3

k1 and k2. In the following subsection, we expand the
above formula and present an SVT calculation formula and
algorithms.

B. SVT calculation

From the previous subsection propositions, we obtain the
following theorem for calculating SVT.

Theorem 5 For rankY = 2 and σ1 ̸= σ2,

proxµ∥·∥∗
(Y) = γ(1− δ)Y + γδRY (14)

where

γ =

(
1− (µ− σ2)+

σ1 − σ2

)
+

, δ =
min(µ, σ2)

σ1 + σ2
, (15)

Y = [y2,−y1] (16)

holds.

The above theorem is obtained by expanding the prox
calculation of (12).

Theorem 5 claims that SVT can be calculated from the
linear combination of matrices Y and RY. The coefficients
γ(1− δ) and γδ are composed of the amplitude parameter γ
and internal ratio parameter δ.

To apply Theorem 5, it is necessary to find the concrete
value of transformation RY by rotation matrix R. This
approach is divided into two cases: M ≥ 3 and M =2. First,
if M ≥ 3, matrix R must satisfy all the conditions in (9)
and have the rotation direction described in Proposition 1. We
found that matrix R satisfying these conditions is

R =
1√

detYTY
(y2y

T
1 − y1y

T
2). (17)

However, the procedure for calculating the matrix product RY
after calculating R with (17) has O(M2) order complexity.
Therefore, we calculate the inner product first and obtain the
representation

RY =
1√

detYTY
Y

[
−yT

2 y2 yT
1 y2

yT
1 y2 −yT

1 y1.

]
. (18)

As a result, the calculation order can be reduced to O(M).
For (14), we obtain

proxµ∥·∥∗
(Y)=Y

(
γ(1−δ)I2+

γδ√
detYTY

[
−yT

2 y2 yT
1 y2

yT
1 y2 −yT

1 y1

])
(19)

and further reduce the amount of calculation.
Then, for M=2, the establishment of

R = sgn(detY)

[
0 −1
1 0

]
(20)

is obvious using the sign function sgn. Therefore, we can
calculate RY using element replacement and sign inversion.

From the above, we described calculating SVT using The-
orem 5. However, this theorem imposes the conditions of
rankY = 2 and σ1 ̸= σ2. In other cases, it can be easily
calculated as follows.

TABLE II
DETERMINING rankY

detYTY = 0 detYTY ̸= 0
Y = O rankY = 0 —
Y ̸= O rankY = 1 rankY = 2

Algorithm 1 SVT calculation (M ≥ 3)
Input: Y = [y1,y2] ∈ RM×2, µ > 0
Output: Z=proxµ∥·∥∗

(Y)

1: a← yT
1 y1, b← yT

1 y2, c← yT
2 y2, d← ac−b2

2: e←
√
d, f ← a+c, g ←

√
f+2e, h←

√
f−2e

3: σ2 ← 1
2 (g−h)

4: if Y = O then
5: Z← O
6: else if d = 0 then
7: Z←

(
1− µ√

f

)
+
Y

8: else if h = 0 then
9: Z←

(
1−

√
2µ√
f

)
+
Y

10: else
11: γ ←

(
1− (µ−σ2)+

h

)
+
, δ ← min(µ,σ2)

g

12: Z← Y

(
γ(1− δ)I2 +

γδ
e

[
−c b
b −a

])
13: end if

Theorem 6 For cases other than ”rankY = 2 and σ1 ̸= σ2”,

proxµ∥·∥∗
(Y)=

O if rankY=0(
1− µ

∥Y∥

)
Y if rankY=1(

1−
√
2µ

∥Y∥

)
Y if rankY=2 and σ1=σ2

(21)

holds.

The proof is given in Appendix D. To calculate SVT
using Theorems 5 and 6, it is necessary to distinguish cases
appropriately from rankY and singular values σ1 and σ2. As
shown in Table II, the rank can be determined by checking
whether Y is a zero matrix and whether detYTY is 0. For
singular values, σ1±σ2 can be calculated using (7).

From the above considerations, we introduce two algorithms
derived with FPSVT 1 and 2 to calculate SVT. Algorithm 1
shows the procedure when M≥3, and Algorithm 2 shows the
procedure when M=2. To reduce the amount of calculation,
the values necessary for case classification and the coefficients
γ and δ are all calculated using the inner product yT

i yj(i, j=
1, 2). Most of the processing of Algorithms 1 and 2 consists
of basic operations related to vectors and matrices, suggesting
that parallelization is highly effective.

IV. EXPERIMENT

A. Implementation and methods for comparison

We conducted an experiment to evaluate the SVT-
calculation performance of FPSVT. All source codes were
implemented using MATLAB R2018a, CPU: Intel Core i7-
3930K@3.20 GHz (6 cores, 12 threads), RAM: 32.0 GB. The

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

4

Algorithm 2 SVT calculation (M = 2)

Input: Y = [y1,y2] =

[
y11 y12
y21 y22

]
∈ R2×2, µ > 0

Output: Z=proxµ∥·∥∗
(Y)

1: a← yT
1 y1, c← yT

2 y2, d← detY
2: e← |d|, f ← a+c, g ←

√
f+2e, h←

√
f−2e

3: σ2 ← 1
2 (g−h)

4: if Y = O then
5: Z← O
6: else if d = 0 then
7: Z←

(
1− µ√

f

)
+
Y

8: else if h = 0 then
9: Z←

(
1−

√
2µ√
f

)
+
Y

10: else
11: γ ←

(
1− (µ−σ2)+

h

)
+
, δ ← min(µ,σ2)

g

12: Z← γ(1− δ)Y + sgn(d)γδ

[
−y22 y21
y12 −y11

]
13: end if

SVT methods used in the experiment were SVD-based SVT
(SVDSVT) [3], as shown in (5) and (6), FSVT [13], FRSVT
[14], and FPSVT, i.e., using Algorithm 1 or 2, as a non-parallel
version (FPSVT-np) and parallel version (FPSVT-p). SVDSVT
was implemented using the MATLAB standard SVD function
and matrix product. We implemented FSVT in MATLAB with
the number of iterations of polar decomposition and projection
on L2-induced norm ball set to 7 and 9, respectively, with
reference to Cai et al.’s study [13]. FRSVT used the original
MATLAB code created by Oh et al. [14]. The FRSVT core
matrix size was set to 1, and the other parameters were set to
the same settings as in Oh et al.’s study [14].

B. Experiment with random matrices

We applied the different SVT formats calculated with the
above methods to the matrix generated from random numbers
and observed the execution time and calculation accuracy.

1) Conditions: The test matrices used in the experiment
were sets of random input test matrices Yi, i=1, · · · , L and
output test matrices Zi, i = 1, · · · , L that were the result of
SVT. The output test matrices were used to verify the accuracy
of the SVT calculated with each method.

We describe the test matrix-generation method as follows.
First, we generated M×2 matrices Xi, the elements of which
are normal random numbers. Next, we carried out SVD on Xi

to obtain a set of random singular vectors Ui and Vi. We then
generated random singular values σ1∈ [0.5, 1] and σ2∈ [0, 0.5]
with uniform random numbers. Finally, we calculated an input
test matrix Yi=Uidiag(σ1, σ2)V

T
i and an output test matrix

Zi=Uidiag((σ1 − µ)+, (σ2 − µ)+)V
T
i .

We calculated SVT following the above method with
double-precision floating-point arithmetic. We used five pat-
tern matrices, the column size of which was M =
2, 3, 10, 50, 100, and used four matrix sets, the numbers of
which were L=10, 100, 1000, 10000.

TABLE III
EXECUTION SPEED DURING EXPERIMENT

Time unit [ms]
SVDSVT [3] FSVT [13] FRSVT [14] FPSVT-np FPSVT-p

(M,L) Time Time Ratio Time Ratio Time Ratio Time Ratio
(2, 10) 0.185 3.905 ×0.05 0.678 ×0.27 0.082 ×2.26 0.054 ×3.40
(2, 100) 1.829 40.518 ×0.05 6.552 ×0.28 0.743 ×2.46 0.067 ×27.45
(2, 1000) 18.318 393.040 ×0.05 65.562 ×0.28 7.193 ×2.55 0.194 ×94.62
(2, 10000) 180.640 3951.800 ×0.05 663.890 ×0.27 73.568 ×2.46 1.136 ×159.07
(3, 10) 0.210 4.103 ×0.05 0.649 ×0.32 0.106 ×1.99 0.063 ×3.32
(3, 100) 2.084 40.191 ×0.05 6.464 ×0.32 1.028 ×2.03 0.078 ×26.65
(3, 1000) 20.735 405.970 ×0.05 65.216 ×0.32 10.270 ×2.02 0.241 ×86.06
(3, 10000) 213.470 4172.700 ×0.05 645.860 ×0.33 103.470 ×2.06 1.311 ×162.84
(10, 10) 0.214 4.229 ×0.05 0.647 ×0.33 0.107 ×2.00 0.064 ×3.34
(10, 100) 2.135 42.670 ×0.05 6.468 ×0.33 1.056 ×2.02 0.089 ×24.10
(10, 1000) 21.204 424.680 ×0.05 64.944 ×0.33 10.381 ×2.04 0.429 ×49.43
(10, 10000) 212.420 4149.900 ×0.05 652.760 ×0.33 105.460 ×2.01 2.326 ×91.31
(50, 10) 0.257 4.316 ×0.06 0.671 ×0.38 0.116 ×2.22 0.073 ×3.50
(50, 100) 2.383 42.675 ×0.06 6.689 ×0.36 1.126 ×2.12 0.145 ×16.49
(50, 1000) 23.781 429.580 ×0.06 66.921 ×0.36 10.853 ×2.19 0.823 ×28.91
(50, 10000) 243.230 4288.100 ×0.06 681.150 ×0.36 111.760 ×2.18 15.623 ×15.57
(100, 10) 0.406 5.580 ×0.07 0.896 ×0.45 0.126 ×3.21 0.083 ×4.88
(100, 100) 3.963 51.332 ×0.08 8.887 ×0.45 1.159 ×3.42 0.273 ×14.50
(100, 1000) 38.920 509.600 ×0.08 91.022 ×0.43 11.750 ×3.31 1.614 ×24.12
(100, 10000) 384.550 5129.600 ×0.07 911.460 ×0.42 117.950 ×3.26 30.042 ×12.80

2.10E-08

3.36E-03 1.86E-02

8.47E-09

1.0E-10

1.0E-08

1.0E-06

1.0E-04

1.0E-02

1.0E+00

SVDSVT FSVT FRSVT FPSVT

R
M
S
E

Fig. 2. Calculation accuracy during experiment
Error bars show standard deviation

2) Results: Table III shows the execution time required to
calculate SVT with each method. We executed each calculation
by double-precision arithmetic. Under all conditions, FPSVT-
p was the fastest, which was up to 162.84 times faster
than SVDSVT. Since the effect of computational complexity
reduction of FPSVT-np was about 1.99–3.42 times faster
than SVDSVT, we confirmed that data parallelization was
remarkably high.

Next, we explain calculation accuracy using Fig. 2. Figure 2
shows the root-mean-square error (RMSE) between the output
results of each SVT-calculation method executed in single-
precision and the output test matrices. For FRSVT, the result of
double-precision operation is shown because Oh’s code cannot
be used for single-precision calculations. Since FPSVT-np and
FPSVT-p had the same calculation results, they are collectively
described as FPSVT. FPSVT had about 60% less calculation
error compared with SVDSVT, and the average RMSE was
8.47×10−9. We presume that FPSVT has fewer floating-point
operations than SVDSVT and suppresses the expansion of
calculation errors.

From these results, we confirm that FPSVT-p has excellent
calculation speed and accuracy.

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

5

V. CONCLUSION

We proposed the fast-parallel singular-value-thresholding
calculation method (FPSVT) for finding a solution of an
optimization problem that regularizes many small matrices at
low-rank. On the basis of the discovery that the nuclear norm
can be represented by the Euclidean distance in a subspace,
we derived two SVT algorithms with FPSVT without the need
for singular value decomposition. Through an experiment, we
confirmed that FPSVT had higher calculation accuracy than
the conventional methods, and its calculation speed increased
up to 162.84 times.

APPENDIX

A. Proof of Proposition 1
Proof: Let λ1, λ2(λ1≥λ2≥0) be the eigenvalue of the

matrix YTY. From λ1 = σ2
1 , λ2 = σ2

2 , λ1+λ2 = trYTY =
∥y1∥2+∥y2∥2, λ1λ2=detYTY=∥y1∥2∥y2∥2−(yT

1 y2)
2 ,

σ1±σ2=
√
σ2
1+σ2

2±2σ1σ2=

√
λ1+λ2±2

√
λ1λ2

=

√
trYTY ± 2

√
detYTY

=

√
∥y1∥2+∥y2∥2±

√
∥y1∥2∥y2∥2−(yT

1 y2)2 (A.1)

holds. Considering ImY, it is at most a two-dimensional
subspace, so ImY is embedded, as shown in Figure 1. We
focus on the geometric properties of the vectors y1,y2 ∈ RM .
From yT

1 y2 = ∥y1∥∥y2∥ cos θ,

(A.1) =
√
∥y1∥2+∥y2∥2±2∥y1∥∥y2∥ sin θ (A.2)

holds. Also, since the angle between y1 and Ry2 is θ + π/2
[rad],

∥y1∥∥y2∥ sin θ = −∥y1∥∥Ry2∥ cos(θ + π/2)

= −yT
1 Ry2 (A.3)

holds. Therefore,

(A.2) =
√
∥y1∥2+∥y2∥2∓2yT

1 Ry2

= ∥y1 ∓Ry2∥ (A.4)

holds. Therefore, the subject was satisfied.

B. Proof of Proposition 3
Before proof of proposition 3, we show the following three

lemmas.

Lemma 7 For any x ∈ (ImY)2, the matrix A in (11) holds
for

AATx = ATAx = 2x. (B.1)

Proof: By setting x =

[
x1

x2

]
,x1,x2 ∈ ImY, from the

property (9),

AATx=

[
I+RRT I−RRT

I−RRT I+RRT

][
x1

x2

]
=2x (B.2)

ATAx=

[
2I O
O 2RTR

][
x1

x2

]
=2x (B.3)

holds.

Lemma 8 Let z1, z2 ∈RM be [z1, z2] =proxµ∥·∥∗
(Y). Then

z1, z2 ∈ ImY holds.

Proof: Let Y = UΣVT be the SVD,

U = [u1,u2],ui ∈ RM

Σ =

[
σ1 0
0 σ2

]
, σi ∈ R

V =

[
v11 v12
v21 v22

]
, vij ∈ R

holds. From yi = σ1vi1u1 + σ2vi2u2,

ImY =

ImU if rankY = 2

Imu1 if rankY = 1

{0} if rankY = 0

(B.4)

holds. Similarly, from the SVT definition (5), zi = (σ1 −
µ)+vi1u1 + (σ2−µ)+vi2u2 holds. Then, zi ∈ ImY can be
confirmed.

Lemma 9 Let X be a real Hilbert space, let S be a subspace
of X , let f : X → R and let L : X → X be a linear operator.
Suppose that the composition of L and LT satisfies LTLx =
LLTx = αx, for any x ∈ S some α > 0 and the proximal
operator proxf (x) ∈ S for any x ∈ S . Then

proxf(L(·))(x) =
1

α
LTproxf (Lx). (B.5)

Proof:

proxf(L(·))(x) = argmin
z∈S

f(Lz) +
1

2
∥x− z∥2

= argmin
z∈S

f(Lz) +
1

2α
(x− z)TLTL(x− z)

= argmin
z∈S

f(Lz) +
1

2α
∥Lx− Lz∥2

=
1

α
LT argmin

y∈S
f(y) +

1

2α
∥Lx− y∥2

=
1

α
LTproxf (Lx). (B.6)

On the basis of the above lemmas, we prove Proposition 3.
Proof: From Corollary 2 and definition of proximal

mapping (1),

proxµ∥·∥∗
(Y)=proxµ∥Avec(·)∥∞,2

(Y)

=
1

2
vecTATprox2µ∥·∥∞,2

(AvecY)

=vecTATproxµ∥·∥∞,2

(
1

2
AvecY

)
(B.7)

holds using Lemmas 7, 8 and 9. This satisfies the subject.

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

6

C. Proof of Proposition 4

Proof: Since the dual norm of L∞,2 norm is L1,2 norm,
from Moreau decomposition 4 [16],

proxµ∥·∥∞,2
(x) = x− projµB1,2

(x) (C.1)

holds, where projµB1,2
(x) is the Euclidean distance projection

onto the L1,2 sphere µB1,2 and is the solution to the following
optimization problem.

projµB1,2
(x)=arg min

z∈µB1,2

∥x− z∥2

µB1,2={z=
[
z1
z2

]
|∥z1∥+∥z2∥≤µ} (C.2)

According to Van den Berg et al. [17], problem (C.2) can
be separated into L1 and L2 sphere projection problems. In

x =

[
x1

x2

]
, this is equivalent to the two problems of

projµB1,2
(x)=

[
projη1B2

(x1)
projη2B2

(x2)

]
(C.3)[

η1
η2

]
=projµB1

([
∥x1∥
∥x2∥

])
. (C.4)

Problem (C.3) can be calculated by projηiB2
(xi) =

(ηi/∥xi∥)xi. However, problem (C.4) can be calculated by

(C.4)=

[
∥x1∥ − (∥x1∥+∥x2∥−µ)+

2

∥x2∥ − (∥x1∥+∥x2∥−µ)+
2

]
if |∥x1∥−∥x2∥|≤µ[

µ

0

]
if ∥x1∥−∥x2∥>µ[

0

µ

]
if ∥x1∥−∥x2∥<−µ

(C.5)

The subject is obtained by expanding the above into an
expression (C.1).

D. Proof of Theorem 6

Proof: Let Z = proxµ∥·∥∗
(Y). For rankY = 0, it is

obvious because of Y = O. In the following, the SVD is
Y = UΣVT and

U = [u1,u2],ui ∈ RM

Σ =

[
σ1 0
0 σ2

]
, σi ∈ R

V = [v1,v2],vi ∈ R2.

For rankY=1,

Z = U

[
(σ1 − µ)+ 0

0 0

]
VT

=
(σ1 − µ)+

σ1
U

[
σ1 0
0 0

]
VT =

(
1− µ

σ1

)
+

Y (D.1)

4For a convex function f(x) and its Legendre transformation f∗(x), x =
proxf (x) + proxf∗ (x) is called Moreau decomposition. Especially when
the convex function is norm f(x) = µ∥x∥, using projµBd

(x) to project the
dual norm ∥x∥d to sphere µBd, x = proxµ∥·∥(x) + projµBd

(x) holds.

holds because σ1>0, σ2=0. Since

∥Y∥=
√
trYTY=

√
tr(σ1u1vT

1)
T(σ1u1vT

1)

=σ1, (D.2)

this satisfies the subject. For rankY=2 and σ1=σ2,

Z = U

[
(σ1 − µ)+ 0

0 (σ1 − µ)+

]
VT

=
(σ1 − µ)+

σ1
U

[
σ1 0
0 σ1

]
VT =

(
1− µ

σ1

)
+

Y (D.3)

holds. Since

∥Y∥=
√
trYTY=

√
tr(σ1UVT)T(σ1UVT)

=
√
2σ1, (D.4)

this satisfies the subject.

REFERENCES

[1] J. Wright, A. Ganesh, S. Rao, Y. Peng, and Y. Ma, “Robust principal
component analysis: Exact recovery of corrupted low-rank matrices via
convex optimization,” in Advances in neural information processing
systems, 2009, pp. 2080–2088.

[2] E. J. Candès, X. Li, Y. Ma, and J. Wright, “Robust principal component
analysis?” Journal of the ACM (JACM), vol. 58, no. 3, pp. 11:1–11:37,
2011.

[3] J.-F. Cai, E. J. Candès, and Z. Shen, “A singular value thresholding al-
gorithm for matrix completion,” SIAM Journal on optimization, vol. 20,
no. 4, pp. 1956–1982, 2010.

[4] S. Gandy and I. Yamada, “Convex optimization techniques for the
efficient recovery of a sparsely corrupted low-rank matrix,” Journal of
Math-for-Industry, vol. 2, no. 2010B-5, pp. 147–156, 2010.

[5] X. Zhou, C. Yang, and W. Yu, “Moving object detection by detecting
contiguous outliers in the low-rank representation,” IEEE transactions
on pattern analysis and machine intelligence, vol. 35, no. 3, pp. 597–
610, 2012.

[6] W. Dong, G. Shi, X. Hu, and Y. Ma, “Nonlocal sparse and low-rank
regularization for optical flow estimation,” IEEE Transactions on Image
Processing, vol. 23, no. 10, pp. 4527–4538, 2014.

[7] R. Otazo, E. Candes, and D. K. Sodickson, “Low-rank plus sparse
matrix decomposition for accelerated dynamic MRI with separation
of background and dynamic components,” Magnetic Resonance in
Medicine, vol. 73, no. 3, pp. 1125–1136, 2015.

[8] S. Ono and I. Yamada, “Color-line regularization for color artifact
removal,” IEEE Transactions on Computational Imaging, vol. 2, no. 3,
pp. 204–217, 2016.

[9] G. Ye, M. Tang, J.-F. Cai, Q. Nie, and X. Xie, “Low-rank regularization
for learning gene expression programs,” PloS one, vol. 8, no. 12, p.
e82146, 2013.

[10] T. Sasaki, R. Tanida, and A. Shimizu, “Graph shape simplification based
on local linear approximation of graph signal,” in Forum on Information
Technology 2016, 2016, pp. 3:1–3:4, (in Japanese).

[11] M. Fazel, “Matrix rank minimization with applications,” Ph.D. disserta-
tion, Stanford University, 2002.

[12] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein et al., “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends in Machine learning, vol. 3,
no. 1, pp. 1–122, 2011.

[13] J.-F. Cai and S. Osher, “Fast singular value thresholding without singular
value decomposition,” Methods and Applications of Analysis, vol. 20,
no. 4, pp. 335–352, 2013.

[14] T.-H. Oh, Y. Matsushita, Y.-W. Tai, and I. So Kweon, “Fast random-
ized singular value thresholding for nuclear norm minimization,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2015, pp. 4484–4493.

[15] J. Moreau, “Fonctions convexes duales et points proximaux dans un
espace hilbertien,” Comptes Rendus de l’Académie des Sciences, vol.
225, pp. 2897–2899, 1962.

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

7

[16] ——, “Décomposition orthogonale d’un espace hilbertien selon deux
cones mutuellement polaires,” Comptes Rendus de l’Académie des
Sciences, vol. 225, pp. 238–240, 1962.

[17] E. van den Berg, M. Schmidt, M. P. Friedlander, and K. Murphy, “Group
sparsity via linear-time projection,” Department of Computer Science,
University of British Columbia, Vancouver, BC, Canada, Tech. Rep.
TR-2008-09, 2008.

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

8

