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Abstract—Recording drum performance is more complicated
than recording other music performance because a drum set
contains multiple classes of percussive instruments each of which
cannot be recorded individually. In this work, we consider a low-
cost drum recording setup, which adopts dual-channel source sep-
aration techniques based on the non-negative matrix factorization
(NMF) and non-negative matrix factor deconvolution (NMFD)
techniques to reconstruct the eight percussive instrument tracks
from recordings with only two overhead microphones. Compared
to previous drum separation works which only separate bass
drum, snare drum and hi-hat, this work firstly considers the
separation of tom drums and cymbals, which is a technically
challenging task. A pipeline for imitating the panning of each in-
strument of a target recording is also designed. Results of source
separation and panning imitation demonstrate the potential of
the proposed method on low-cost drum recording.

I. INTRODUCTION

Human’s hearing system is capable of processing complex
information. Suppose we are listening to a symphony, we hear
the violin, trumpet and percussion at the same time, and we
can distinguish each sound from others with our ability called
cocktail party effect. However, this does not mean that the each
sound source in such an environment can be easily reproduced.
How to record clean sound sources in noisy environments is
therefore a long-lasting challenge of recording engineering.

One of the solutions commonly adopted among profession-
ists is using multiple microphones with delicately adjusted
directions to reduce the crosstalk between sound sources
during recording, which is however an expensive and less
portable solution. To reduce the cost, an alternative solution
is multitrack recording, which allows each instrument track
to be recorded separately. These tracks are then assigned to
the mixing engineer for post-production. Since home studio
recording has become prevailing in recent years, multitrack
recording is gaining its popularity among the communities.
Performing well for most instruments, multitrack recording is
however not applicable for drum set recording: it is impossible
to record each percussion instrument separately in a natural
drum performance. An effective, low-cost, and personalized
drum set recording framework allowing separated drum track
recording in home studio is therefore a valuable research topic.

In this work, we attempt to provide a solution to this
research problem using audio source separation techniques to
obtain clean sources from mixture recordings, such that the
recording process can be done with simple equipment such as

overhead microphones. Most research on audio source separa-
tion are aimed at denoising (i.e. removing background noise)
[1], vocal separation (i.e. separating background music and
human voice) [2], or harmonic-percussive source separation
(HPSS, i.e. separating percussive and pitched instruments) [3].
Research on drum separation, i.e. separating individual per-
cussive instrument in a drum set is relatively less discussed [4],
[5]. A standard drum set contains eight classes of instruments,
but all the previous work on drum separation only discussed
the separation of the three most significant instruments (bass
drum, snare drum, and hi-hat).

Compared to other types of audio source separation tasks,
the major difficulty of drum separation is that the spectra of
individual instruments in the drum set are highly overlapped
in both frequency and time: drum signals are typically wide-
band and drum events tend to occur at beat or sub-beat
positions. For example, bass drum and floor tom share similar
frequency band and snare drum are usually played together
with hi-hat. Previous drum separation methods are mostly
based on the non-negative matrix factorization (NMF) and
non-negative matrix factor deconvolution (NMFD) algorithm,
which in principle takes the spectrogram of the drum set
performance as the input and decompose it into a template
matrix representing the spectral pattern of each percussive
instrument and an activation matrix representing the active
time of each of them (see Section III-A). In comparison to
the most recently developed deep-learning-based approach [6],
the NMF-based approach is still advantageous to our scenario
because the outcomes of the algorithm (i.e. templates and the
activation footprints) are all interpretable and can facilitate the
downstreaming tasks in recording engineering, such as auto-
matic adjustment of panning level (i.e., the panning imitation
task, see Section III C).

We set our research problem as: separating eight percussive
instrument sources (see Section III-B) from merely a mixture
recording of a pair of overhead microphone using the NMF-
based algorithm, such that the quality and format of the
separated results suffice further sound reproduction tasks. The
major contributions of this paper are two-fold:
• To the best of our knowledge, this work represents the

first attempt to solve drum set separation of problem with
the all the drum set instruments.

• This work is also the first discussion on applying drum
separation techniques for low-cost drum recording.
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The source code and detailed experiment results can be
found on https://github.com/aaron985/dual channel-NMF-for-
drum-separation.

II. BACKGROUND

A. Drum set and drum recording techniques

A drum set is in general constructed with membranophone
including bass drum (BD), snare drum (SD), tom-tom 1 (T1),
tom-tom 2 (T2), and floor drum (FT), as well as idiophone
including hi-hat (HH), crash cymbal (CC) and ride cymbal
(RC). The bass drum takes the largest room and produces the
lowest sound. The snare drum sounds sharp with the attached
snare. The hi-hat consists in two face-to-face cymbals and can
produce short and high sound when closing them up. Tom-
tom 1, tom-tom 2 and floor drum are drums of different sizes
and similar appearances. Crash cymbal and ride cymbal are
characterized with the long sustain sounds.

The standard drum set recording method requires eleven
microphones. The standard setting are described as follows.
Two microphones are needed for bass drum: one is placed in
front of the resonance drumhead, and the other is placed inside
the bass drum near the beat drumhead. Two microphones are
needed for snare drum: one is placed on the beat drumhead
above the snare drum; the other is placed on the resonance
drumhead below the snare drum. One microphone is need
on the top of the hi-hat. The tom-tom 1, tom-tom 2 and
floor tom each need one microphone placed above the beat
drumhead. Ride cymbal needs one microphone placed above
the cymbal and aimed at the center of the cymbal. Lastly,
two symmetrical microphones are needed for crash cymbal
and entire drum set. Two symmetrical microphones are called
“overhead microphone” (OH) are placed symmetrically on the
on right and left side above the drum set with the entire
drum set as the center. In some situations, the crash cymbal
is recorded with overhead microphones. In the practice for
drum recording, using only the two OH microphones is also a
commonly-seen, simplified setting. The OH microphones can
receive the sounds of all instruments of a complete drum set.
It is then intriguing to see if we can apply source separation
techniques on the two OH signals to approximate the above-
mentioned standard setting.

B. Related work on drum separation

Audio source separation is a classic research field in signal
processing. In this section, our survey focuses specifically on
the drum separation problem. Survey on general audio source
separation can be found in [7]. To our knowledge, there is
still no specific review paper on drum separation, though
interested readers can refer to the review of its most related
task, automatic drum transcription [8].

Most of the drum spearation methods are based on spec-
torgram decomposition. Yoo et al. [9] proposed to use Non-
negative Matrix Partial Co-factorization (NMPCF) to separate
the drum sound from the melody instrument sound in the
music signal. In this method, a pre-trained classifier that
distinguishes the drum sound from the melody instrument

sound is not required as it can decompose the feature of
percussive and non-percussive instruments. Dittmar et al. [4]
further utilized the high-efficiency of NMF to separate the
sources of three percussive instrument (i.e. hi-hat, snare drum,
and bass drum) in a drum set in real-time and transcribe them
into symbolic form. Besides, Dittmar et al. [5] also considered
score-informed drum separation, which was based on score-
informed NMFD. It requires both the training data of drum
signals and the note-level annotations (i.e. scores) of the testing
data. The score information can guide the learning of the
activation matrix and improve the performance. Rathnayake
[10] proposed to use NMF to find the optimal dictionary atoms
for monophonic source separation based on the Local Non-
negative Matrix Factorization (LNMF) method and stability-
driven model selection criterion. Pachauri et al. [11] proposed
to use NMF to separate beatbox, the art that uses human voices
to simulate various percussion sounds and rhythms. There are
three sets of sound data in the experiment. It can be seen
from the literature that NMF is a feasible method to separate
the drum sounds in an efficient and interpretable manner with
small-scale training data.

C. NMF-based audio reproduction

Using signal processing and optimization techniques on
various audio reproduction tasks such as automatic audio
mixing [12], demixing [13], and conversion [14], [15] has been
widely seen in the literature. The main applications of these
techniques include generating novel audio effects and reducing
cost in audio recording and post-production.

Scott et al. [16] proposed to use the linear dynamic system
to automatically mix the music stem. The part of the drum
set uses the Non-negative Least Squares (NNLS) method to
calculate the weight of each instrument in the drum set, and
then multiplies the frequency spectrum of each drum set by the
weight and mixes them all together to get the automatic mixing
result of the drum set. This automatic mixing method mainly
performs for the volume part rather than the stereo parameters
such as panning. Su [14] proposed a system to automatically
convert pop music into 8-bit chiptune music. It adopted
Robust Principal Component Analysis (RPCA) to separate the
vocals and musical instruments in pop music, and NMF to
transcribe the activation of musical instruments. By replacing
the template matrix of musical instruments with chiptune-like
templates, the chiptune music can be synthesized. Such an
NMF-based audio conversion framework is widely adopted in
various scenarios [15].

III. PROPOSED METHOD

A. NMF and NMFD

The NMF algorithm decompose a mixture spectrogram A ∈
RF×T
≥0 into a template matrix (or W matrix for simplicity)

W ∈ RF×R
≥0 and an activation matrix (or H matrix for

simplicity) H ∈ RR×T
≥0 by finding a low-rank approximation of

A such that A ≈WH, under the condition that A, W and H
are all non-negative matrices. The values F , T , and R are the
number of frequency bins, the number of time frames and the
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number of templates, respectively. The objective function of
the NMF algorithm is to minimize D(A|WH), where D(·|·)
represents the distance of two matrices. Conventionally used
distance functions in NMF include the Euclidean distance, the
Kullback-Leibler (KL) divergence, and the Itakura-Saito (IS)
divergence, etc. We adopt Euclidean distnace in this work as
it is found more stable in drum separation based on our pilot
study. The NMF algorithm is iterative with W and H updated
alternatively, and each step of update contains only matrix
multiplication and some element-wise operation. Details of the
algorithm can be found in [17].

The NMFD algorithm is an extension of NMF by intro-
ducing a convolution between a template and the activation
sequence over the time axis. That means, each template in
NMFD is two-dimensional and the whole set of templates
aggregate into a template tensor P ∈ RF×R×C

≥0 , in which C is
the number of feature frames each two-dimensional template.
Denote Pc as a slice of P at the cth frame of the template,
A is decomposed with NMFD in the following way:

A ≈
C−1∑
c=1

Pc
−→
H

(c)
, (1)

where C is the total number of template and −→H
(c)

is the frame
shift of H by c frames from left to the right [18], [19]. With the
temporal convolution, NMFD is found to be better in learning
the temporal behaviors of the signal. Details of the NMFD
algorithm can be found in [18], [19].

B. Dual-channel drum separation

Figure 1 illustrates the proposed dual-channel drum separa-
tion framework. In our framework, we consider using NMFD
for drum separation, and its initial template and activation
matrices are estimated using NMF over the magnitude spectro-
gram of the training data. Given a dual-channel drum recording
(aL,aR) which are recorded by the left overhead microphone
(OHL) and the right overhead microphone (OHR), respec-
tively. Denote the spectrogram of (aL,aR) as (AL,AR). The
drum spearation module outputs eight signals for each channel,
denoted as (āL,i, āR,i), such that

(aL,aR) ≈
∑
i∈I

(āL,i, āR,i) (2)

where the set of subscripts I := {BD,SD,HH,T1,T2,FT,
CC,RC} represent the eight percussive instrument classes.
The proposed dual-channel NMF process aims at computing
the individual template and activation matrices of the two
signals, and also finding the relation between them. The source
separation process includes the following steps:

1) Template initialization. The spectra of each instru-
ments in the training dataset are selected and con-
catenated as the initial template matrix W0 :=
[W0,BD|W0,SD| · · · |W0,RC]. W0 is used as the initial
template matrix in the following NMF process.

2) Individual-channel decomposition using NMF. AL

and AR are decomposed using NMF such that AL ≈

Fig. 1. Flowchart of the dual-channel drum separation system.

WLHL and AR ≈WRHR, with D(AL|WLHL) and
D(AR|WRHR) minimized. WL, WR, HL, and HR

are then the template and activation matrices for either
the left or the right channels according to the subscript.

3) Cross-channel decomposition using NMF. Assuming
that there exists time and phase difference between
each instrument to the OHL and OHR microphones,
a communication matrix U between the left and right
channels is defined to communicate the left and right
channels. Initializing U with an identity matrix, two
NMF processes are then performed: first, update WL

and U by WR ≈ WLU; second, update WR and U
by WL ≈ WRU. With the updated WR and WL in
the above step, update WL, WR, HL, and HR again.

4) Source separation with NMFD. A is then decomposed
again with NMFD using the W and H obtained from
the above step as initialized template and activation
matrices. The template tensor P and the activation
matrix H obtained in this step are tensors containing
8 channels.

5) Reconstruction. The spectrogram for the instrument i,
denoted as (ĀL,i, ĀR,i), is reconstructed by this formu-

lation: Āi :=
∑C−1

c=0 Pc,i
−→
H

(c)
(subscripts L and R are

omitted), in which Pc,i is denoted as the template sets
for instrument i. Each Āi in both channels is processed
with an alpha Wiener filter [20], and is then converted
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Fig. 2. Flowchart of the panning imitation system.

back to the time-domain signal {āL,i, āR,i}i∈I with an
inverse short-time Fourier transform (iSTFT) process
implemented with inverse fast Fourier transform (IFFT)
and the overlap-add (OLA) technique [21]. In the iSTFT
process, the phase spectrogram of the source signal is
used for reconstruction.

C. Panning Imitation

Briefly speaking, panning refers to the ratio of levels be-
tween the left channel and the right channel. Panning imitation
is the task to estimate the panning level of each instrument in
the input signal (i.e. the source signal) as well as in a well-
recorded drum set signal (i.e. the target signal), such that the
panning condition of the input can be converted to the well-
recorded one. Panning imitation is an extra application that
applies the dual-channel drum separation technique for low-
cost drum recording. In this task, the source signal is denoted
as a := (aL,aR) and the target signal as b := (bL,bR).
Panning imitation is done with the following processes:

1) Both the source and the target signals are separated into
{aL,i,aR,i}i∈I and {bL,i,bR,i}i∈I , respectively, using
the proposed dual-channel drum separation technique. It
should be noted that the initialized W and H matrices
for separating b are obtained from the outcomes when
separating a. Since the panning information of the
source is not necessary for panning imitation, aL,i and
aR,i are merge into a single-channel signal (denoted as
ai) simply by taking average.

2) The average energy values of the each instrument track
after source separation are obtained by performing l2-
norm for each spectrogram. These values are denoted
as {Ai}i∈I , {BL,i}i∈I , and {BR,i}i∈I for the source
signal, left-channel target signal and right-channel target
signal, respectively.

TABLE I
TRAINING DATA

Class Techniques #. file Length (s)
BD center 13 78
SD center. rim shot, side stick 30 180

HH closed edge, half closed edge, 27 162half open edge
T1 center 9 54
T2 center 8 54
FT center 12 72
CC edge 51 306
RC edge, bell 22 132

3) The imitation results, (āL, āR), are then

āL =
∑
i∈I

BL,i

Ai
ai , āR =

∑
i∈I

BR,i

Ai
ai . (3)

D. Implementation details

Throughout this work, the audio signals are sampled with
a rate of 44.1 kHz and a bit depth of 16 bits. The parameters
for STFT computation are: Hann window function, 256-point
hop size, and 2048-point frame size.

The code was written in MATLAB, and the implementation
mostly relied on the NMF Toolbox [19].1 The distance func-
tion used in this work is Euclidean distance for NMF and KL
divergence for NMFD. Each NMF/NMFD process mentioned
in this paper is run with 15 iterations. If not specifically
mentioned, the W matrix is randomly initialized and the H is
uniformly initialized (i.e. all elements are one) for NMF. For
NMFD, the P matrix is initialized with the drums strategy
in initTemplates.m, which converts the 2D W matrix to
a tensor. The number of template R is 172, and the number
of frames of a two-dimensional template C is 64. The values
smaller than 1× 10−8 in H are discarded in order to sparsify
the H matrix.

IV. EXPERIMENT AND RESULTS

A. Data

The training data for each instrument are extracted from the
single-strike samples provided by Perfect Drums, an acoustic
drum VST.2 The extraction process from MIDI to audio is
performed on Cubase 10 Pro.3 The MIDI velocity of each
sample is set to 80. Each audio file is a mono-channel .wav file
with a bit depth of 16 bits and a sampling rate of 44.1 kHz. The
training dataset therefore contains the aforementioned eight
percussive instruments with various techniques (e.g., tapping
positions, hi-hat modifiers), and the total length of the dataset
is 1038 seconds. See Table I for details.

The testing data are selected from the OHL/OHR samples
as well as the ground truth signals provided by the ENST
Drums Dataset [22].4 The ENST Drums Dataset includes the
recordings of three drummers. Among them, drummer 1’s

1https://www.audiolabs-erlangen.de/resources/MIR/NMFtoolbox/
2https://theperfectdrums.com/
3https://new.steinberg.net/cubase/
4https://perso.telecom-paristech.fr/grichard/ENST-drums/
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TABLE II
TESTING DATA

#. file Length (s) Name

drummer 2 3 143
072 phrase shuffle-blues complex slow sticks
079 phrase hard-rock complex medium sticks
106 solo binary sticks

drummer 3 2 145 087 phrase shuffle-blues simple fast sticks
089 phrase shuffle-blues complex medium sticks

recordings are note muffed and represents a more challenging
scenario for source separation due to the lengthened sustain
of the sound. Therefore, we opt to experiment on selected
recordings performed by drummer 2 and drummer 3. We
selected the recordings with all the eight drum set instruments
and without those percussive instruments not discussed in this
paper (e.g., cowbell). This results in five recordings, as listed
in Table II.

B. Experiment settings and evaluation metrics
To verify the effectiveness of the proposed dual-channel

drum separation method, we consider two baseline methods
in our experiment. The first baseline is the proposed method
with the cross-channel decomposition step removed, which is
then equivalent to the typical, single-channel NMF and NMFD
process for drum separation (we will refer to this setting as
single-channel NMF hereafter). In this way we can evaluate
whether the method takes advantage of using the dual-channel
setting. The second baseline is Drums SSX , which is a
commercial tool for separating drum sounds based on NMF.5

We use the BSS Eval 3.0 toolkit to evaluate the performance
of source separation and panning imitation. The source-to-
distortion ratio (SDR), source-to-interference ratio (SIR), and
source-to-artifact ratio (SAR) are reported. All the reported
values are in decibel (dB). It should be noted that in our testing
data, there is no ground truth signals for the crash cymbal and
the ride cymbal as there is no specific microphone devices
used for recording these two instruments (in practice, these
two instruments are recorded with the OH microphones only).

For panning imitation, there is also no available ground
truth (i.e. the left/right-channel energy distribution of each
instrument in the target signal) since the right- and left-channel
of the target are both mixed. We therefore consider using the
SDR, SAR and SIR between the target b and the remixed
source after panning imitation ā as a preliminary measure, by
assuming that these performance metrics for the results with an
effective panning imitation process should be higher than those
without panning imitation. More specifically, six values are
for comparison: SDR(āL,bL), SDR(āR,bR), SIR(āL,bL),
SIR(āR,bR), SAR(āL,bL), and SAR(āR,bR). The higher
these values are, the better the system performs. Three sce-
narios are considered in order to verify the effectiveness of
panning imitation and its performance on various targets:

1) (āL, āR) are obtained with panning imitation, and the
target is the wet mix version of that source recording
which is provided in the ENST-Drum dataset.

5Drum SSX: https://fuseaudiolabs.com/#/pages/product?id=300867907

2) (āL, āR) are obtained with panning imitation, and the
target is an artificially-mixed OH recording which is
simply mixed by 0.7× .OHR + 0.3×OHL.

3) The remixed sources (āL, āR) are obtained without
panning imitation (i.e. BL,i/Ai = BR,i/Ai = 0.5 for all
i), and the target is the wet mix version of that source
recording.

C. Results

Table III lists the SDR, SIR and the SAR values on the
testing dataset for the proposed dual-channel drum separation
method, the proposed method without cross-channel decom-
position (i.e., single-channel), and Drum-SSX. Again, the
performance of CC and RC cannot be reported due to the lack
of ground truth signals. The optimal values among the three
methods are marked in bold. First, both the single- and dual-
channel NMF greatly outperforms Drum-SSX: taking SDR for
example, dual-channel NMF leads Drum-SSX by around 10 –
20 dB for each instrument. This indicates the effectiveness
of the proposed method in drum separation. Second, the
single-channel and dual-channel methods achieve similar per-
formance, though dual-channel NMF still outperform single-
channel NMF quite consistently in a range between 0.1 and 0.5
dB. Single-channel NMF outperforms dual-channel NMF only
in the SIR of snare drum and hi-hat. In summary, the cross-
channel decomposition process in dual-channel NMF results
in small but consistent improvement in drum separation.

Table IV shows the SDR, SAR and SIR between the target
signal (wet mix or OH) and the remixed signal with or without
panning imitation. Results show that in all cases, panning
imitation results in better performance. It should be emphasize
that even in the very challenging case (i.e. wet mix as the
target), the performance metrics of the left and right channel
are still consistently better than the case without panning
invitation. Finally, the results that the system can imitate OH
better than wet mix are also reasonable.

V. CONCLUSION

We have demonstrated a drum separation system which can
separate eight percussive instrument in a drum set from either
single-channel or dual-channel inputs. Based on this drum
separation system, we have also demonstrate its practical use
of imitating the panning levels of a target recording. Both
of them are of high potential in the re-production of low-
cost drum recordings. However, the performance of drum
separation is still strongly limited by several factors, such as
the high similarity in between the instruments and the paucity
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TABLE III
RESULTS OF SDR, SIR, AND SAR (IN DB) FOR THE DRUM SOURCE SEPARATION METHODS

dual-channel NMF single-channel NMF Drums SSX
SDR SAR SIR SDR SAR SIR SDR SAR SIR

BD -3.549 -1.292 4.226 -3.779 -1.457 3.972 -15.52 -12.213 -0.029
SD 6.975 10.249 10.323 6.926 10.107 10.422 -21.827 -11.535 -9.523
HH -10.673 -6.470 -1.218 -10.748 -6.904 -0.714 -19.352 -13.602 -4.046
T1 -2.470 4.217 0.760 -2.835 4.05 0.402 -16.692 -12.24 -1.465
T2 -2.827 2.288 0.928 -3.089 2.155 0.681 -15.148 -11.707 0.220
FT -5.508 0.658 -1.591 -5.754 0.456 -1.758 -17.893 -13.792 -1.723

TABLE IV
RESULT OF PANNING IMITATION

Panning imitation Yes Yes No
Target (b) Wet mix Overhead Wet mix

SDR (right) -5.892 -2.606 -6.589
SDR (left) -6.186 -2.706 -6.760
SIR (right) 2.890 7.095 2.905
SIR (left) 2.757 6.619 2.723

SAR (right) -3.391 -1.283 -4.236
SAR (left) -3.536 -1.194 -4.236

of training data and full (8-channel) ground truth. We also
showed that the limited performance of drum separation is still
the major obstacle of deploying it to the downstream tasks
of audio reproduction. The task of collecting scaled multi-
track drum recording data would then be the most essential
future work. Combining NMF with deep learning techniques
for drum separation is also a provoking research direction [23].
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