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Abstract—Multipliers in DSP applications usually consume a
significant amount of power. Studies have shown that power
efficiency of the often used Booth multiplier can be improved
by dynamically swapping input operands based on the dynamic
range of both inputs. However, this requires dynamic range
detection logic, which increases the area and delay. Also, no
studies have proposed multipliers with dynamic range detection
that are larger than 16x16 bits. So far, no applications have been
identified where statically swapping multiplier inputs leads to
increased power-efficiency.

In this paper we show that statically swapping Booth multiplier
inputs can greatly improve the power-efficiency of FFTs. In the
case of automotive FMCW radar systems, where multidimen-
sional FFTs are calculated, the intermediate and output values of
FFTs are typically sparse. Therefore these values are always given
to the partial product generating input of the Booth multipliers,
instead of being given the twiddle factors.

RTL power-simulation results of a radix-2 FFT implemen-
tation using Booth multipliers with swapped inputs show an
up to 28.69% decrease in power usage compared to a typical
implementation without swapped inputs.

Index Terms—Low-power design, Signal processing systems,
FFT, Automotive, FMCW

I. INTRODUCTION

Multiplication is a fundamental operation in digital signal
processing (DSP) applications, where the modified Booth mul-
tiplier [8] is often used compared to array multipliers, because
they generate fewer partial products, leading to a lower delay
and therefore a higher maximum clock frequency. Their power
usage is significantly influenced by the dynamic range of
their inputs. Several studies have proposed Booth multiplier
implementations with dynamic range detection hardware that
swap the multiplicand and multiplier if it can decrease the
switching activity. However, compared to conventional Booth
multipliers, these proposed implementations are slower, larger,
and only are up to 16x16 bits in size. In contrast, no ap-
plications have been identified where statically swapping the
multiplier inputs leads to lower power usage.

In this paper we show that statically swapping the multiplier
inputs can significantly increase the power-efficiency in Fast

∆f

∆t

Time
F
re
q
u
en
cy

transmitted signal

received signal

b0 b1 bN

noise

Fig. 1: Basic working principle of FMCW radar.

Fourier Transforms (FFT). We present a real-life, Frequency-
Modulated Continuous-Wave (FMCW) radar signal processing
use case involving multidimensional FFTs. The properties of
the system allow us to always feed the twiddle factors of
the FFT to the multiplicand input, and the input data to
the multiplier input, saving power without dynamic range
detection. In our gate level power simulations, our proposed
FFT implementation with swapped Booth multiplier inputs
uses up to 28.69% less power processing a real radar frame.

The paper is organized as follows. In Section II we explain
the basic principles of FMCW radar and its properties. Then,
in Section III we give a brief overview of the Discrete Fourier
Transform (DFT) and FFT, and their processing gain. Section
IV describes the modified Booth multiplier. In Section V,
we list related work that achieve power reduction in Booth
multipliers using dynamic range detection of operands. Section
VI describes the basic idea of our proposed solution. Next, in
Section VII, we evaluate both implementations, perform static
power analysis, and list the power usage, area, and maximum
frequencies. Section VIII addresses future work. Finally, we
conclude the paper in Section IX.

II. FREQUENCY-MODULATED CONTINUOUS-WAVE RADAR

The basic principle of radar systems is to transmit a signal,
then receive it after they reflect off of objects, and finally mea-
sure the time difference between transmitting and receiving the
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Fig. 2: Radar cube with range, Doppler, and angle information.

signal. This time difference, denoted as ∆t, is proportional
to the distance between the radar and objects that the signal
reflects off of.

The type of signal that an FMCW radar system transmits is
a chirp, which is a signal that increases in frequency over time.
This allows for not only measuring the time difference ∆t, but
also the frequency difference ∆f . Demodulation results in a
sinusoidal signal called the beat signal bi, which is obtained by
mixing the transmitted and received signals. The beat signal
contains frequencies that correspond with the reflections of
objects and their distances R, which are extracted by using
the FFT. Fig. 1 shows the basic workings of an FMCW radar
system.

The proportion of the power of the transmitted and received
signals is [4]:

Prx ∝
1

R4
Ptx (1)

where Prx is the power of the received signal, Ptx is the
peak transmission power, and R is the distance to an object.
We can see that, while Prx has a high dynamic range, the
power of the received signal is usually much smaller compared
to the power of the transmitted signal.

A. Radar Data Cube

By applying a 3D FFT on the beat signals we can obtain
a Radar data cube as shown in Fig. 2, which contains range,
Doppler, and angle information. First we apply the FFT to all
N beat signals bi. This results in N columns containing the
ranges of objects. Then we concatenate all columns and apply
the FFT to all N rows, which results in the range-Doppler
map. Finally, angle information is obtained by computing the
range-Doppler map for every receiver antenna, and applying
the FFT in the Z dimension.

We note that beat signals typically do not have a small
amplitude as they contain sums of sinusoidal signals. There-
fore the range FFTs are likely to process large signals, for
example due to continuous strong reflections like a bumper or
the radar dome. However, due to FFTs concentrating signal
power in very few frequency bins, the outputs of range FFTs
contain mostly noise and very small signals, even with large
amplitude inputs. This is indicated in Fig. 2 with a grey color
for noise and very weak signals, and white for strong signals.
An additional property is that this not only applies to the
output, but also applies to internal values of FFTs as well.

Since the output of the range FFTs mostly have very low
amplitude, the Doppler and angle FFTs also process mostly
very small signals. This effect is larger for range bins that
correspond to targets that are increasingly farther away.

III. DISCRETE FOURIER TRANSFORM

For N -periodic discrete signals, the DFT extracts the dis-
crete frequency components and their respective amplitudes.
It can be seen as applying a band-pass filter for each output
[7] which represents a bin for a specific frequency range. It is
defined as:

X[k] =

N−1∑
n=0

x[n] ·W kn
N (2)

where x[n] is the nth complex input sample, X[k] is the kth
transformed sample, and W kn

N = e−i
2πkn
N is called the twiddle

factor [2] and is the principal N th complex root of unity.

A. Fast Fourier Transform

The most famous FFT uses the Cooley-Tukey algorithm [1]
which reduces the complexity from O(N2) to O(Nlog2(N)).
This is done by exploiting the symmetry of the twiddle factors
and recursively decomposing the DFT into smaller parts.
Given two input samples x[i] and x[j], the radix-2 FFT is
defined as:

X[i] = x[i] + x[j] ·W
X[j] = x[i]− x[j] ·W

(3)

where X[i] and X[j] are the transformed samples.

B. Processing Gain

The magnitude of a bin containing the signal is proportional
to the FFT length N , whereas the magnitude of noise is
proportional to

√
N . This interesting property, known as the

processing gain, is defined as [7]:

SNRN = SNRN ′ + 10 · log10
(
N

N ′

)
(4)

where N and N ′ are FFT lengths. To increase the SNR, we
simply choose a bigger FFT length, i.e. N > N ′.

When processing beat signals, far away objects have a
higher frequency and as such are placed into higher bins. As
a consequence of (1), their magnitudes are therefore much
smaller, and can even be smaller than noise. The processing
gain aids in extracting those small signals.

However, this comes at a cost as it requires more input
samples and more operations to be executed. Also, the data
path needs to be wide enough to store the larger values to not
lose accuracy, increasing the number of logic gates and area
of the implementation.
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Fig. 3: Partial product generation in a radix-4 Booth multiplier.

TABLE I: Radix-4 Booth encoding

b2i+1 b2i b2i−1 P
0 0 0 +0
0 0 1 +A
0 1 0 +A
0 1 1 +2A
1 0 0 −2A
1 0 1 −A
1 1 0 −A
1 1 1 -0

IV. BOOTH MULTIPLIER

The modified Booth multiplier [8] with inputs A (multipli-
cand) and B (multiplier), uses a radix-4 scheme to generate a
partial product per groups of bits of B. The size of the group
depends on the used radix, and in the radix-4 Booth multiplier,
a partial product is generated per overlapping group of three
bits. Table I lists the generated partial product based on these
three bits of B (listed as b2i−1, b2i and b2i+1). Fig. 3 shows
how these partial products are generated. The first bit of the
first group is always a zero. The LSB of each consecutive
group is the MSB of the previous group. If the last group
consists of less than three bits, then the MSB of B is sign-
extended. Also, since the first bit of the first group is a zero,
the first partial product cannot generate 2A. In Table I, we
see that three consecutive ones or zeroes produce a zero as a
partial product, lowering the switching activity.

V. RELATED WORK

Multiple studies have looked into methods of determining
whether A or B has a lower dynamic range (i.e. more groups
that produce a zero partial product), so that it can be used as
the B input.

Shen and Chen proposed a 16x16 bit radix-4 Booth multi-
plier, where they employed dynamic range determination units
that partition the input into three groups of five bits, instead of
groups of three bits [10]. This was done because it simplifies
the implementation to a three input comparator. The downside
of this approach is that it cannot detect all situations in which
it would be beneficial to switch inputs, since the two extra bits
that being compared in each group are unrelated to the main
partial product generated in that group.

Park, Kim, and Lee proposed a novel data partitioning
method where a 16x16 bit multiplier is split up into four 8x8

bit multipliers [3]. Since each multiplier deals with 8 bits of
data, their dynamic range detection unit checks three groups
of three bits. The benefit of their method is that each group
only contains the exact bits that generate a partial product,
resulting in accurate dynamic range detection. Also, the use
of four multipliers means that there are more opportunities to
switch the two inputs therefore having the potential to decrease
the switching activity even further.

Kuang and Wang proposed a low-power, configurable Booth
multiplier that can perform a single 16 bit, single 8 bit, or dual
parallel 8 bit multiplication [5]. They use a novel dynamic
range detector that not only increases the probability that
partial products generate zeroes, but also attempts to avoid
redundant switching activity in ranges that do not influence
the result.

As an alternative to dynamic range detection, Meteer and
Bekooij have shown that using radix-2 FFT units with custom
sign-magnitude multipliers can lead to a reduction in power us-
age of up to 46.45% in automotive FMCW radar applications
[9]. The downside is that they use a custom multiplier and
their design is larger and has a 6.67% lower maximum clock
frequency compared to a design using the Booth modifier
proposed by Kuang, Wang, and Guo [6].

What previous studies have in common is that compared
to conventional Booth multipliers, the proposed ones are
larger and slower. Also, the multipliers with dynamic range
detection only have a size of up to 16x16 bits. However, in our
application, the processing gain of the FFT is used to detect
signals far below the noise level, so a large dynamic range
and data width is required, which makes previous attempts
with dynamic range detection not suitable.

VI. BASIC IDEA

To decrease the dynamic power usage, we note the following
observations. First, we want to extract signals far below the
noise floor by using the processing gain of the FFT. Therefore
we need a wide data path, which surpasses the size of state
of the art multipliers with dynamic range detection.

Second, the amount of targets to detect compared to the
number of bins is relatively small. Under these circumstances,
the signal powers of the targets are quickly concentrated in
a few bins, producing sparse outputs. This is due to the FFT
essentially applying a band-pass filter to each bin [7]. Also,
almost all the intermediate values have small amplitudes and
low dynamic range as well [9].

Third, Booth multipliers are sensitive to the dynamic range
of the partial product generating input, and a majority of
values being processed have a very small dynamic range. We
therefore propose a static setup where the twiddle factors are
connected to the multiplicand input and the signal data is
connected to the partial product generating inputs of the Booth
multipliers. Thus, the power-efficiency is improved without
using dynamic range detection hardware, and without a penalty
to area or critical path length. Also, our proposed setup does
not require any custom multipliers as used in [9].
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Fig. 4: Basic radix-2 FFT butterfly unit.

VII. EVALUATION

In this section we evaluate the reference and our proposed
implementations using synthetic data and a full frame from
an actual FMCW radar. Both designs implement a radix-
2 FFT butterfly with a 32-bit wide data path and use the
Booth multiplier as proposed by Kuang, Wang, and Guo [6].
Fig. 4 shows the design used for both implementations. The
subtraction and addition of the complex multiplication use the
full 64-bit outputs of the multipliers, and the final additions
and subtractions are done with 32 bits, where the rounding
hardware (RND) perform unbiased rounding. We show that
our proposed design uses significantly less power.

Both implementations were synthesized using the TSMC
40nm LP standard cell library with a typical-typical corner
and Vdd = 1.1 V. Synopsys tools were used for synthesis with
high synthesis and mapping effort. As a reference, a software
implementation of the FFT was written that uses Q2.30
fixed-point numbers, 12-bit input samples, and

√
N division

(implemented as dividing by two each two stages of the FFT).
Correctness of our reference software implementation was
verified using the built-in FFT implementation in Matlab.

Two types of signals were used to test all implementations.
First, two synthetic signals were generated, and a 1024-bin
FFT was applied that uses a single radix-2 butterfly unit
sequentially. The two signals contain two bits of normally
distributed noise:

1) Weak: sine wave with amplitude 1
4096 ≈ 2.44 · 10−4.

2) Strong: sine wave with amplitude 4000
4096 ≈ 9.7 · 10−1.

Second, capturing a scene with several targets at different
distances with an actual FMCW radar, we applied a 2D FFT
to obtain a range-Dopple frame. The radar was configured to
generate 512 chirps with 1024 samples per chirp, so 512 1024-
bin FFTs were applied to obtain the range FFT. The input is a
real-valued signal, meaning the upper half of the range FFT is
symmetrical to the lower half, and was discarded. Therefore, to
obtain the Doppler results, 512 512-bin FFTs were performed.

A. Results

The synthesis results are shown in Table II. The area and
maximum clock frequency results for both the reference our
proposed implementations are the same. This is expected since
both implementations are structurally the same, and only the
multiplier inputs are swapped.

TABLE II: Synthesis results for circuit area and maximum
frequency.

Max. Freq. Area @
Max. Freq.

Area @
344.8 MHz

Implementations (MHz) (∆) (µm2) (∆) (µm2) (∆)
Reference 476.2 (-) 48113 (-) 32663 (-)
Proposed 476.2 (+0.0%) 48113 (+0.0%) 32663 (+0.0%)

The power results for both butterfly implementations pro-
cessing synthetic data and a real radar frame are shown in
Fig. 5a and Fig. 5b respectively. Compared to the reference
implementation, our proposed implementation shows a signi-
ficant decrease in power usage of up to 43.03% for synthetic
data, and an up to 28.69% decrease for a real radar frame.
Since the majority of the intermediate and output data of
the FFT has low dynamic range, most partial products of the
Booth multipliers generate zeroes. This not only decreases the
switching activity in the multipliers, but also permeate less
glitches throughout the adders and subtracters, improving the
power efficiency even further.

VIII. FUTURE WORK

The results show that choosing the right operands for the
inputs of the multipliers has a significant influence on the
power-efficiency. Statically swapping the operands is a trivial
operation, because we use the exact same multiplier hardware
and the functional multiplication results do not change. In
future work, it would be fruitful to find other applications,
or even change existing algorithms where statically swapping
inputs leads to improved power efficiency.

IX. CONCLUSION

In this paper we have proposed a modification to FFT
butterfly units that use the modified Booth multiplier. We
propose to statically swap the inputs to the multipliers when
used in the context of FMCW radar systems.

Evaluation shows that our proposed implementation de-
creases the power usage up to 28.69% with a real radar
frame. Our proposed modification has no penalty to the area
or maximum clock speed.

The results clearly show that in the context of FMCW
radar signal processing, the FFT can be significantly more
power efficient by simply swapping the multiplier inputs
permanently.
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