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Abstract—Microphone array adaptive beamforming is needed
in a wide range of audio and speech applications for acquiring
the acoustic signal of interest while suppressing noise and inter-
ference. In the design and application of adaptive beamformers,
particular attention has to be paid to the issues of robustness
and computational efficiency. One way to deal with these issues
is through the use of the recently developed Kronecker prod-
uct beamforming framework. However, the existing Kronecker
product beamformers were formulated based on special array
geometries that can be straightforwardly decomposed into sub-
arrays and, as a result, the application of such formulation is
limited to a small range of arrays. To generalize the formulation,
we introduce in this paper a framework that can be applied to
arbitrary array geometries, where the beamformer is represented
as a sum of Kronecker products of several subfilters. Based
on this new framework, an iterative optimization algorithm is
derived for designing the subfilters of the minimum variance
distortionless response (MVDR) beamformer. Simulation results
demonstrate the advantages of the proposed method in different
conditions.

Index Terms—Microphone arrays, adaptive beamforming, mini-
mum variance distortionless response (MVDR), Kronecker prod-
uct beamforming.

I. INTRODUCTION

Microphone arrays equipped with beamforming techniques
play an important role in a wide range of applications such as
teleconferencing and smart home systems [1]–[4]. Generally,
beamforming methods can be divided into two categories, i.e.,
fixed [5]–[8] and adaptive beamformers [9], depending on
how the beamforming filters are determined. In comparison,
adaptive beamformers are more effective than the fixed ones
in dynamic and time-varying acoustic environments as their
beamforming filters are updated according to the statistics
of the incoming data; but they are also less robust and
can introduce signal distortion and signal self cancelation
as has been widely discussed with the minimum variance
distortionless response (MVDR) beamformer [10]–[13].

Recently, the principle of linear filtering with Kronecker
product [14], [15] has been applied in multiple fields, such
as system identification [16], noise reduction [17], dereverber-
ation [18], and time-difference-of-arrival (TDOA) estimation
[19]. It was also investigated in the context of beamforming

[20]–[25]. The basic idea underlying Kronecker product beam-
forming is to partition the given microphone array into two or
multiple smaller virtual subarrays so the (global) beamforming
filter associated with the entire array can be expressed as
the Kronecker product of subfilters, each corresponding to
one subarray. By properly designing those subfilters and then
combining them in the framework of Kronecker product,
the global beamformer can be flexibly optimized to achieve
different properties, e.g., high spatial gain, high output signal-
to-noise ratio (SNR), and/or good robustness. This leads to a
new way to deal with some issues with the traditional adaptive
beamformers.

However, the existing Kronecker product beamformers were
formulated based on special array geometries, e.g., linear,
rectangle, and cubic ones, which can be straightforwardly
decomposed into subarrays. A legitimate question is then how
to generalize the existing framework so that it can work
with any (arbitrary) array geometry, which is the objective
of this work. We propose a framework, which reformulates
the beamforming filter as a sum of Kronecker products of
several shorter subfilters as developed in [16] in the context
of system identification. In comparison with the existing one,
the proposed framework explicitly eliminates the restriction
on the array geometry and, as a result, it can be applied more
generally to any geometry in the three-dimensional space as
long as the positions of the microphone sensors are given.
Based on this framework, we derive an iterative optimization
algorithm for designing the subfilters associated with the
MVDR beamformer, resulting a Kronecker MVDR (KMVDR)
adaptive beamformer. Simulations are presented to illustrate
some properties of this new beamformer.

II. SIGNAL MODEL AND PROBLEM FORMULATION

We consider a microphone array with an arbitrary geom-
etry in three-dimensional space that includes M = M1M2

acoustic sensors as illustrated in Fig. 1, where M1,M2 are
arbitrary positive integer numbers and the position of the mth
microphone in the Cartesian coordinate system is denoted
by pm = [xm ym zm]

T
, m = 1, 2, . . . ,M . In an anechoic

environment, we assume that a far-field source (plane wave)
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Fig. 1. Illustration of a microphone array with an arbitrary geometry in three-
dimensional space.

is incident to the array from the direction ρs = (θs, φs) at the
speed of sound, i.e., c = 340 m/s, with θs and φs specifying
the elevation and azimuth angles, respectively. In case that
an interference (coming from a point source) and ambient
noise co-exist in the environment, the array observation can
be represented in the frequency domain as

y (ω) =
[
Y1 (ω) Y2 (ω) · · · YM (ω)

]T
= x (ω) + u (ω) + v (ω)

= d (ω,ρs)X (ω) + u (ω) + v (ω) , (1)

where ω = 2πf is the angular frequency with f being the
temporary frequency, Ym (ω) is the signal received at the
mth microphone, the superscript T is the transpose operator,
x (ω), u (ω), and v (ω) are the desired, interference, and noise
vectors, respectively, having a similar form as y (ω), X (ω) is
the desired signal, and

d (ω,ρs) =
[
e−ȷkT

s p1 e−ȷkT
s p2 · · · e−ȷkT

s pM

]T
(2)

is the phase vector corresponding to the desired direction, with
ks = −ω

c

[
sin θs cosφs sin θs sinφs cos θs

]T being the
wavenumber and ȷ being the imaginary unit. In the rest of the
paper, we drop the variable ω from the notation for the sake
of simplification. The covariance matrix of y can be written
as

Φy = E
(
yyH

)
, (3)

where E (·) denotes the mathematical expectation and the
superscript H is the conjugate-transpose operator. The objec-
tive of beamforming is to recover the desired signal, which
is achieved by applying a spatial filter to the noisy array
observations, i.e.,

Z = hHy, (4)

where h is a spatial (or beamforming) filter of length M . Then,
the variance of the beamformer’s output can be deduced as

ϕZ = E
(
|Z|2

)
= hHΦyh. (5)

In order to preserve the desired signal, the distortionless
constraint is always desired, i.e.,

hHd (ρs) = 1. (6)

Minimizing the variance of the beamformer’s output under
the distortionless constraint gives the well-known MVDR
beamformer:

hMVDR =
Φ−1

y d (ρs)

dH (ρs)Φ
−1
y d (ρs)

. (7)

III. KRONECKER MVDR BEAMFORMER

In our study, we propose to rewrite the beamforming filter
as the sum of Kronecker products of subfilters [16], i.e.,

h =

P∑
p=1

h1,p ⊗ h2,p, (8)

where h1,p and h2,p, p = 1, 2, . . . , P are subfilters of length
M1 and M2, respectively, and P is an integer ranging from 1
to min {M1,M2}.

We have the following obvious relationships:

h1,p ⊗ h2,p = (h1,p ⊗ IM2)h2,p

= (IM1 ⊗ h2,p)h1,p, (9)

where IM1 and IM2 are the identity matrices of sizes M1×M1

and M2 ×M2, respectively. Using (9) and (8), we obtain

h =
P∑

p=1

H1,ph2,p =
P∑

p=1

H2,ph1,p, (10)

where

H1,p = h1,p ⊗ IM2 , (11)
H2,p = IM1 ⊗ h2,p (12)

are matrices of sizes M ×M2 and M ×M1, respectively.
When h1,p, p = 1, 2, . . . , P are fixed, by substituting (10)

into (4) we can rewrite the estimated signal as

Z =
P∑

p=1

hH
2,pH

H
1,py

=
P∑

p=1

hH
2,py1,p

= hH
2 y

1
, (13)

where

y1,p = HH
1,py, p = 1, 2, . . . , P,

h2 =
[
hT
2,1 hT

2,2 · · · hT
2,P

]T
,

y
1
=

[
yT
1,1 yT

1,2 · · · yT
1,P

]T
.

Then, the variance of the beamformer’s output can be written
as

ϕZ (h2|h1) = hH
2 Φy

1
h2, (14)
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where

Φy
1
=
HH

1,1ΦyH1,1 HH
1,1ΦyH1,2 · · · HH

1,1ΦyH1,P

HH
1,2ΦyH1,1 HH

1,2ΦyH1,2 · · · HH
1,2ΦyH1,P

...
...

. . .
...

HH
1,PΦyH1,1 HH

1,PΦyH1,2 · · · HH
1,PΦyH1,P


(15)

is a matrix of size PM2 × PM2. Using (10) and (6) lead to
the distortionless constraint for h2, i.e.,

hHd (ρs) =

P∑
p=1

hH
2,pH

H
1,pd (ρs)

=

P∑
p=1

hH
2,pd1,p (ρs)

= hH
2 d1 (ρs) = 1, (16)

where

d1,p (ρs) = HH
1,pd (ρs) , p = 1, 2, . . . , P,

d1 (ρs) =
[
dT
1,1 (ρs) dT

1,2 (ρs) · · · dT
1,P (ρs)

]T
.

(17)

By minimizing ϕZ (h2|h1) under the distortionless constraint
for h2, we can derive

h2 =
Φ−1

y
1
d1 (ρs)

dH
1 (ρs)Φ

−1
y
1
d1 (ρs)

. (18)

Alternatively, when h2,p, p = 1, 2, . . . , P are fixed, the
beamformer’s output can be written as

Z =
P∑

p=1

hH
1,pH

H
2,py

=
P∑

p=1

hH
1,py2,p

= hH
1 y

2
, (19)

where

y2,p = HH
2,py, p = 1, 2, . . . , P,

h1 =
[
hT
1,1 hT

1,2 · · · hT
1,P

]T
,

y
2
=

[
yT
2,1 yT

2,2 · · · yT
2,P

]T
.

In this case, the variance of the beamformer’s output is

ϕZ (h1|h2) = hH
1 Φy

2
h1, (20)

where

Φy
2
=
HH

2,1ΦyH2,1 HH
2,1ΦyH2,2 · · · HH

2,1ΦyH2,P

HH
2,2ΦyH2,1 HH

2,2ΦyH2,2 · · · HH
2,2ΦyH2,P

...
...

. . .
...

HH
2,PΦyH2,1 HH

2,PΦyH2,2 · · · HH
2,PΦyH2,P


(21)

Algorithm 1 KMVDR beamformer.
1: Estimate Φy

2: Initialization: h2,p, p = 1, 2, . . . , P
3: repeat
4: Compute H2,p using (12)
5: Compute Φy

2
and d2 (ρs) using (21) and (23)

6: Update h1 using (24)
7: Compute H1,p using (11)
8: Compute Φy

1
and d1 (ρs) using (15) and (17)

9: Update h2 using (18)
10: until iteration stops

11: return hKMVDR =
P∑

p=1

h1,p ⊗ h2,p

is a matrix of size PM1×PM1. The distortionless constraint
for h1 is derived as

hHd (ρs) =

P∑
p=1

hH
1,pH

H
2,pd (ρs)

=

P∑
p=1

hH
1,pd2,p (ρs)

= hH
1 d2 (ρs) = 1, (22)

where

d2,p (ρs) = HH
2,pd (ρs) , p = 1, 2, . . . , P,

d2 (ρs) =
[
dT
2,1 (ρs) dT

2,2 (ρs) · · · dT
2,P (ρs)

]T
.

(23)

Similarly, minimizing ϕZ (h1|h2) under the distortionless con-
straint for h1 yields

h1 =
Φ−1

y
2
d2 (ρs)

dH
2 (ρs)Φ

−1
y
2
d2 (ρs)

. (24)

The Kronecker MVDR (KMVDR) beamformer is obtained
in an iterative manner, as summarized in Algorithm 1, where
we first fix (initialize) h1 to compute h2, and then fix h2

to compute h1. The iteration stops if the performance of the
proposed algorithm is no longer improved or the beamformer
does no longer change as the iteration continues. And the final
KMVDR beamformer is given by

hKMVDR =
P∑

p=1

h1,p ⊗ h2,p. (25)

IV. SIMULATION RESULTS

In this section, we study the performance of the proposed
beamforming method in simulated reverberant environments.
We consider a uniform linear microphone array consisting of
16 microphones with an interelement spacing of δ = 3 cm
in a room of size 10 × 8 × 4 m, as shown in Fig. 2,
where the microphones are located, respectively, at (x, 4, 2)
with x = 5 : 0.03 : 5.45. The room impulse responses
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Fig. 2. Layout of the simulation setup (coordinate values are in meters). The
16 microphones of the linear array are located, respectively, at (x, 4, 2),
where x = 5 : 0.03 : 5.45. The desired source is located at (8, 4, 2).
The interference source is located at (5, 7, 2) (static source) or moving from
(5, 7, 2) to (2, 7, 2) along a linear path (dynamic source).
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Fig. 3. Output SINR of the MVDR and KMVDR beamformers as a function
of the number of snapshots, K: (a) static interference source and (b) dynamic
interference source. Conditions of simulation: P ∈ {1, 2, 3, 4}, n = 20, and
with a stationary desired source signal.

(RIRs) from the source to each microphone are generated
using the image model method (the reverberation time, T60,
is approximately 90 ms) and the microphone observations are
generated by convolving the RIRs with the clean source signal,
and then adding interference and white Gaussian noise. So,
the received signal at each microphone consists of three parts:
desired signal, interference signal, and Gaussian white noise.
In our simulation, the input signal-to-noise ratio (iSNR) is
controlled to be 20 dB. For the KMVDR beamformer, we
set M1 = M2 = 4, the number of iteration, n = 20, and
initialize h2,p = ep, p = 1, 2, . . . , P , where ep is a unit
vector corresponding to the pth column of the identity matrix
IM2 .

We consider two kinds of interference signals. 1) Static

interference, where the source is located at the position
(5, 7, 2). 2) Dynamic interference, where the source moves
from (5, 7, 2) to (2, 7, 2) along a linear path (length of 3 m)
with a constant speed of 20 cm/s. Along the path we choose
3000 positions uniformly distributed with an interval of 1 m-
m and for each position an interference signal segment of
5 ms is generated by convolving the source signal with the
corresponding RIR. This is equivalent to producing the inter-
ference signal by convolving the source signal with the RIR
changing every 5 ms. The interference source signal is a white
Gaussian process. The desired source is located at (8, 4, 2).
We also consider two kinds of source signals. 1) Stationary
signal, where the source signal is an AR process produced by
filtering a white Gaussian process through a first order system
1/

(
1− 0.9z−1

)
and the covariance matrix is estimated by

averaging the covariance matrix of K available snapshots. In
this case, the input signal-to-interference ratio (iSIR) is fixed
to 0 dB. 2) Clean speech with a sampling rate of 48 kHz,
where an entropy based voice activity detection technique
[28]–[30] is used to identify the unvoiced snapshots and then
the covariance matrix is estimated with a recursive method
as in [31]. In this case, we set iSIR ∈ {−10 : 5 : 15} dB.
The array observations are truncated into overlapping frames
with a frame length of 256 points and an overlapping ratio
of 75%. Each frame is then transformed into the short-time-
Fourier-transform (STFT) domain with a Kaiser window. The
beamformer is designed and applied in each subband and the
output signal in the time domain is obtained with the inverse
STFT.
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Fig. 4. Output SINR of the MVDR and KMVDR beamformers as a function
of the input SIR: (a) static interference source and (b) dynamic interference
source. Conditions of simulation: P ∈ {1, 2, 3, 4}, n = 20, and with a
speech source signal.

We first study the performance of the MVDR and KMVDR
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beamformers, with P ∈ {1, 2, 3, 4} and different numbers of
available snapshots, K, for the stationary source case. The
results are plotted in Fig. 3, which shows the output signal-
to-interference-plus-noise ratio (oSINR) for both the static
and dynamic interference cases. It is clearly observed that
the oSINR for all the studied beamformers increase as the
value of K increases. This is reasonable since the covariance
matrix can be estimated more reliably with a larger number
of snapshots. For the dynamic interference source, the oSINR
is always lower than that obtained with the static interference
source, and when the oSINR reaches up to a certain value,
a further increase of the value of K does no longer improve
the performance. In comparison, the KMVDR beamformers
produce a higher level of oSINR for both cases. Figure 4 shows
plots of the oSINR of the MVDR and KMVDR beamformers
(the source is speech) with different iSIR in the static and
dynamic interference cases. Again, the KMVDR beamformers
achieve a better performance than MVDR in both cases. The
best performance is obtained with the KMVDR beamformer
when P = 1.

V. CONCLUSIONS

In this paper, we introduced a framework, which reformu-
lates the beamformer as a sum of Kronecker products of short-
er subfilters. We showed that the Kronecker product can be
applied to derive the MVDR beamformer for arbitrary three-
dimensional microphone arrays. Alternately, fixing each one
of the subfilters, we obtain explicit expressions for the output
variance and the distortionless constraint of the other subfilter.
By iteratively minimizing the deduced output variance under
the distortionless constraint, we derived the KMVDR beam-
former. We studied the proposed KMVDR beamformer in dif-
ferent conditions using simulations, where limited observation
data and dynamic interferences were considered. Experimental
results showed that the proposed KMVDR beamformer can
obtain better performance than the conventional one in terms
of oSINR.
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