
An Optimal Variable-Latency Architecture for
Deterministic Approaches to Stochastic Computing

with Unary Bit Stream Preserving Properties
Oğuz Meteer ID ∗

Email: o.meteer@utwente.nl

∗Department of Computer Architectures
for Embedded Systems

University of Twente, Enschede, The Netherlands

Marco J.G. Bekooij∗†
Email: marco.bekooij@nxp.com

†Department of Embedded Software
and Signal Processing

NXP Semiconductors, Eindhoven, The Netherlands

Abstract—Classical Stochastic Computing methods perform
operations on bit streams generated using random number
generators. Sufficient accuracy requires long bit streams which
leads to very high latency and larger area.

Deterministic approaches to Stochastic Computing greatly
reduce the latency and area, and produce fully accurate results,
but still have high latency. While state-of-the-art variable-latency
architectures show an up to 70% reduction in latency, they still
perform operations that do not contribute to the final result.

In this paper we present an optimal variable-latency archi-
tecture in terms of minimum required cycles to obtain fully
accurate results. We propose an efficient stochastic number gen-
erator that uses a down counter and compare-to-zero hardware
compared to an up counter and binary comparator. This key
contribution means that the latency of our design only depends
on the magnitude of input values and is independent of the
number of bits or inputs used. This is not the case in state-
of-the-art variable-latency architectures. Also, unlike any other
architecture, ours preserves the unary bit stream encoding after
performing additions and multiplications, which enables more
complex designs that require unary bit streams such as sorting.
Our architecture thereby further improves the area, latency, and
energy efficiency compared to the state-of-the-art.

Index Terms—Stochastic Computing, variable-latency

I. INTRODUCTION

Contrary to traditional systems that operate on binary val-
ues, Stochastic Computing (SC) systems operate on values
that are encoded as random bit streams [2]. These systems
have two main benefits. The first is that complex arithmetic in
traditional systems reduce to very simple logic in SC systems.
The second benefit is the inherent robustness to random bit
flips or Single Event Upsets (SEUs). This is due to each bit
in a stochastic bit stream having the same weight unlike with
binary numbers.

Although SC systems use significantly less logic to perform
complex operations, they can have very high latency and may
not be as energy efficient as one might expect at first glance.
These systems have higher accuracy when correlation between
the bit streams is lower [6]. One solution is to use longer bit
streams which increases the latency and area. Another solution
is to use random number generators (RNG) that produce better

quality random numbers. While linear-feedback shift registers
(LFSR) are typically used [9], Sobol sequence generators can
produce uncorrelated sequences and reduce the bit stream
length and area [5]. But compared to the energy used by the
computation logic, the RNGs consume a significant amount
of the total power. Finally, stochastic operations also tend
to increase correlation between bit streams. One method of
reducing this effect is to add randomization steps between
operations [10].

These solutions are all aimed at increasing the randomness
in SC systems. However recent work shows that randomness
is not at all required, and proposes deterministic approaches to
SC [4]. The advantages of Deterministic Stochastic Computing
(DSC) is that it produces fully accurate results, has lower area,
and reduces the latency exponentially. RNGs that use a large
area and consume a majority of the power are replaced with
simple counters. Also, the number of operations required to
produce fully accurate results are known at design time.

While DSC systems are a significant improvement, the
latency in these systems can still be too high to be considered
in many applications. In this paper we propose an optimal
variable-latency architecture that significantly improves la-
tency, area, and energy efficiency compared to the state-of-
the-art. Also, our architecture is the only DSC system in
literature that preserves the unary bit stream property after
performing additions, multiplications and unary sorting. This
means that all bit streams stay maximally correlated and is
necessary when performing unary sorting such as MIN/MAX
operations. Therefore our architecture enables building more
complex DSC systems.

This paper is organized as follows. In Section II we give
some background on traditional and Deterministic Stochastic
Computing. Then in Section III, we describe the state-of-
the-art variable-latency architectures. Next we describe our
proposed architecture in Section IV. Then, in Section V we
compare our architecture with the state-of-the-art ones. In
Section VI we show the results of our evaluation and discuss
the differences. Finally we conclude the paper in Section VII.

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

55978-988-14768-9-0/21/$31.00 ©2021 APSIPA APSIPA-ASC 2021

II. BACKGROUND

A. Stochastic Computing

First introduced in [2], SC operates on stochastic bit
streams, which have two possible coding formats: unipolar
and bipolar. Unipolar formats encode a real number x in
the interval [0, 1] as a bit stream X(t) of length L (where
t = 1, 2, ..., L). Then the probability of each bit in X being a
one is P (X = 1) = x. The bipolar format extends the range
of x to [−1, 1], and the probability of each bit in X being a
one is P (X = 1) = x+1

2 . While bipolar formats can encode
negative numbers, the range of the unipolar format is twice as
large with the same bit stream length L.

A stochastic bit stream is generated using a stochastic
number generator (SNG) which comprises of a random num-
ber generator (RNG), and a binary comparator. Each clock
cycle, the SNG compares an N -bit binary value A to an N -
bit random number (RN) that the RNG generates, and the
comparator outputs a 1 if A > RN , and a 0 otherwise. This
is repeated until the desired bit stream length is achieved.
An example of an SNG is shown in Fig. 1a. Then, SC
applies simple logic gates to perform operations in terms of
probabilities. Examples of scaled addition and multiplication
are shown in Fig. 1b and Fig. 1c respectively. Converting bit
streams back to binary values is simply done with a counter.

A major cause of accuracy loss in SC systems is due to
highly correlated bit streams, i.e. the amount of overlapping
1’s between bit streams. One reason that leads to increased
correlation is that stochastic operations can lead to clumping
together the 1’s in the resulting bit stream. To show how
accuracy loss occurs in SC systems due to highly correlated
bit streams, we use multiplication as an example. Suppose
we perform 3/6 · 2/6 where the values are represented as
111000 and 110000 respectively (i.e. maximally correlated
values), the result after multiplication is 110000. This value,
which represents 2/6 is incorrect but also has clumped the
1’s together. The correct result should have a single 1 in the
result which represents 1/6 (for example 000010). In order to
minimize these random fluctuations and increased correlation
in bit streams, their lengths need to be much longer than
the resolution that they represent. Equation (1) defines the
minimum bit stream length N required to generate a stochastic
number within an error margin ε [8]:

N >
(p)(1− p)

ε2
(1)

Since the p(1 − p) term is at most equal to 2−2, the
error margin ε must equal 2−(n+1) where n is the binary bit
length. Therefore, in order to represent a stochastic number
with binary resolution of 2−n bits, the bit stream length
must be larger than 22n [8]. This exponential growth in bit
stream length severely limits the range of usable resolutions
in order to have acceptable latency. Another method employed
to decrease correlation is to use randomization steps after
stochastic operations to decrease the clumping of 1’s in the
bit stream [10].

+ -

RNG
QA

Clk

SA

1-bit

N -bits

(a) Stochastic
number

generator

0, 0, 0, 1, 1, 0

2/6

x1

1, 0, 1, 0, 1, 1

4/6

x2

1, 0, 1, 0, 1, 0

3/6

y

0, 1, 0, 0, 1, 1

3/6

s

1

0

(b) Scaled addition

0, 1, 0, 1, 1, 0

1, 0, 0, 0, 1, 0

3/6

2/6

x1

x2

0, 0, 0, 0, 1, 0

1/6

y

AND

(c) Multiplication

Fig. 1: Stochastic arithmetic operations [4].

N-bit Counter

Q O

N-bit Counter

Q O

A B

DoneClk

Binary Output

SA SB

+ - + -

2N-bit Counter

Q O

En

1-bit

N -bits

Fig. 2: N-bit clock-division DSC multiplier.

B. Deterministic Stochastic Computing

Recent work [4] shows that randomness is not a requirement
in SC, and that deterministic bit streams can be used to
produce fully accurate results. The key insight of this work is
that a stochastic bit stream represents a probability, which is
equal to the expected value of said bit stream, i.e. the average
number of 1’s and 0’s. They show that independent random
bit streams passively maintain the property that the average
bits of stream A operate on the average bits of stream B. This
is the same as convolving both bit streams.

Instead of relying on probability to maintain this property
passively, they propose deterministic methods to actively en-
force it, which removes the requirement that bit streams need
to have low correlation between them, and produces fully
accurate results. They propose three SNG types that result in
convolved bit streams: relatively prime bit lengths, rotation,
and clock division.

The relatively prime method ensures convolution by making
sure that all generated bit streams are relatively prime. This
limits the lengths that bit streams can have. The rotation
methods explicitly rotates the bit streams, and the clock
division method applies clock division to operands. These last
two methods also maintain the convolution property and allow
the usage of arbitrary length bit streams.

III. VARIABLE-LATENCY METHODS

The idea of variable-latency processing is doing less un-
necessary work, i.e. when an operation does not contribute
to the final result. An example of an N -bit DSC multiplier
that uses clock division is shown in Fig. 2. This multiplier
will always finish after 22N clock cycles regardless of input
values A and B. When input values have small magnitudes,

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

56

N-bit Counter

Q O

A B

Done

Clk

Binary Output

+ - + -

N-bit Counter

Q O

+ - + -

SMIN

MINMAX

SMAX

2N-bit Counter

Q O

En

1-bit

N -bits

Fig. 3: N -bit DSC multiplier with bit stream sorting ES [3].

then during most clock cycles at least one of the values SA

and SB is zero which does not contribute to the final value.
To reduce wasteful processing, variable-latency methods

have been proposed which introduce so called early shutoff
(ES) architectures [3]. When performing convolution using
the clock-division method, unary bit streams are generated,
which first contain all the 1’s followed by 0’s. In the example
of Fig. 2, this means that when SB becomes zero (or Done is
asserted), we can stop since we know that all following bits of
SB will produce 0’s. With the proposed ES method, assigning
the value with a smaller magnitude to the B input will result
in a lower latency since we can then stop earlier. This is made
clear in Table I which shows how the ES hardware behaves at
each clock cycle with 2 and 3 as inputs. When A is smaller
than B, then SB becomes zero on cycle 13 indicating that
the computation can stop, whereas when B is smaller than A,
then SB becomes zero on cycle 9.

This method (ES naı̈ve) is then improved by sorting input
values, so that B always gets assigned the smaller value. This
can be done either in the binary domain before the two values
are assigned to A and B (ES-CAS), or in the bit stream domain
using unary sorting [7] (ES-BS) as shown in Fig. 3.

While these state-of-the-art ES architectures can drastically
reduce latency, they are not optimal in that only the counter
of the last SNG stops early, while all the previous SNG
counters count up to their maximum values. This becomes
more apparent when N is large but all input values are small.
Even with sorting, the A counter will count up to 2N and
will do that B times. For example, with N = 8, A = 2, and

TABLE I: 2-bit DSC Multiplication Using Clock-Division [3]

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
A < B

A=2 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
B=3 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
A*B 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0

output cntr 1 2 2 2 3 4 4 4 5 6 6 6 6 6 6 6
B < A

A=3 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0
B=2 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
A*B 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0

output cntr 1 2 3 3 4 5 6 6 6 6 6 6 6 6 6 6

CLA
Cout

OR

-1

10 Rst

EN En

Val

Clk

Adv

Co

next zero

1-bit

N -bits

Fig. 4: Proposed stochastic number generator.

B = 2, the ES ordered architectures will take 28 × 2 = 512
clock cycles to complete where only 4 clock cycles actually
contribute to the final result. When the amount of inputs
increases, the overhead becomes larger as there are more
counters that will count up to their maximum value.

IV. OPTIMAL VARIABLE-LATENCY METHOD

In this section, we propose an optimized variable-latency
architecture that can significantly improve latency and energy
efficiency compared to state-of-the-art. If only stochastic addi-
tions, subtractions, multiplications, and MIN/MAX operations
are used, then our architecture is optimal in that only needs
as many cycles as necessary to produce a fully accurate result
when processing all bit streams serially. We describe how this
is achieved by addressing three key problems in traditional
and state-of-the-art variable-latency DSC architectures. Then
we explain the design methodology of our architecture and
analyze several key properties.

A. Key Improvements

1) Efficient Bit Stream Generator: Traditional SNGs in
DSC systems need two adders to generate a single determin-
istic unary bit stream, namely the up counter and the binary
comparator. We propose replacing both with a single down
counter which we pre-load with the input value, and count
down by one each clock cycle. We then use an OR reduction
tree to detect if the next counter value is zero to reset the
registers back to the input value. Comparing a value to zero
is more efficient compared to a binary comparator, as it only
requires a tree of OR gates instead of half adders and carry
propagation logic. Our proposed SNG is shown in Fig. 4.

Merging both counters into one has a side effect that impacts
designing systems using our architecture. Traditional SNGs
use the carry-out signal of the previous SNG as a clock source.
This is not possible with our proposed SNG, because if we
preload the register with the value zero, then the carry-out
signal will remain high indefinitely and thus will never toggle.

We mitigate this issue using an enable (EN) signal to allow
the counter register to update, and generating an advance
(Adv) signal that goes high for a single clock cycle. If the
value zero is pre-loaded in the counter register then Adv
remains high, which does not pose a problem since it is used
in conjunction with a separate clock signal.

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

57

A B

Clk

SB

Done

Rst

SA

I

SI

Stochastic Operator

Output

Co

Adv

Val

En

Rst

SNG

Co

Adv

Val

En

Rst

SNG

Co

Value

En

Rst

SNG

1-bit

N -bits

Fig. 5: SNGs in convolution configuration with I inputs.

A B

Clk

SB

Done

Rst

SA

I

SI

Stochastic Operator

Output

Co

Adv

Val

En

Rst

SNG

Co

Adv

Val

En

Rst

SNG

Co

Value

En

Rst

SNG

1-bit

N -bits

Fig. 6: SNGs in round-robin configuration with I inputs.

2) Unary Bit Stream Property Preservation: While tra-
ditional SNGs produce unary streams, they only do so for
each loop from zero to the maximum counter value. In both
examples in Table I, the A bit stream is unary in each loop
of four clock cycles, generating 1100 and 1110 for the values
2 and 3 respectively, but since it has to run four times, the
resulting bit stream is not unary as a whole. Our SNGs also
produce the same amount of 1’s but are unary as a whole.

This property is preserved when using stochastic adders
and multipliers, and using unary sorting operations [7] since
they do not generate 0’s when all inputs are 1’s like in our
architecture. An exception is using an XOR gate to perform
|A−B|, which does not generate unary streams. This is due
to XOR gates producing 0’s when both of their inputs are
1’s. In fact, since unary sorting requires unary bit streams, our
architecture is the only one in literature that allows using a
sorting operation after an addition or multiplication due to
the guarantee that these arithmetic operations preserve the
unary bit stream property. This is highly efficient compared to
traditional DSC systems, where bit streams after multiplication
or addition would have to be converted to binary, and then back
to bit streams for them to be unary again so that sorting could
be done.

3) Universally Applied Early Shutoff: In state-of-the-art
variable-latency architectures, early shutoff is only applied
to the last SNG of each stochastic operation, where our
architecture applies it to every SNG by resetting each if the
next value is going to produce a zero. This can significantly
improve the latency as each SNG produces only 1’s and only
as many as the magnitude of its input value, making it optimal.

A

Clk

SI

Done

Rst

SA

I

Stochastic Operator

Output

Co

Adv

Val

En

Rst

SNG

Co

Adv

Val

En

Rst

SNG1 1

1-bit

N -bits

Fig. 7: SNGs in parallel configuration with I inputs.

Thus, swapping input values between SNGs does not effect
latency, meaning that sorting of input values is not required.

B. Architecture Configuration

In this section, we analyze the three main configurations of
using the SNGs: convolution, round-robin and parallel. They
dictate when each SNG in a group of SNGs is allowed to
run and are the foundational building blocks to implement
stochastic operations. Table II shows an example with three
SNGs and how they behave in these three configurations.

1) Convolution: Any I-input stochastic operation using the
convolution configuration can be built using I SNGs. Every
SNG except the last one is reset by ORing a global reset and its
own Adv signal, whereas the last SNG only uses a global reset
signal. The first SNG is enabled by the output of the stochastic
operator, and each subsequent SNG is enabled by the Adv
signal of the previous SNG. The last SNG is enabled by ORing
the previous Adv signal and its own carry-out. If the stochastic
operator produces 1’s when all inputs are 1’s, then the output is
guaranteed to be unary. In that case, a convolution is finished
when the stochastic operator produces a zero. Otherwise the
done signal is generated by NORing the outputs of each SNG.
Fig. 5 shows an example of an I-input convolution operation.

2) Round-Robin: The design of an I-input stochastic op-
eration using the round-robin configuration is very similar to
the convolution one. The difference lies in how each of the
I inputs is enabled, where the first input is enabled by the

TABLE II: Example of counter values of SNGs A, B and C
in convolution, round-robin and parallel configurations. SNGs
generate a 1 if their counter value is not 0 (shown as shaded).

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Convolution

A=3 3 2 1 3 2 1 3 2 1 3 2 1 0 0 0 0
B=1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
C=4 4 4 4 3 3 3 2 2 2 1 1 1 0 0 0 0

Round-robin
A=3 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0
B=1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
C=4 4 4 4 4 4 3 2 1 0 0 0 0 0 0 0 0

Parallel
A=3 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0
B=1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C=4 4 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

58

A B ... I

N-bit

A B I

Binary Output Done

Convolution

SA SB SI

I*N-bit Counter

Q

En

(a) Multiplier

A

Binary Output Done

SC

B

2N+1-bit Counter

Q

EN

C

2N-bit

Co

Val

En SNG

DSC Mul

A B

O

En N-bit

1 0

(b) MAC Unit

Fig. 8: Simplified example designs using our proposed archi-
tecture. Clock and reset signals are not shown for simplicity.

output of the stochastic operator like with convolution. All
subsequent inputs are enabled by ANDing the inverted Adv
signal of the previous SNG with their own carry-out.

If all inputs of the round-robin operation are unary, and
the stochastic operator produces 1’s when all inputs are 1’s,
then the output is also guaranteed to be unary since it simply
runs all unary input sources one after another. The stochastic
operation is then finished when it produces a zero. However,
if there is at least one non-unary source, then the done signal
must be generated by NORing together the inputs of the non-
unary source and the outputs of the other sources. Fig. 6 shows
an example of an I-input round-robin operation.

3) Parallel: Using the parallel configuration, each SNG is
free-running until all of them are finished. Since the latency
of each SNG is variable, the result of a stochastic operator can
generate 0’s. Therefore the done signal should be generated
by ORing the outputs of all SNGs, which gives us a unary bit
stream as long as the SNG with the highest latency.

C. Design Methodology

Creating DSC systems using our proposed architecture re-
quires some changes to the design methodology of traditional
and variable-latency DSC systems.

1) Multiplier: A multiplier uses the convolution configura-
tion and an AND gate as the stochastic operation. A simplified
example of an I-input, N -bit multiplier is shown in Fig. 8a.
Since all the SNGs only produce 1’s and therefore the AND
gate also only produces 1’s, it means that the output of a
multiplier is guaranteed to be unary.

2) Adder: In traditional DSC systems, a stochastic scaled
adder is implemented as an I-input multiplexer (MUX) as
shown in Fig. 1b. All stochastic operations that are connected
to the adder run in parallel. A counter, driven by those
stochastic operations, in its turn drives the multiplexer. Scaling
is done by simply generating an I times longer bit stream and
concatenating the bit streams of each input of the adder.

In our architecture, a stochastic scaled adder is implemented
using the round-robin configuration and a 2-input MUX as
the stochastic operation. The first operand of the MUX is
connected to the ’1’ and select ports, and the second is
connected to the ’0’ port. An example of a MAC unit using a
2-input MUX is shown in Fig. 8b.

A

Binary Output Done

SC

B C D

2N+2-bit Counter

Q

EN

E

2N-bit

Co

Val

En SNG

DSC Mul

A B

O

En N-bit
DSC Mul

A B

O

En N-bit

1 0

1 0

Fig. 9: Simplified example of an N -bit MAC unit with two
multipliers using our proposed architecture. Clock and reset
signals are not shown for simplicity.

A B ... I

N-bit

A B I

Binary Output Done

Parallel

SA SB SI

N-bit Counter
Q

En

(a) Maximum Value

A B ... I

N-bit

A B I

Binary Output Done

Parallel

SA SB SI

N-bit Counter
Q

En

(b) Absolute Difference

Fig. 10: Simplified example designs using our proposed archi-
tecture. Clock and reset signals are not shown for simplicity.

Adders with more inputs are implemented by cascading
multiple 2-input MUXs recursively. With each extra operand,
another MUX is added, the output of the previous MUX is
connected to the ’1’ and select ports, and the output of the
extra operand is connected to the ’0’ port. This makes it so that
our architecture does not require a counter for driving a MUX,
simplifying the design. An example of a MAC unit with two
multipliers , which requires adding three operands is shown in
Fig. 9. Due to the used round-robin configuration, each source
is only active during its turn and disabled otherwise, lowering
the power usage.

3) Unary Sorting: When bit streams are maximally corre-
lated, then the MIN and MAX operators can be performed
with a single AND and OR gate respectively [7], and is
implemented using the parallel configuration. Both operators
preserve the unary bit stream encoding property, and can be
used after other unary sorting operators. Fig. 10a shows a
simplified example design of finding the maximum value.

4) Absolute Difference: A single XOR gate can calculate
|A−B| given that both bit streams are maximally correlated
[1]. However, it generates 0’s when both inputs are 1’s, and
thus violates the unary bit stream preserving property. An
example is 1000 ⊕ 1111 = 0111, which generates a reversed
unary bit stream. In our architecture, it is implemented using
the parallel configuration. A simplified example design calcu-
lating the absolute difference is shown in Fig. 10b.

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

59

A B

Rst

SA SB

Co

Adv

Val

En

Rst

SNG

1-bit

N -bits

C D

SC SD

Co

Adv

Val

En

Rst

SNG

MAX(X,Y) Done

SX SY

MIN(X,Y) |X-Y|

Counter

Q

En

Counter

Q

En

Counter

Q

En

Co

Val

En

Rst

SNG

Co

Val

En

Rst

SNG

2N -bits

(a) Our architecture

A B

XDone

+ - + - + - + -

SMIN

MINMAX

SMAX

2N-bit Counter

Q O

En

1-bit

N -bits

C D

+ - + - + - + -

SMIN

MINMAX

SMAX

2N-bit Counter

Q O

En

+ -

X Y

YDone

YDone

+-

MAX(X,Y) Done

SX SY

MIN(X,Y) |X-Y|

2N -bits

2N-bit Counter

QRst
XYDone

XYDone Rst

Counter

Q

En

Rst

Counter

Q

En

Rst

Counter

Q

En

XYDone XYDone

N-bit

Q OCounter

Rst

XDone

N-bit

Q OCounter

Rst N-bit

Q OCounter

Rst N-bit

Q OCounter

Rst

YDone

(b) ES-BS architecture [3]

Fig. 11: Examples of a multiply-sort design. Clock and some reset signals are not shown for simplicity.

V. EVALUATION

In this section we evaluate a DSC multiplier and DSC
multiply-sort unit implemented using three architectures: ES-
BS and ES-CAS [3] which perform unary bit stream sorting and
pipelined Compare-and-Swap binary sorting before the SNGs
respectively, and our proposed architecture. The multiply-sort
designs are shown in Fig. 11. All implementations were syn-
thesized using Synopsys Design Compiler with high synthesis
and mapping effort. The TSMC 40nm LP standard cell library
was used with a typical-typical corner case and Vdd = 1.1V .
1000 uniformly distributed random numbers were generated
and used as stimulus to obtain average performance, power,
and energy figures for all implementations using gate-level
simulations. Correctness was verified by comparing the test
bench results to a Python script performing the same opera-
tions.

VI. RESULTS

Synthesis, power, and energy results for the multiplier and
multiply-sort implementations are shown in Table III and
Table IV respectively. We report area numbers for synthesis
results at the highest frequency that each implementation can
run at, and for a frequency that all implementations can run at
comfortably, which is 1 GHz and 625 MHz for the multiplier
and multiply-sort implementations respectively.

A. Multiplier

Compared to the state-of-the-art variable-latency architec-
tures, the results show that for each multiplier configuration
our proposed design has at least a 24.4%, 50.5% and 69.4%
lower latency for two, three and four inputs respectively. The

difference in latency also grows as the number of inputs
increases. These differences are due to our architecture being
optimal in that each SNG only counts for minimum amount
of cycles compared to the other designs that perform an early
shutoff for the last SNG.

Looking at timing and area numbers, the worst case timings
of our design is between 15.0% higher and 20.0% lower
for two and three inputs compared to the ES-BS and ES-
CAS reference designs, but is between 5.1% and 23.3% lower
for four inputs. Area wise at maximum clock frequency, our
design is between 4.4% and 33.0% smaller than the reference
designs, and synthesized for 1 GHz, our design is between
15.1% and 42.8% smaller. This is due to our architecture not
needing any N -bit binary comparators and sorting hardware.
As the number of inputs grows with the ES-CAS and ES-BS
designs, the sorting hardware increases in complexity because
not only the smallest and largest input values have to be found,
but also the value in between and the second smallest and
second largest for three and four inputs respectively [3].

Finally, when looking at the power and energy usage, we
see that the power usage of our designs is comparable to the
ES-BS design, and between 9.9% and 34.7% less than the
ES-CAS design. This difference is mostly attributed to the ES-
CAS design having additional pipeline registers compared to
the other designs. Since the latency of our design is lower, we
see that it uses between 24.2% and 71.4% less energy than
the ES-BS design, and between 33.3% and 77.0% less than
the ES-CAS design.

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

60

TABLE III: Multiplier Implementation Results

#inputs 2 3 4
Bit width 4 6 8 10 4 6 8 4 6

Average #cycles/operation
ES-BS 77 1367 22516 345463 900 63903 4201842 11228 3318482

ES-CAS 77 1367 22516 345463 900 63903 4201842 11228 3318482
Proposed 57 1033 16993 259864 424 30806 2081495 3226 1015674

Worst case timing (ps)
ES-BS 420 460 510 590 470 510 550 530 590

ES-CAS 400 470 530 590 470 700 750 650 730
Proposed 460 490 510 610 470 530 600 500 560

Area (µm2) @ Maximum Clock Frequency
ES-BS 647 1022 1256 1369 1023 1629 2184 1430 2116

ES-CAS 625 938 1050 1273 938 1522 2077 1545 2240
Proposed 463 754 979 1217 761 1151 1426 1059 1500

Area (µm2) @ 1 GHz
ES-BS 352 537 709 886 593 915 1209 889 1374

ES-CAS 395 598 789 985 702 1086 1625 1013 1559
Proposed 299 445 591 749 445 665 890 590 892

Total power (µW) @ 1 GHz
ES-BS 337 454 567 680 454 628 801 579 811

ES-CAS 383 529 671 814 540 803 1224 718 1073
Proposed 347 459 578 718 461 628 799 576 805

Total energy (nJ) @ 1 GHz
ES-BS 26 621 12767 234915 409 40131 3365675 6501 2691289

ES-CAS 29 723 15108 281207 487 51314 5143055 8062 3560731
Proposed 20 470 9669 178007 195 19346 1663115 1858 817618

Frequency that all designs in column can converge to (GHz)
2.17 2.04 1.89 1.64 2.13 1.43 1.33 1.54 1.37

B. Multiply-Sort

We have implemented a multiply-sort design using only the
ES-BS architecture and our proposed architecture shown in
Fig. 11b and Fig. 11a respectively. We have not implemented it
using the ES-CAS architecture since it had the worst results in
terms of power and energy efficiency in the multiplier design.

In terms of latency, our design requires between 55.6%
and 55.9% less clock cycles than the ES-BS design. Timing
wise, our design has a lower worst case timing between 52.0%
and 55.2%. Looking at area numbers, our design is between
41.1% and 47.2% smaller when synthesized for maximum
clock frequency, and between 40.4% and 51.7% smaller when
synthesized for 625 MHz. Finally, our design uses between
16.4% and 31.6% less power than the ES-BS design, and
combined with the much lower latency, the energy usage of
our design is between 62.9% and 69.8% lower.

The main reason for these significant differences is that
sorting and absolute difference operations require unary bit
streams to produce correct results. However, traditional DSC
systems almost never produce unary bit streams after multipli-
cation (see Table I for an example). Therefore, a conversion to
the binary domain and then back to the bit stream domain is
necessary to produce unary bit streams. This extra conversion
step can only take place after the multiplications are finished,
which is the main source of higher latency, area and power
usage of the ES-BS design. It also shows that our architecture
enables more complex designs without any costly conversion
overhead.

VII. CONCLUSION

In this paper we proposed an optimized variable-latency
architecture for deterministic approaches Stochastic Comput-
ing systems, that can significantly improve latency compared
to state-of-the-art. When using stochastic additions, absolute
difference, multiplications and unary sorting, it is also optimal
in that only needs as many clock cycles as necessary to
produce a fully accurate result. Also, our architecture does
not require any sorting of input values as is necessary with
state-of-the-art variable-latency architectures. We have also
proposed an efficient stochastic number generator that uses a
down counter and compare-to-zero instead of the traditionally
used up counter and binary comparator, which leads to a
smaller design. This results in the latency of our proposed
stochastic number generator to only depend on the magnitudes
of the input values that are processed, so that far less clock
cycles are wasted on operations that do not contribute to the
final result. We implemented a multiplier and multiply-sort
unit and have shown that our architecture can significantly
improve latency, area, and energy efficiency compared to state-
of-the-art variable-latency architectures.

ACKNOWLEDGMENT

This work is part of the research program Perspectief
ZERO with project number P15-06 Project 3, which is (partly)
financed by the Dutch Research Council (NWO).

REFERENCES

[1] Armin Alaghi, Cheng Li, and John P. Hayes. “Stochastic
circuits for real-time image-processing applications”.
In: 2013 50th ACM/EDAC/IEEE Design Automation
Conference (DAC). 2013, pp. 1–6. DOI: 10 . 1145 /
2463209.2488901.

[2] Brian R Gaines. “Stochastic computing systems”. In:
Advances in information systems science. Springer,
1969, pp. 37–172.

TABLE IV: Multiply-Sort Unit Implementation Results

Bit width 4 6 8 10
Average #cycles/operation

ES-BS 196 3421 54341 885799
Proposed 87 1514 24016 390927

Worst case timing (ps)
ES-BS 1050 1160 1250 1350

Proposed 470 530 600 640
Area (µm2) @ Maximum Clock Frequency

ES-BS 1979 2917 3854 4726
Proposed 1144 1665 2271 2495

Area (µm2) @ 625 MHz
ES-BS 1224 2055 2768 3708

Proposed 730 1081 1437 1790
Total power (µW) @ 625 MHz

ES-BS 578 882 1119 1483
Proposed 483 657 836 1015

Total energy (nJ) @ 625 MHz
ES-BS 113 3017 60808 1313640

Proposed 42 995 20077 396791
Minimum frequency of all designs in column (GHz)

0.95 0.86 0.8 0.74

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

61

[3] Alexander J. Groszewski and Earl E. Swartzlander.
“A Variable-Latency Architecture for Accelerating De-
terministic Approaches to Stochastic Computing”. In:
2019 53rd Asilomar Conference on Signals, Systems,
and Computers. 2019, pp. 608–613. DOI: 10 . 1109 /
IEEECONF44664.2019.9048881.

[4] Devon Jenson and Marc Riedel. “A Deterministic Ap-
proach to Stochastic Computation”. In: Proceedings of
the 35th International Conference on Computer-Aided
Design. ICCAD ’16. Austin, Texas: Association for
Computing Machinery, 2016. ISBN: 9781450344661.
DOI: 10.1145/2966986.2966988. URL: https://doi.org/
10.1145/2966986.2966988.

[5] Siting Liu and Jie Han. “Toward Energy-Efficient
Stochastic Circuits Using Parallel Sobol Sequences”.
In: IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 26.7 (2018), pp. 1326–1339. DOI: 10.
1109/TVLSI.2018.2812214.

[6] M. Hassan Najafi, David J. Lilja, and Marc Riedel. “De-
terministic Methods for Stochastic Computing Using
Low-Discrepancy Sequences”. In: Proceedings of the
International Conference on Computer-Aided Design.

ICCAD ’18. San Diego, California: Association for
Computing Machinery, 2018. ISBN: 9781450359504.
DOI: 10.1145/3240765.3240797. URL: https://doi.org/
10.1145/3240765.3240797.

[7] M. Hassan Najafi et al. “Low-Cost Sorting Network Cir-
cuits Using Unary Processing”. In: IEEE Transactions
on Very Large Scale Integration (VLSI) Systems 26.8
(2018), pp. 1471–1480. DOI: 10 . 1109 / TVLSI . 2018 .
2822300.

[8] Weikang Qian. “Digital yet Deliberately Random:
Synthesizing Logical Computation on Stochastic Bit
Streams”. AAI3466985. PhD thesis. USA, 2011. ISBN:
9781124808987.

[9] Weikang Qian et al. “An Architecture for Fault-Tolerant
Computation with Stochastic Logic”. In: Computers,
IEEE Transactions on 60 (Feb. 2011), pp. 93–105. DOI:
10.1109/TC.2010.202.

[10] Menghui Xu et al. “Stochastic Belief Propagation Polar
Decoding With Efficient Re-Randomization”. In: IEEE
Transactions on Vehicular Technology 69.6 (2020),
pp. 6771–6776. DOI: 10.1109/TVT.2020.2979610.

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

62

