
Fast Still Picture Coding for VVC
Kei Kawamura∗ and Kyohei Unno∗ and Yoshitaka Kidani∗

∗ KDDI Research, Inc., Saitama, Japan
E-mail: kei@kddi-research.jp Tel/Fax: +81-80-5066-9075

Abstract—State-of-the-art video coding technology, called Ver-
satile Video Coding (VVC), provides double performance com-
pared with the High Efficiency Video Coding (HEVC) for video
sequences. Such video codecs can also provide better performance
for still pictures. The complexity of VVC for still pictures,
however, is very high for practical use. In order to reduce the
encoding runtime, in this paper, we propose a combination of
a fast coding configuration, an optimized implementation with
parallel processing, and a fast algorithm for an intra mode
decision. We also investigate the speedup factor of each proposed
step. Finally, an average speedup factor of 710 times over default
VTM is realized.

I. INTRODUCTION

A still picture is one of the most consumed digital media on
the Internet. The most successive compression technology is
JPEG, which is standardized in 1992. The latest compression
technology is a part of the video coding one, called Versatile
Video Coding (VVC) [1]. VVC is standardized in July 2020,
which is state-of-the-art. This trend is recognized from HEVC
Still Picture Profile in 2012. The file format with HEVC
for still pictures is also defined and widely used as a High
Efficiency Image File Format (HEIF).

Coding performance and complexity is a trade-off rela-
tionship. JPEG provides roughly 1/10 compression while the
complexity is very low. HEVC and VVC realize much higher
compression while the complexity is huge. From the encoder
point-of-view, the main reason for the huge complexity is rate-
distortion optimization-based search for various partitioning
types and many intra-prediction modes. For instance in VVC,
partitioning candidates are quad-tree, binary tree, and ternary
tree with hierarchical structure while the number of the intra
prediction modes is up to 65. Furthermore, several transform
matrixes are defined such as DST/DCT-II/DCT-VII and low-
frequency non-separable transform [2].

This paper presents a fast still picture coding method
compliant with VVC. VVC is efficient for both motion pictures
and still picture. The coding performance of still picture by
VVC is roughly -25% compared with that by HEVC while the
encoding runtime increases by approximately 25 times when
single instruction multiple data (SIMD) implementations are
used [3]. To overcome such huge complexity, we propose a fast
coding method for still pictures. Our key idea is a combination
of fast coding configuration, optimized implementation with
coding-tree-unit-based parallel processing, and fast algorithms
on an intra mode search. We also investigate the speedup factor
of each step based on the content characteristics.

In Section II, we briefly explain the existing fast implemen-
tation of both encoder and decoder compliant with VVC. In

Section III, we describe the proposed method. In Section IV,
we present the detail of the simulation results and extensive
observation. Finally, we conclude in Section IV with a brief
summary.

II. RELATED WORKS

Several VVC encoders and decoders, which are compliant
with the international standard, are already studied so far. The
most used encoder/decoder is the VVC test model, called
VTM, as the reference software for the development of the
VVC standard in JVET [4]. At the later stage of the VVC
development, a fast VVC encoder/decoder implementation,
called VVenC/VVdeC, is proposed and both VTM and VVenC
are used for verification test in the subjective evaluation [5].
Alternatively, S. Fang and J. Cui propose optimized VVC
software encoder implementation [6], [7].

Fast decoder implementation is proposed and demonstrated.
F. Bossen initially proposes a reasonably fast VVC software
decoder [8]. Later, Y. Li, W.-L. Feng, and Y. He propose
VVC software decoders for mobile platform [9]–[11]. F. Hiron
proposes VTM based decoder supporting multi-thread [12].
In this paper, fast/optimized decoder implementation is out of
scope while the generated bitstream by the proposed method
is decodable by the third party decoder since the bitstream is
compliant with the VVC standard.

Not only encoder or decoder packages but also each coding
tool is also studied so far. In another word, performance
optimization and complexity reduction in video coding is
an extensive research topic for both software and hardware
implementation. N. Tang proposes a fast block partitioning al-
gorithm for intra and inter block [13]. For intra block, a Canny
edge detector is used to find a flat region or one-directional
edges region. T. Amestoy proposes machine learning-based
split decision classifiers [14]. M. Aklouf presents the analysis
to identify a subset of VVC coding tools that optimizes en-
coding time-saving with regard to a maximum acceptable BD-
rate loss compared with the default VTM configuration [15].
A. Wieckowski reviews fast partitioning search algorithms
available in the VTM reference software [16]. Compared with
an extensive partitioning search, complexity can be reduced
from the results by the default configuration and encoder
speedup of 7 times while BD-rate increase of 1.1% [5].

To the best of our knowledge, the fast still picture encoding
studies have been not yet reported, even though the above
studies contain both still and motion pictures coding. In this
paper, we present room for the faster VVC encoding method
for still pictures. Additionally, we investigate the relationship

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

70978-988-14768-9-0/21/$31.00 ©2021 APSIPA APSIPA-ASC 2021

between the speedup factor and content characteristics. Finally,
we describe the encoding time for several still pictures.

III. OVERVIEW OF THE PROPOSED FASTER ENCODING

A. Fast Encoding Configuration

A fast encoding setting is introduced by disabling heavy
complexity tools. For instance, DualTree, BinaryTree, Ternary-
Tree, ALF, SAO, DQ, LMCS, MTS, TransforSkip, RDOQ,
LFNST, ISP, MIP, JCC, MRL, and IBC are disabled. Each
abbreviation can be confirmed in the VVC algorithm descrip-
tion [2]. An approach of this configuration is similar to the
fast configuration of VVenC [5].

B. Optimized Implementation and Parallel Processing

For the optimized implementation, some scalar operation is
replaced by single-instruction-multiple-data (SIMD). In VTM,
SIMD implementation is provided for heavy computation
parts like sum-of-absolute-difference (SAD), sum-of-square-
difference (SSD), sum-of-transformed-difference (SATD), in-
terpolation filter, adaptive-loop filter, and so on. We further im-
plemented by SIMD technique for discrete transform, inverse
transform, quantization, inverse quantization, intra prediction,
deblocking filter, and sample adaptive offset filter.

For parallel processing, the minimum operation unit is the
coding-tree-unit. Consequently, wave-front parallel process-
ing (WPP) is realized. Cabac initialization for WPP is also
enabled. When slice structure is utilized, each slice is also
parallelly processed.

Another operation unit is in-loop filters. Horizontal and
vertical deblocking filters are separately processed by different
threads.

C. Fast Encoding Algorithm

For the fast intra coding, well-known search restriction
techniques are introduced.

Intra coding consists of two factors; one is the intra mode
decision and the other is block partitioning. The intra mode
decision means to select the best intra mode from the total
65 modes in VVC. In detail, the rate-distortion optimization
approach is the basic strategy. The cost value is calculated
from the distortion and the number of bits for each intra
prediction mode. The mode with the lowest cost is selected as
the best mode in terms of coding performance.

On the VTM approach, costs are calculated for planar,
DC, and half the number of angular modes for both luma
and chroma. When the best mode is an angular mode, two
additional costs are calculated for neighboring directions.
Compared with the full search, the VTM approach can reduce
the complexity by roughly half.

In this paper, for the luma component, initially obtaining
the costs of planar and DC, we use the greedy algorithm with
coarse-to-fine search in angular direction granularity. To avoid
the local minimum decision, we also compared it with the
modes in MPM lists.

Intra mode is separately selected for luma and chroma. For
the chroma component, the intra prediction mode is selected

only from the linear prediction mode and the same mode of
luma.

For block partitioning, we don’t modify the partitioner
algorithm. Compared with the common test configuration,
additional early terminations are enabled.

IV. RESULTS AND DISCUSSIONS

A. Simulation set-up

The proposed methods are implemented on the top of VTM-
10.0 [4]. The coding conditions follow all intra settings in
the common test conditions (CTC) [17]. The BD-rate metric
is used for the coding performance evaluation based on the
bitrate and distortion between two coding methods [18]. As
mentioned in section II, a lot of coding tools are disabled and
partitioning type is restricted to quadtree structure. To confirm
the wide bitrate range, four QP values are used.

Test sequences are the same as in the CTC but the length
of frames is shortened for reducing simulation time. Test
sequences are categorized by the resolutions. The resolutions
of Class A1/A2, B, and C are 3840 pixels × 2160 lines, 1920
pixel × 1080 lines, and 832 pixels × 480 lines, respectively.
Input bit-depth of the sequence is 10bit per pel. Although
original sequences have their own frame rate from 25 fps to
60 fps, they are treated as a sequence of still pictures in this
paper.

Thumbnails of all pictures are listed in Figure 1. Class A1
mostly focuses on the natural scene taken by a camera while
Class A2 contains unique characteristics for evaluating the
coding behavior. Class B and C are natural scenes, too.

B. Results by Fast Encoding Configuration

By introducing fast configuration to VTM, 38.40% BD-rate
loss in overall average is observed in Table I. Such large
losses can be reduced by enabling each tool. Fast encoding
algorithms for each tool will be studied or integrated in the
future.

At the same time, encoding time is dramatically reduced in
the range of 1.5% to 9.1%. It means 31.5 times faster than that
by the default configuration. From the Table I, three points are
derived.

Firstly, when the result of Class A1 and A2 are compared,
speedup ratios are 10.9x and 21.6x. The reason is that the
RDO search range by each tool for Class A2 is wider than
that for Class A1. In detail, the encoding time of Class A2 is
roughly double that of Class A1 by the default configuration.
The encoding times in both Class A1 and A2 by the fast
configuration are very similar. An actual encoding time for
each picture will be discussed later.

Secondly, comparing the results among classes, the speedup
ratio is proportional to the picture resolution. The reason
is RDO search-range reduction in both tool level and parti-
tioning. The tool level discussion is the same as the above-
mentioned. For the partitioning, the RDO search range by the
binary tree and ternary tree, which are effective for lower
resolution, is disabled so that encoding runtime is reduced.

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

71

Tango FoodMarket Campfire

CatRobot DaylightRoad ParkRunning

MarketPlace RitsualDance Cactus BasketballDrive BQTerrace

BasketballDrill BQMall PartyScene RaceHorses

Fig. 1. Thumbnail of test sequences. From the top row to down, Class A1, A2, B, and C, respectively.

Finally, decoding runtime is reduced to 74% on the overall
average. Since the decoder is the VTM in both anchor and test,
reduction comes from the absence of complex coding tools.
The reduction trend is consistent among classes.

C. Results by Fast Encoding Algorithm

By introducing a fast encoding algorithm into VTM with
fast configuration, the encoding runtime of each class is
summarized in Table II. It is noted that anchors in Table I and
II are different. The encoding speedup of 5.4 times faster is
realized while a small BD-rate loss of 7.45% in overall average
is observed. In addition to the discussions of the previous
section, two points are observed from Table II.

One point is that the BD-rate losses are similar among
classes. The reason is that the proposed techniques are in-
dependent of the resolution and content characteristics.

TABLE I
ENCODING PERFORMANCE WITH THE FAST VTM CONFIGURATION.

ANCHOR IS THE DEFAULT VTM CONFIGURATION.

BDY UV EncT Speedup DecT
Class A1 36.58% 9.1% 10.9x 71.7%
Class A2 41.01% 4.6% 21.6x 76.4%
Class B 36.95% 2.4% 41.4x 75.8%
Class C 39.61% 1.5% 65.9x 72.2%
Overall 38.40% 3.2% 31.5x 74.1%

The other point is that the higher the resolution, the larger
the speed-up ratio. The reason is that the cost computation,
which is optimized by the SIMD implementation, is propor-
tional to a processing unit size where the unit size can be large
in high resolution.

It is noted that the reduction of decoding runtime is very
minor because the decoding process is not changed.

D. Multi-thread Performance Results

In this section, multithread performance is discussed. Our
implementation can be scaled to a hundred threads but it is
effective only for the motion picture content. For some realistic
applications, we compare the single thread and four threads
cases. Even the number of threads is small, the set-up and tear-
down costs of the multithreading process are not negligible.

TABLE II
ENCODING PERFORMANCE WITH THE PROPOSED FAST ENCODING

ALGORITHM. ANCHOR IS THE FAST VTM CONFIGURATION.

BDY UV EncT Speedup DecT
Class A1 7.60% 11.9% 8.4x 98.6%
Class A2 6.67% 12.8% 7.8x 93.0%
Class B 6.88% 23.1% 4.3x 98.0%
Class C 8.63% 25.7% 3.9x 92.9%
Overall 7.45% 18.5% 5.4x 95.7%

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

72

In this paper, we assumed that the small number of sets of
pictures are sequentially encoded.

The encoding runtime of each sequence is summarized in
Table III. Coding performance does not change regardless
of the number of threads. From this table, three points are
confirmed.

Firstly, encoding time is basically proportional to the image
resolution. The reason is that resolution-specific search is
almost disabled by both tool level and partitioning. In detail,
remaining coding tools such as intra prediction, transform,
and deblocking filter depends on only the number of pixels.
The partitioning is also simplified to the quad-tree structure.
As a result, encoding time depends on only the input image
resolution.

Secondly, encoding time, however, depends on the content
characteristics. Comparisons between Figure 1 and Table III
suggest the following tendency. Encoding times of FoorMarket
and RitualDance are relatively small since this content has a
large region with a similar texture. On the other hand, the
encoding time of Class A2 is relatively large since the content
has strong edges and fine textures.

Finally, the speedup ratio is 3.6 times on the overall average.
The ideal or upper limit ratio is four because of four-thread
conditions, then the observed ratio is reasonable. It means that
the overhead of multi-thread is the only 3.0% of the single-
thread running time. The speedup ratio of Class A1/A2 is
consistently larger than that of the remaining class. The main
reason is that Class A1/A2 utilizes a four-slice structure due
to the 4K resolution.

It is eventually realized an average speedup factor of 710
times over default VTM by using fast configuration, optimized
implementation, and fast algorithm in still picture coding.

V. CONCLUSION

This paper proposed the fast still picture coding compliant
with the VVC standard. Three steps are shown. Firstly, fast
coding configuration is introduced by disabling heavy coding
tools on the VTM configuration setting. Secondly, additional

TABLE III
ENCDOING TIME PER ONE PICTURE FOR EACH SEQUENCE.

Class Sequence Proposed
(single
thread)

Proposed
(four
threads)

Speedup

A1 (4K) Tango 6.4s 1.7s 3.8x
FoodMarket 4.9s 1.3s 3.8x
Campfire 6.7s 1.8s 3.6x

A2 (4K) CatRobot 7.5s 2.0s 3.8x
DaylightRoad 8.1s 2.1s 3.8x
ParkRunning 9.0s 2.4s 3.7x

B (HD) MarketPlace 1.9s 0.6s 3.4x
RitualDance 1.5s 0.4s 3.4x
Cactus 2.3s 0.7s 3.4x
BasketballDrive 2.1s 0.6s 3.5x
BQTerrace 2.4s 0.7s 3.3x

C (WVGA) BasketballDrill 0.5s 0.1s 3.5x
BQMall 0.5s 0.1s 3.6x
PartyScene 0.6s 0.2s 3.5x
RaceHorses 0.5s 0.2s 3.2x

SIMD implementation and multi-threading framework are
introduced into VTM. Finally, well-known but fast algorithms
are implemented by our own optimization. Simulation results
show that 4K and full HD resolutions are compressed by less
than 2 seconds and 0.7 seconds, respectively. In our simu-
lation environment with four multi-threading configurations,
a speedup factor of 710 times over VTM was reached. In
this paper, although a coding performance is sacrificed for
the ultra-fast coding, such performance will be repaired by
introducing a fast algorithm of each coding tool.

ACKNOWLEDGMENT

This work was supported by Ministry of Internal Affairs
and Communications (MIC) of Japan (Grant no. JPJ000595).

REFERENCES

[1] ITU-T “Recommendation H.266: Versatile video coding,” 2020.
[2] J. Chen, Y. Ye, and S. Kim, “Algorithm description for Versatile Video

Coding and Test Model 12 (VTM 12),” JVET-U2002, Joint Video Experts
Team (JVET), 2021.

[3] F. Bossen, X. Li, K. Sühring, K. Sharman, and V. Seregin, “JVET AHG
report: Test model software development (AHG3),” JVET-V0003, Joint
Video Experts Team (JVET), 2021.

[4] VTM software repository, vesion VTM-10.0. https://vcgit.hhi.fraunhofer.
de/jvet/VVCSoftware VTM/-/tree/VTM-10.0

[5] J. Brandenburg, A. Wieckowski, T. Hinz , A. Henkel , V. George, I.
Zupancic, C. Stoffers, B. Bross, H. Schwarz, and D. Marpe, “Towards
Fast and Efficient VVC Encoding,” IEEE 22nd Workshop on Multimedia
Signal Processing (MMSP), 2020.

[6] J. Cui, Y. Fan, Y. He, X. Jiang, H. Liu, H. Shi, H. Yang, H. Yang, H. Yin,
J. Zhang, and L. Zhang, “An optimized VVC encoder implementation,”
JVET-V0127, Joint Video Experts Team (JVET), 2021.

[7] S. Fang, J. Guo, Z. Huang, J. Liu, S. Xu, L. Yu, J. Chen, R.-L. Liao, and
Y. Ye, “Ali266: an optimized VVC software encoder implementation,”
JVET-W0127, Joint Video Experts Team (JVET), 2021.

[8] F. Bossen, “AHG16: Performance of a reasonably fast VVC software
decoder,” JVET-S0224, Joint Video Experts Team (JVET), 2020.

[9] Y. Li, S. Liu, Y. Chen, Y. Zheng, S. Chen, B. Zhu, and J. Lou,
“Performance of a VVC Software Decoder on Mobile Platform,” JVET-
U0071, Joint Video Experts Team (JVET), 2021.

[10] W.-L. Feng, F.-L. Luo, Y.-S. He, Z.-H. Liu, S.-M. Meng, and X.
Wen, “VVC Software Decoder for Mobile Platforms,” JVET-V0070, Joint
Video Experts Team (JVET), 2021.

[11] Y. He, L. Li, Y. Li, H. Yin, J. Zhang, L. Zhang, and Y. Zhang,
“Performance of a VVC software decoder - BVC,” JVET-V0128, Joint
Video Experts Team (JVET), 2021.

[12] F. Hiron, R. Jullian, F. Urban, and P. de Lagrange, “Multi-thread VTM
decoder: information update,” JVET-V0088, Joint Video Experts Team
(JVET), 2021.

[13] N. Tang, J. Cao, F. Liang, J. Wang, H. Liu, X. Wang, and X. Du, “Fast
CTU Partition Decision Algorithm for VVC Intra and Inter Coding,” 2019
IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), 2019.

[14] T. Amestoy, A. Mercat, W. Hamidouche, D. Menard, and C. Bergeron,
“Tunable VVC Frame Partitioning Based on Lightweight Machine Learn-
ing,” IEEE Transactions on Image Processing, 2020.

[15] M. Aklouf, M. Leny, F. Dufaux, and M. Kieffer, “Low Complexity Ver-
satile Video Coding (VVC) for Low Bitrate Applications,” 8th European
Workshop on Visual Information Processing (EUVIP), 2019.

[16] A. Wieckowski, J. Ma, H. Schwarz, D. Marpe, and T. Wiegand,
“Fast Partitioning Decision Strategies for The Upcoming Versatile Video
Coding (VVC) Standard,” IEEE International Conference on Image
Processing (ICIP), 2019.

[17] F. Bossen, J. Boyce, X. Li, V. Seregin, and K. Sühring, “JVET common
test conditions and software reference configurations for SDR video,”
JVET-N1010, Joint Video Experts Team (JVET), 2019.

[18] G. Bjøntegaard, “Calculation of average PSNR differences between RD-
curves,” Technical Report VCEG-M33, ITU-T SG16/Q6, Austin, Texas,
USA, 2001.

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

73

