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Abstract—In order to develop a high-performance image and
video processing program, it is necessary to tune the program to a
target platform. However, this task not only requires a high level
of knowledge of computer architecture and parallel processing,
but also requires an enormous amount of development time. It
makes the cost of program development a significant problem. To
solve this problem, we are developing Hisui that aims to achieve
both high productivity and high performance in the development
of image and video processing programs. Hisui consists of a
highly abstract Hisui language and Hisui compiler that compiles
programs written using Hisui language. In this study, we design
an automatic optimization function for Hisui and implement it
on Hisui compiler. This function can automatically apply multi-
threading, vectorization, and cache blocking. In order to design
this function, we first investigated these optimization methods
and identified the appropriate optimization application criteria
and methods. Then, based on the results of the survey, we design
an automatic optimization function and implement it on Hisui
compiler. As a result of evaluating the usefulness of the improved
image and video processing framework, we confirmed that the
programs optimized by Hisui compiler are up to 3.0 times faster
than those optimized by a combination of Halide and its Auto-
scheduler.

I. INTRODUCTION

Image and video processing technology has developed and
is applied in many fields. As a result, opportunities to develop
image and video processing programs are increasing. In order
to develop high-performance image and video processing
programs, it is necessary to tune the programs to the platform.

However, tuning image and video processing programs
requires considerable development costs. It is necessary to
require a high level of knowledge about computer architec-
ture and parallel processing. In addition, in order to find
the optimal parameters, such as the number of threads for
parallel processing, it is necessary to implement programs
with various parameters and verify their performance. This
requires advanced programming techniques and an enormous
amount of development time, placing a heavy burden on the
programmers. In addition, since the optimal tuning parameters
differ from platform to platform, the portability of the tuned
program is reduced.

To overcome this problem, We have proposed an image
and video processing environment, Hisui [1], which aims to
maximize the performance of the platform with a concise
description. This environment consists of a highly abstract
Hisui language and Hisui compiler that performs advanced
optimization on programs written in the language.

In this paper, we introduce the outline of Hisui language and
the design of dedicated auto-optimizer for Hisui. We investi-
gated appropriate parameters for some types of optimization,
and implemented Hisui compiler that automatically performs
high-level optimization on programs based on the parameter
investigation. Then, we evaluate the performance of programs
optimized by Hisui compiler and demonstrate the usefulness
of Hisui.

II. RELATED WORK

Various frameworks specialized for developing image and
video processing programs [2], [3], [4], [5], [6], [7] have
been proposed. In this section, we provide an overview of
Halide which is one of the best frameworks in terms of both
descriptiveness and performance.

One of the most popular image processing environments
today is Halide [8]. Halide is a domain-specific program-
ming language (DSL) designed to write image and array
processing codes in a concise manner, and is implemented
as a functional language to be embedded in C++. Halide
supports various platforms such as multi-core CPUs, GPUs,
and mobile processors, etc. The most important feature of
Halide is that the “algorithm” of image processing and the
“schedule” of computation order and data alignment can be
written separately. This makes it easy to write programs with
various schedules without changing the algorithm. For this
reason, programs written in Halide are relatively more readable
than those written in general programming languages. Halide
also provides built-in functions for scheduling that allow
programmers to use various schedules in a concise manner.
As a result, the time required to find the optimal schedule can
be greatly reduced with Halide.

However, even with Halide, the task of specifying an opti-
mal schedule is not easy. In order to find the optimal schedule,
it is necessary to understand the computer architecture and
various optimizations, select the appropriate function among
the many built-in functions provided by Halide, and specify
the optimal parameters. Since this is not an easy task for
programmers who are not familiar with image processing
or computer architectures, Halide provides an Auto-scheduler
that automatically applies appropriate schedules to the algo-
rithms written by the programmer. [9]. Using this method, the
programmer only needs to write the algorithm, and the Auto-
scheduler estimates the appropriate schedules and optimizes
the program, thus generating a program with a certain level of
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1 for(y = 0; y < 480; y++) {
2 for(x = 0; x < 640; x++) {
3 ave = ( img[x][y].R + img[x][y].G + img[x][y].B ) / 3;
4 img[x][y].R = ave;
5 img[x][y].G = ave;
6 img[x][y].B = ave;
7 }
8 }

(a) code in C++.

1 (pixel)p1@(image)img1{
2 ave=(p1.R + p1.G + p1.B)/3;
3 p1.{R, G, B}={ave, ave, ave};
4 }

(b) code in Hisui language.

Fig. 1. An image conversion code.

performance. However, the Auto-scheduler is currently unable
to provide an optimal schedule for all algorithms [10]. Also,
since Halide does not provide the ability to bind threads to
cores, the cache held by each core cannot be used effectively,
and performance may not improve much even when parallel
processing is performed by multiple threads.

III. HISUI

Our Hisui consists of Hisui language specialized for im-
age and video processing and Hisui compiler that performs
advanced optimization on programs written in the language.
Hisui language is a DSL with a high level of abstraction,
which follows the specification of our previously proposed
language [11] for image and video processing. In this section,
we describe the features of Hisui language.

In general, image and video processing repeatedly applies
certain processing to the components of an image, either the
entire image or an arbitrary area. For example, the conversion
of a color image to a monochrome image can be written in
a general programming language as shown in Fig. 1(a). This
code converts a 640 × 480 image stored as RGB values in
a two-dimensional array “img” to grayscale. The processing
data unit of this code is a pixel, and the process for each pixel
is applied to all pixels. This code explicitly specifies the scope
of processing in the loop statement.

Instead of a loop statement, Hisui language specifies a
processing data unit and a processing data range. The code
shown in Fig. 1(a) can be written in Hisui language as shown
in Fig. 1(b), where “(pixel)p1” in the first line represents
the processing data unit, and “(image)img1” represents the
processing data range. Thus, the loop statement is substituted
in the form “unit@range.” In order to facilitate the writing of
image and video processing programs, several data types are
provided. The typical data types are shown in TABLE I. For
example, the “pixel” type used in the first line of Fig. 1(b) rep-
resents a single pixel, and the “image” type represents a single
image. Therefore, the “(pixel)p1@(image)img1” indicates the
following three things.

• The processing for the data unit “p1” of the pixel type is
defined later.

TABLE I
THE VARIETY OF DATA TYPES PROVIDED BY HISUI LANGUAGE.

type name The object represented by the type
pixel single pixel
box partial image
image image
stream stream
array versatile data array

• p1 represents an arbitrary data unit in “img1.”
• The defined processing for “p1” is applied to all process-

ing data units in “img1.”
The first advantage of this notation is that various process-

ing patterns can be expressed without major changes to the
notation. Fig. 2 shows a video processing code that applies the
image processing shown in Fig. 1(b) to each frame of a video.
This code consists of the procedure for each image (lines 1-6)
and for video (lines 7-11). In Hisui language, input/output
variables for functions are defined by writing them adjacent
to the function name via “>.” Codes for video processing
can also be written in the same notation as codes for image
processing. This is because a video processing program is
constructed by a set of image processing functions and rules
to apply these functions to each image in a video.

The second advantage is that image and video processing
programming can be abstracted. When writing image process-
ing using a general programming language, it is necessary to
specify the height and width of the image as shown in the first
and second lines of Fig. 1(a) code. In addition, in the case of
video processing, it is necessary to consider the frame rate.
On the other hand, Hisui language provides a programming
paradigm that does not require the user to be aware of such
information. This enables intuitive programming at a high level
of abstraction, thereby reducing the burden on programmers.

Finally, the third advantage is that the processing that can
be parallelized and the data dependencies can be clear in the
Hisui codes. When a loop statement is used as in Fig. 1(a), the
iterator fixes the processing order inside the loop. However,
such a fixed processing order often makes it difficult for a
compiler to automatically parallelize the code even if the
processing result does not change depending on the processing
order. On the other hand, with Hisui language, the processing
that can be executed in any order can be written without fixing

1 (image)img1 > Grayscale > (image)img2{
2 (pixel)p1@img1{
3 ave = (p1.R + p1.G + p1.B) / 3;
4 p1.{R, G, B} = {ave, ave, ave};
5 }
6 }
7 (stream)st1 > StreamGray > st1{
8 (image)frame1@st1{
9 frame1 > Grayscale > frame1;

10 }
11 }

Fig. 2. A video processing code in Hisui language.
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the processing order. As a result, the dependencies between the
processing become clear, and Hisui compiler can easily find
the processing that can be parallelized.

IV. IMPLEMENTATION

We implement a function that automatically performs the
following three high-level optimizations on Hisui programs
considering the processing patterns.

multi-threading
divides a data range such as an image or a video into
thread-count blocks, and assigns a thread to each data
block.

vectorization
applies SIMD instructions to handle multiple pixels
simultaneously.

cache-blocking
improves cache hit rate by dividing an image into
sub-images, or blocks, to fit in cache and rearranging
processing order to shorten data reuse time stride.

The Hisui compiler consists of a front-end Hisui translator,
a back-end C++ optimizer, and a C++ compiler, as shown in
Fig. 3. In this study, we implemented the C++ optimizer as an
automatic optimization function in Hisui compiler. Currently,
this feature is only available for x86 architecture.

As described in Sec. III, Hisui language uses the notation
that specifies the processing data unit and processing data
range. It is possible to express processing without specifying
the order of processing, which has no ordering constraints.
This makes it easy for Hisui compiler to extract parallel
processing patterns from a source code written in Hisui lan-
guage. To take advantage of this feature of this language, we
have previously implemented a Hisui translator. This translator
performs lexical and syntactic analysis on a source code,
and then generates an intermediate code with annotation. The
annotation indicates which part of the code can be parallelized.
The C++ optimizer then performs advanced optimizations on
the annotated intermediate code.

Hisui Compiler

Source 
code

（Hisui）

Hisui

Translator

(front end)

Lexical analysis
&

Syntactic analysis

Intermediate code

generation

C++

Compiler

(back end)

C++

Optimizer

(back end)

Optimized 

intermediate 

code 

(C++)

Intermediate 

code 

with hinting 
(C++)

Binary
code

Fig. 3. Overview of Hisui compiler.

A. Multi-threading

In general, image and video processing programs have
a high degree of parallelism, and many of them contain
various parallel processing patterns [12], for example, maps
and stencils. Map is a pattern that applies the same processing
to all data units without any dependencies between them.
Stencil is a pattern that uses the values of each data unit and
its neighbors to update the value of the data unit.

The optimizer performs multi-threading on programs that
contain these patterns. In multi-threading, dividing the area
that can be processed in parallel into multiple blocks. Then,
each block is processed in parallel by multiple threads to speed
up the program.

The optimizer also provides the ability to bind each thread to
a separate core, which is not provided in Halide. This feature
prevents threads running on one core from being migrated to
another core (thread migration). By preventing thread migra-
tion, the caches on each core can be used effectively, which
is expected to improve program performance.

In the multi-threading survey, we applied multi-threading
by single, half of the number of physical cores, the number
of physical cores, the number of logical cores with the setup
in order to determine how many threads have the greatest
effect. We then measured the execution time with and without
core-binding for each number of threads. We used grayscale
transform and blur filter as workloads of maps and stencils,
respectively. Also, four image sizes were used.

The result of the survey is shown in TABLE II, Fig. 4(a)
and Fig. 4(b). In these figures, the vertical axis is the execution
time ratio normalized to the processing of using a single
thread, and the horizontal axis is the size of the image in
pixels.

Both figures show that when the image size is larger than
2048 × 1200 pixels, multi-threading reduces the execution
time and improves the performance. Also, when the image
size is larger than 2048 × 1200 pixels, the execution time
is shorter and the performance is higher when the thread is
bound to the core. These results suggest that multi-threading
with core-binding is effective for programs containing maps
and stencils. Note that the overhead of multi-threading caused
by thread creation and scheduling can degrade the performance
as shown in the result with 1024 × 600 in Fig. 4(a). However,
the results for all image sizes show that multi-threading by half
of the number of the physical core with core-binding is faster
on average.

Therefore, we designed the optimizer to bind half of the
number of physical cores threads to separate cores when
applying multi-threading to programs containing maps and
stencils.

B. Vectorization

In addition to multi-threading, the optimizer vectorizes the
programs containing maps and stencils. For vectorization, the
optimizer uses SIMD instructions to process multiple pixels
at a time to speed up the program.
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TABLE II
SETUP WITH LARGE CACHE SIZE.

OS Ubuntu 16.04
CPU Intel Core i9-7900K
Clocks 3.3 GHz
Cache(L1d/L2/LLC) 32KB/1024KB/14080KB
Physical/Logical Core 10/20

Memory 64GB
Compiler gcc 9.3.0
Compile options -O3
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Fig. 4. Performance improvement by multi-threading.

For investigating the effect of vectorization, we used three
SIMD registers, SSE2, AVX, and AVX-512[13] are 128, 256,
and 512-bit width, in order to find out which instruction set
is more effective. We measured the execution time without
vectorization and when vectorization was applied using each
SIMD register. In Fig. 4, the execution time normalized to the
processing of without vectorization. The workload and image
size used in the study are the same as those used in Sec. IV-A.
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Fig. 5. Performance improvement by vectorization.

The result of the survey is shown in TABLE II, Fig. 5(a),
and Fig. 5(b). In these figures, the vertical axis is the execution
time ratio normalized to the time of without vectorization, and
the horizontal axis is the size of the image in pixels. Both
figures show that vectorization reduces the execution time
of the program and improves performance. The figures also
show that the performance differs depending on the SIMD
instruction set. One of the reasons for this difference is that
the register widths of SSE2, AVX, and AVX-512 are different.
The wider the register, the larger the number of pixels that can
be processed simultaneously.

Therefore, we designed the optimizer to use the SIMD
instruction set which can use the widest register among the
SIMD instruction sets available on the platform.

C. Cache-blocking

In addition to multi-threading and vectorization, the opti-
mizer applies cache blocking [14] to speed up the program.
Reducing cache misses is important for performance improve-
ment. Since the stencil in image and video processing refers
to each pixel multiple times, cache misses frequently occur if

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

83



(a) A processing order without considering cache efficiency.

(b) A processing order considering cache efficiency.

Fig. 6. Changing the processing order by cache blocking.

TABLE III
SETUP WITH SMALL CACHE SIZE.

OS Ubuntu 16.04
CPU Intel Core i7-8700K
Clocks 3.7 GHz
Cache(L1d/L2/LLC) 32KB/256KB/12288KB
Physical/Logical Core 6/12

Memory 16GB
Compiler gcc 9.3.0
Compile options -O3

the cache is not effectively utilized as in Fig. 6(a). However,
we can improve the cache hit ratio by changing the processing
order considering the cache size as in Fig. 6(b).

The effect of cache blocking for a program containing
stencils with the setup shown in TABLE III is shown in Fig. 7.
In this figure, the vertical axis is the execution time and the
horizontal axis is the size of the input image. A blur filter
is used as the workload, and four types of input images are
used. In this optimization, the processing order is changed
by dividing the horizontal processing area into a certain size,
as in Fig. 6(b). This fixed size is called the blocking size.
In this study, the blocking size is set to be the width of the
image divided by 2, based on the results of our preliminary
evaluation.

Cache blocking will bring some overhead because the nested
loops resulting from cache blocking require many conditional
branch instructions to be executed. However, as shown in
Fig. 7, when the image size is large enough, cache blocking
decreases the program execution time and improves the perfor-
mance. In order to improve the performance, cache blocking
should be applied only in the case where more cache misses
can be suppressed.

We designed the optimizer to apply cache blocking only to
stencils and only when the size of the input image is larger
than the cache capacity.

D. Parallelization for Reductions

We also implement automatic parallelization of reductions,
which is one of the common processing patterns in image
and video processing. Reduction aggregates multiple data units
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Fig. 7. Performance improvement by cache blocking.

1 int c = 0;
2 for (int i = 0; i < 6; i++) {
3 c = 2 ∗ c + i;
4 }

Fig. 8. A code to update the value of variable c.

and combines them into a single data unit. In image and
video processing, reductions are used when calculating the
sum, maximum, histogram, and so on. Although parallelizing
reductions is desirable, a previous work [15] shows that
automatic parallelization of reduction is difficult to implement.
In this study, we apply the methodology used in the existing
study [16] by Jiang et al. that enables limited automatic
parallelization of the reduction by analyzing the source code.

Let’s see the methodology with a simple example code
shown in Fig. 8. This is a code that updates the value of
the variable c through operations using the value of itself, and
the value of c given as input in each iteration depends on
the result of the processing in the previous iteration. The six
expressions shown in the upper part of Fig. 9 are the unrolled
contents of the “for” statement in Fig. 8, and the value of
the output c in the i-th (counting from 0) iteration is denoted
as ci. If the values of the input ci in each iteration are all
known, the calculations can be easily parallelized by multi-
threading as shown in Fig. 9. However, the actual input ci
is determined depending on the processing of the previous
iteration, the processing assigned to Thread 1 and 2 cannot be
correctly parallelized with the processing of Thread 0.

To address this problem, Jiang et al. have proposed a
method that enables limited automatic parallelization of the
reduction by analyzing and reconstructing the contents of
“for” statements. Here, we consider the following equation
transformation for the processing of Thread 1 in Fig. 9.

c3 = 2× c2 + 3

= 2× (2× c1 + 2) + 3

= 2× 2× c1 + 2× 2 + 3 (1)

Thus, c3 can be expressed as a linear function of c1. However,
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c0 = 2 *  0    + 0
c1 = 2 * c0 + 1
c2 = 2 * c1 + 2
c3 = 2 * c2 + 3
c4 = 2 * c3 + 4
c5 = 2 * c4 + 5

Thread 0 Thread 1

c0 = 2 * 0    + 0
c1 = 2 * c0 + 1

c4 = 2 * c3 + 4
c5 = 2 * c4 + 5

c2 = 2 * c1 + 2
c3 = 2 * c2 + 3

Thread 2

Fig. 9. Examples where parallelism is not applicable in practice.

c0 = 2 *  0    + 0

c1 = 2 * c1 + 1

c2 = 2 * c2 + 2

c3 = 2 * c3 + 3

c4 = 2 * c4 + 4

c5 = 2 * c5 + 5

Thread 0 Thread 1

c3 = (c3(𝑐1=1)-c3(𝑐1=0)) * c1 +c3(𝑐1=0)

c0 = 2 *  0    + 0

c1 = 2 * c0 + 1

c4(𝑐3=0)= 2 *   0 + 4

c4(𝑐3=1)= 2 *   1 + 4

c5(𝑐3=0)= 2 *c4(𝑐3=0)+ 5

c5(𝑐3=1)= 2 *c4(𝑐3=1)+ 5

c2(𝑐1=0)= 2 *  0 + 2

c2(𝑐1=1)= 2 *  1 + 2

c3(𝑐1=0)= 2 *c2(𝑐1=0)+ 3

c3(𝑐1=1)= 2 *c2(𝑐1=1)+ 3

Thread 2

c5 = (c5(𝑐3=1)-c5(𝑐3=0)) * c3 +c5(𝑐3=0)

Fig. 10. Parallelization of the code shown in Fig. 8

c1 will not be determined until the calculation by Thread 0 is
completed. Therefore, the coefficient of c1, 2 × 2, and the
constant term, 2 × 2 + 3, are calculated first. First, since the
coefficient of c1 in Equation (1) corresponds to the slope of
this linear equation, we write up c3 as c3(c1=0) when c1 in
Equation (1) is assumed as 0, and c3 as c3(c1=1) when c1 is
assumed as 1. Then, the slope of this linear equation can be
obtained as c3(c1=1) − c3(c1=0). The constant term 2 × 2 +
3 corresponds to the intercept in Equation (1), and can be
obtained as c3(c1=0). From these facts, Equation (1) can be
generalized as follows.

c3 = (c3(c1=1) − c3(c1=0))× c1 + c3(c1=0)

Therefore, the slope and intercept of Equation (1) can be
obtained by reorganizing the calculation with the values 0 and
1 as in Fig. 10 for c1 of Thread 1 in Fig. 9. In the same way,
we can calculate the slope and intercept of the equation to find
c5 in Thread 2 in Fig. 9.

In this manner, for a variable x that is updated in a loop,
the value of x to be obtained in the j-th iteration, xj , can
be expressed in the following generalized expression using xi

such that i < j, and the parts corresponding to the slope and
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Fig. 11. Performance improvement by the optimizer: reduction.

intercept can be calculated without waiting for the value of xi

to be determined if this is regarded as a linear expression for
xj .

xj = (xj(xi=1) − xj(xi=0))× xi + xj(xi=0)

The investigation setup of this method is the same as that
used in Sec. IV-A, but core-binding is not applied. The reason
for not applying core-binding is that reduction is not a parallel
processing pattern that accesses the same address multiple
times. We then measured the execution time for each number
of threads. As a workload, we used a program that calculates
the sum of the RGB values, which are the luminance values of
the three primary color components, for all pixels of the input
image. Four types of input images were used in the study.

The effect of this parallelization by the optimizer on the
program containing the reduction is shown in Fig. 11. In
this figure, the vertical axis shows the execution time ratio
normalized to the processing of using a single thread, and the
horizontal axis shows the size of the image in pixels.

As shown in Fig. 11, when the image size is larger than
2048 × 1200 pixels, applying this optimization reduces the
execution time and improves the performance. Furthermore,
with larger images, it is best for performance to use threads
as the same number as physical cores. On the other hand, when
the image size is less than 2048 × 1200 pixels, single-threaded
processing is the best.

Therefore, we designed the optimizer to apply multi-
threaded parallel reduction with threads as the same number
as physical cores only when the input image size is larger than
2048 × 1200 pixels.

V. EVALUATIONS

A. Experimental Environment

In this section, we evaluated the following two points in
order to verify the usefulness of this framework.

• How easy to write in Hisui language.
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• The performance of the programs generated by Hisui
compiler, which implements the automatic optimization
function.

As for the former, we compare the amount of codes between
the codes written with OpenCV(C++), Halide, and Hisui lan-
guage. As a workload, we used an image processing program
that computes the sum of RGB values for all pixels in an input
image.

As for the latter, we used the environments shown in
TABLE II and TABLE III as the evaluation setup. We also used
three image processing programs as workloads: a grayscale
conversion, a blur filter, and a program to calculate the sum
of RGB values for all pixels in the input image. In the case of
grayscale or blur, we apply multi-threading by half the number
of the physical cores with core-binding, and in the case of
the sum of RGB, we apply multi-threading by the number of
the physical cores. We measured the execution time of the
programs optimized with -O3 option of the C++ compiler, the
programs optimized by Halide with Auto-scheduler, and the
programs optimized by Hisui compiler. These programs were
executed 30 times each and the average execution times were
compared. An image with 4096 × 2400 pixels was used as
the input image.

B. Ease of Writing

Codes for calculating the sum of RGB values are shown in
Fig. 12(a), Fig. 12(b), and Fig. 12(c).

As we can see in the figures, the source code written in
Halide has the largest amount of code, while the source code
written in Hisui is more concise than C++ and Halide due
to its simple syntax described in Sec. III. One of the reasons
why the code is more concise when using Hisui is that there
is no need to specify the width and height of the image as
described in Sec. III. On the other hand, the width and height
of the image need to be specified in lines 3 and 4 of Fig. 12(a)
in C++ and in line 12 of Fig. 12(b) in Halide. Another factor
is that Hisui can concisely express the input and output of
functions.

C. Performance

In order to verify the usefulness of Hisui, we evaluated
the performance of programs generated by Hisui compiler
that implements the automatic optimization described in the
previous section.

The evaluation results are shown in Fig. 13. In this figure,
the vertical axis shows the execution time ratio normalized
to C++, and the horizontal axis shows the size of the image
in pixels. The results show that the programs optimized by
the optimizer of Hisui framework are about 2.3 times faster
on average and about 3.0 times faster at maximum than the
programs optimized by Halide Auto-scheduler. One of the
reasons why the optimizer was able to generate programs with
higher performance than Halide Auto-scheduler for grayscale
transformation and blur filter programs is that the optimizer
provides a function to bind threads to the core, which is not
provided by Halide.

1 long sum(cv::Mat img){
2 int sum = 0;
3 for (int y = 0; y < img.rows; y++){
4 for (int x = 0; x < img.cols;x++){
5 cv::Vec3b ∗src =img.ptr<cv::Vec3b>(y);
6 sum += src[x][0] + src[x][1] + src[x][2];
7 }}
8 return sum;
9 }

10 int main(int argc, char ∗argv[]){
11 cv::Mat image = cv::imread(argv[1]);
12 long result = sum(image);
13 return 0;
14 }

(a) code in C++.

1 class AutoScheduled:public Halide::Generator<AutoScheduled> {
2 public:
3 Input<Buffer<uint8 t>> input{”input”,3};
4 Output<Buffer<long>> sum{”sum”,1};
5 void generate() {
6 RDom r(0, input.width(), 0, input.height(), 0, input.channels());
7 sum(x) = cast<long>(0);
8 sum(x) += input(r.x, r.y, r.z);
9 }

10 void schedule() {
11 if (auto schedule){
12 input.set estimates({{0,4096},{0,2400},{0,3}});
13 sum.set estimates({{0, 1}});
14 }
15 else {
16 sum.compute root();
17 }
18 }
19 private:
20 Var x{”x”}, y{”y”};
21 };
22 HALIDE REGISTER GENERATOR (AutoScheduled,auto schedule gen)
23

24 int main(int argc,char ∗∗argv){
25 Buffer<uint8 t> input = load and convert image(argv[1]);
26 Buffer<long> sum(1);
27 auto schedule true(input,sum);
28 return 0;
29 }

(b) code in Halide.

1 (image)img1>sum>(long)out{
2 out=0;
3 (pixel)p1@img1{
4 out += p1.R + p1.G + p1.B;
5 }
6 }
7 (image)in>main>(long)out{
8 in > sum > out;
9 }

(c) code in Hisui language.

Fig. 12. Codes for calculating the sum of RGB.

To confirm the effect of binding to a core, we measured
the number of thread migrations and L2 cache misses that
occurred during the execution of the grayscale conversion
program by using Linux perf command. The results are shown
in TABLE IV. As shown in this table, the optimizer-optimized
grayscale conversion program has fewer thread migrations and
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Fig. 13. Comparison of each workload.

TABLE IV
EFFECT OF CORE-BINDING: GRAYSCALE CONVERSION.

Halide Hisui
Number of thread migrations 59 20
L2 cache miss count 37,635 18,226
Run time 0.00618 0.00204

L2 cache misses than Halide, indicating that the cache is
effectively utilized.

One of the reasons why the optimizer was able to gener-
ate a program with higher performance than Halide’s Auto-
scheduler in the program to calculate the sum of RGB values
is that the optimization by the Auto-scheduler is not as
appropriate as our Hisui optimizer. The optimized code derived
by the Halide Auto-scheduler is multi-threaded, just like the
Hisui optimized code, but also includes other modifications
such as reordering the computation, that may bring some
performance deterioration.

VI. CONCLUSION

In this paper, we have introduced an image/video process-
ing framework Hisui and the initial implementation of its
optimizer. As a result of evaluating the usefulness of our
framework, we confirmed that the programs optimized by the
optimizer are about 2.3 times faster on average and up to 3.0
times faster than those optimized by Halide’s Auto-scheduler.
Even programmers who are not familiar with computer ar-
chitecture or parallel processing can write concise image
and video processing programs by using Hisui language, and
obtain high-performance programs by optimizing the programs
with the dedicated compiler.

Future work includes installing other types of optimizations
to Hisui optimizer. It is necessary to implement an automatic
optimization function not only for image processing programs
but also for video processing programs.

Another future challenge is to support various platforms
such as GPUs, mobile processors, and ASICs. Currently, Hisui

only supports x86, and our methodology may be optimized
only to the x86 architecture. Therefore, the challenge is to
make Hisui compatible with various platforms, not only to
increase the portability of Hisui, but also to increase the
versatility of the optimization method.

In addition, the optimizer should be able to handle various
parallel processing patterns. Currently, the Hisui optimizer
supports only map, stencil, and reduction among parallel
processing patterns. However, image and video processing
includes much more parallel processing patterns other than
them.
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