
An Implementation Method of HEVC Dataflow

Graph Based on Reconfigurable Processer

Yun Zhu*1, Chuanzhan Hu*, Lin Jiang†, Xubang Shen††
* Xi’an University of Posts and Telecommunications, Xi’an, China

E-mail: zhuyun@xupt.edu.cn, 616545219@qq.com
†Xi’an University of Science and Technology, Xi'an, China

E-mail: jianglin@xust.edu.cn
††Xi'an Microelectronic Technology Research Institute, Xi’an, China

E-mail: shenxubang@163.net

1 Corresponding author.

Abstract— Aiming at the problems of low resource utilization

and long algorithm execution time caused by unreasonable task

division when complex applications in high-efficiency video

coding are mapped on a reconfigurable processor. This paper

proposes a method for implementing a dataflow graph (DFG) of

HEVC algorithm based on a reconfigurable processor.

According to analyzed the data dependence and parallelism

between the algorithms, the loop optimization is performed on

the HEVC part with more loops and the algorithm DFG is

constructed. This paper mainly analyzes the mapping of smaller-

scale DFG to different processing units in the array processor.

The experimental results show that compared with the serial

scheme, the speedup ratio can reach up to 7.4x, the processing

element utilization can be increased by up to 80%, and the

execution time can be reduced by up to 86%.

Keywords—HEVC, Loop optimization ， DFG, Parallel

mapping

I. INTRODUCTION

The realization of video coding technology relies on the

most basic mathematical operations, loop jumps, and memory

operations, so corresponding software and hardware support

is required. High-efficiency video coding (HEVC) has the

characteristics of high computational complexity and multiple

cycles, and has high requirements for real-time coding. For

such a high-complexity calculation, only algorithm

optimization at the software level can no longer meet the

needs of real-time video coding. Although traditional general-

purpose processors are flexible, their overall performance is

not as good as Application Specific Integrated Circuit (ASIC).

ASIC has the highest performance-to-power ratio and the

smallest footprint, but it has a longer development cycle and

poor flexibility[1]. However, the dynamically programmable

and reconfigurable array processor has the characteristics of

high parallelism and flexible programming[2], which can

meet real-time requirements and effectively improve coding

efficiency.

When traditional manual mapping of high-efficiency video

coding algorithms, existing computing resources cannot be

fully utilized, and some resources are idle during calculation.

Without fully considering the characteristics of the array

structure, the traditional manual mapping of the HEVC

algorithm has frequent data interactions and long calculation

time[3]. In addition, the existing computing resources cannot

be fully utilized, some resources are idle during the

calculation process, and the system performance is mediocre

[4][5].

Dataflow graph (DFG) graphically depicts the process of

dataflow and processing in the system. Each node

corresponds to a kind of operation, and each edge corresponds

to the input and output between nodes[6][7]. The dependence

of data is represented by the directed edge of DFG. Each

processing element in the array processor can be regarded as

an operator. The structure of the input, calculation, and output

nodes of the DFG graph corresponds to the structure of the

input buffer, output buffer, and processing element of the

array processor. Therefore, each connection relationship

between the nodes can be converted to the connection

relationship between the array operation nodes, giving full

play to the high parallelism of the array processor[8].

Based on the array processor developed by the project team,

this paper proposes a mapping method based on the data flow

graph. By analyzing the data dependence and parallelism in

the HEVC algorithm, a data flow graph is constructed, and a

smaller-scale data flow graph is mapped through nodes.

The remainder of the paper is organized as follows: Section

II analyzes the data dependence and parallelism of the HEVC

algorithm, and introduces the hardware implementation plat.

Section III optimizes the loop part of the HEVC algorithm,

and then, a DFG is constructed for the optimized HEVC

algorithm. In Section IV presents the implementation results

and analyzes in detail. Finally, Section V summarizes the full

text.

II. RELATED WORKS

A. Reconfigurable array processor

The array processor used in the experiment is composed of

1,024 processor elements (PEs) in the form of adjacent

interconnection. Figure 1 shows part of the 4×4 PEs, which is

based on the H-Tree reconstruction mechanism (HRM)，
layer configuration network and a global controller. The PE is

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

106978-988-14768-9-0/21/$31.00 ©2021 APSIPA APSIPA-ASC 2021

implemented by a four-stage pipeline of extraction, decoding,

execution and write-back. The array processor logically

divides the 4×4 PEs into processing element group (PEG).

Global network communication mechanism based on local

shared memory. The data interaction in the cluster adopts

adjacent interconnection and shared storage. The on-chip

network uses inter-cluster communication. HRM provides a

solution for realizing the dynamic reconstruction of different

algorithms. The global controller determines the operation

mode and selects the appropriate function of one or more PEs,

and then unicasts the reconstruction configuration information

to the HRM.

The mapping of the HEVC algorithm in this paper is

implemented on this array structure.

Global controller

Host interface

DIM DOM

4

6

35 RERW

RN

4

6

35 RE

RS

RW

RN

4

6

35 RE

RS

RW

RN

4

6

35 RE

RS

RW

RN

4

6

35 RERW

RN

4

6

35 RE

RS

RW

RN

4

6

35 RE

RS

RW

RN

4

6

35 RE

RS

RW

RN

4

6

35 RERW

RN

4

6

35 RE

RS

RW

RN

4

6

35 RE

RS

RW

RN

4

6

35 RE

RS

RW

RN

4

6

35 RERW

RN

4

6

35 RE

RS

RW

RN

4

6

35 RE

RS

RW

RN

4

6

35 RE

RS

RW

RN

RS

RS

RS

RS

0

Fig.1 Reconfigurable array processor

B. Analysis of Data Parallelism of HEVC

The HEVC coding framework is shown in Figure 2. The

prediction process is mainly divided into intra-frame

prediction and inter-frame prediction. The image value of the

coded block is predicted by the pixel information around the

coded block. In order to run high-performance HEVC on the

array processor, first perform a parallel analysis of the core

algorithms in HEVC.

Transform/

quantize

Inverse quantization/

inverse transformation

+

Intra prediction +

Deblocking

filter

Reference frame

buffer
Motion

estimation

Motion

compensation

Input video

-

Fig.2 HEVC coding framework[9]

Compared with the H.264 algorithm, the HEVC algorithm

adds a flexible quadtree division[10], and uses the coding tree

unit (CTU) to replace the H.264 macro block. The image is

flexibly divided into coding block sizes from 64×64 to 4×4,

the prediction modes of the intra prediction algorithm are

increased from 13 to 35 prediction modes, and the motion

compensation filter with higher tap coefficients and more

precise is used between frames. But it brings higher coding

complexity.

In the HEVC standard, a 64×64 coded block is divided into

849 prediction units (PU). The intra prediction algorithm

selects the optimal mode after traversing 35 prediction modes

for prediction units of different sizes. There is no data

dependency between each mode. So, the calculation of each

prediction mode in the intra prediction algorithm can be

calculated in parallel.

The sub-pixel interpolation calculation of inter-frame

motion estimation is for pixels at different positions. The

reference block pixel values and interpolation calculation

formulas used are different. The larger the PU block, the more

interpolation pixels that need to be calculated, and the more

complicated the sub-pixel positions that need to be processed.

The PE in the array processor has parallel computing

capability and can complete the interpolation calculation of

multiple pixels in the same clock cycle.

III. DFG MAPPING FOR HEVC

A. Pretreatment: Loop optimization

The longest running time of HEVC encoding is the loop

number and loop calculation process. Before constructing

DFG, the loop body in the algorithm should be optimized first.

There are three ways to optimize loops: loop unrolling, loop

separation, and loop tiling. Different algorithms select the

corresponding loop optimization method respectively. The

three methods are described below.

1) Loop unrolling

Loop unrolling refers to unrolling part of the loop. The

iteration is expanded to each statement in the loop body,

which can reduce the number of loops[11][12]. Fully

unrolling the loop can maximize the parallelism of operators,

reduce conditional judgments at the end of each iteration,

concentrate more operations together, perform unified

calculations, and map this to a reconfigurable array, which

can reduce the number of times to reconfigure the array.

Taking the SAD algorithm in the HEVC as an example, the

specific calculation is shown in formula (1). Where
kf（m,n)is

the pixel value of the brightness block in the current frame,

and
k-1f （m+i,n+j)is the pixel value of the brightness block in

the reference frame.
m

i j k k-1

1 j 1

| f m n f m i n j |
n

i

SAD
= =

= −（ ， ） （ ， ） （ +， +） (1)

In the process of comparing the SAD value, the 64×64

coded block is split into 256 4×4 prediction blocks. This

article uses the smallest block 4×4 as an example to

implement the SAD algorithm. Figure 3 (a) shows the SAD

algorithm assembly code. Every time the value of SAD is

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

107

calculated, it is necessary to determine whether the

calculation is completed with 16 pixels, and the algorithm is

still executed serially after the determination is completed.

The original code loop body of the SAD algorithm contains

only one subtraction and one absolute value operator

operation, only 2 of the 16 PEs are working, and the

remaining 14 PEs are in idle state, the actual utilization of PE

is only 12.5 %.

Unrolling the calculation process of 16 cycles in the source

code, different PEs can perform SAD calculations at the same

time, that is, the absolute difference between the current

frame and the reference frame of 16 pixels can be calculated

in the same clock cycle. The code after loop unrolling is

shown in Figure 3(b), 8 of the 16 PEs work at the same time,

and the PE utilization rate is 50%. If the SAD value of an 8×8

code block is calculated, 16 PEs can be calculated at the same

time, and the PE utilization rate can reach 100%.

ADDI R2,R0,#300,#PE00
ADDI R6,R0,#300,#PE01
ADDI R7,R0,#0
ADDI R1,R0,#16
JISUAN: LD R3,R2
 LD R11,R6
 SUB R13,R3,R2
 ABS R13,R13
 ADD R7,R13
 ADDI R2,R2,#1
 ADDI R6,R6,#1
 SUBI R1,R1,#1
 BNE R1,R0,JISUAN
STOP:NOP

ADDI R2,R0,#300,#PE00
ADDI R6,R0,#300,#PE01
LD R3,R2
LD R11,R6
SUB R13,R3,R2
ABS R13,R13
ADDI R2,R2,#1
ADDI R6,R6,#1
STOP:NOP

(a) Source code (b) after loop unrolling

Fig.3 SAD loop unrolling implementation

During the execution of the HEVC, many algorithms

require loop unrolling. Taking an 8×8 coding block as an

example, Table 1 shows the comparison of coding time before

and after loop unrolling of some HEVC algorithms.

Table 1 Comparison of execution time before and after loop unrolling of

some HEVC algorithms

Algorithms Before loop unrolling After loop unrolling

Number of

loops

Execution time

（ns）
Number of

loops

Execution time

（ns）

Read operation 64 7510 8 1038

Store operation 64 14038 8 1754

DC mode selection 100 47213 15 7083

Planar mode selection 192 39238 24 4905

Image reconstruction 64 7935 8 991

2) Loop separation

In order to improve the parallelism of calculation, the

algorithm is optimized by the method of loop separation. Only

configuration information needs to be generated between sub-

loops. During the process of loop separation, the execution

order of each basic block will be changed at the same time.

(,0) (0,) 2

1 1

() (log () 1)
N N

x y

x y

dcValue R R N N
= =

= + +  +  (2)

This paper takes 8×8 coding block size as an example to

optimize the calculation process of dcValue in DC mode. The

calculation of the predicted value dcValue is shown in

formula (2). The main operation is a cyclic accumulation

operation, and the number of accumulations is related to the

current prediction block size. As shown in Figure 4, (a) and

(b) are the codes before and after the loop separation. After

loop separation, each time the algorithm is executed, the

judgment for each row (column) is reduced. Only the current

row or column needs to be judged, and different rows and

columns can be executed on different PEs, which effectively

improves degree of parallelism of the calculation. If the loops

are completely separated and implemented on a

reconfigurable processor, a total of 16 loops in different rows

and columns are executed in 16 PEs, and the parallelism can

be increased by 8 times.

for(i=0;i<8;i++)
 {
 sum=0;
 N=8;
 for(j=0;j<8;j++)
 {
 sum+=a[i][j]
 }
 }
 sum=sum+8;
 sum=sum>>4;

for (i=0;i<8;i++)
 {
 sum1=0;
 sum1+=a[i];
 }
 for(j=0;j<8;j++)
 {
 sum2=0;
 sum2+=b[j];
 }
 sum=0;
 sum=sum1+sum2+8;
 sum=sum>4;

（a）Code before loop separation （b）Code after loop separation

Fig.4 Loop separation comparison of DC mode selection

3) Loop tiling

Loop tiling can be used for imperfect nested loops. By

adding conditional statements to move the outer layer

operations to the inner layer, this increases the number of

operations in the loop body and turns multiple nested loops

into single-layer loops, as shown in Figure 5. Using the

loop tiling method, both the inner loop and the outer loop

can be parallelized and accelerated on the array processor.

for (i=0;i<N;i++)
 {
 sum=0;
 for(j=0;j<M;j++)
 {
 sum+=a[i][j];
 b[i][j]=sum;
 }
 }

for(n=0;n<N*M; n++)
 {
 i=n/N;
 j=n%M;
 if(j==0)
 sum=0;
 sum+=a[i][j];
 if (j==m-1)
 b[i][j]=sum;
 }

(a) Nested loop code (b) Loop tiling

Fig. 5 Example of looping tiling code

Taking the Planar prediction mode as an example, it is

mainly suitable for images with smoother texture, and the

main calculation lies in the solution of
x,y

HP（ ）
 and

 x,y

VP（ ）
.

x,y

HP（ ）

predicts the pixel value of each row of the prediction block in

the horizontal direction, and traverses each pixel value of the

first row in turn. When processing an 8×8 prediction block, it

is necessary to loop 8 times to perform prediction.
x,y

VP（ ）

predicts the pixel value of each column, and it still needs to

loop 8 times to predict. Planar algorithm mapping is loop

nested execution, and loop tiling is needed to improve

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

108

calculation efficiency. Flatten the loop of inner calculation

x,y

HP（ ）
 and the loop of outer calculation

x,y

VP（ ）
, turning multiple

nested loops into single-layer loops. After unfolding the

single-layer loop, it is mapped to different PEs of the array

processor for calculation.

B. DFG construction of HEVC algorithm

Loop optimization can reduce the conditional judgment at

the end of each iteration, can effectively reduce the number of

calculations for judgment and another branch of the array

processor, reduce the number of reconfigurations of the array,

and can also make full use of the computing units in the

reconfigurable array. DFG is a direct expression of the loop

body, so for loop parallelism in high-level languages, DFG is

usually used for algorithm implementation.

HEVC includes intra prediction, image reconstruction,

integer motion estimation, fractional motion estimation,

motion compensation, quantization and dequantization, and

deblocking filtering algorithms. This article mainly analyzes

the realization of parallel mapping when the nodes of the

DFG are less than 16 on the 16 processing elements of a

processing element cluster. When the number of nodes in the

DFG is greater than 16, the DFG needs to be re-divided,

which is beyond the scope of this article. Therefore, this

article mainly studies the construction and hardware

implementation of DFGs of Sobel operator, SAD algorithm,

and matrix multiplication.

Through the statistics of the CU division results under

different test sequences under the official software of HM16.0,

the average probability of an 8×8 code block is 67%. In this

paper, an 8×8 code block is used to construct a DFG to realize

the algorithm.

1) DFG construction of Sobel operator

(3)

 (4)

-1 <<1 <<1 +

+ -1

+

+

+

x0 x3

x2

x5 x6 x8

Layer 1

Layer 2

Layer 3

Layer 4

v0 v1 v2 v3

v4 v5 v6

v7

v8

-1 -1 <<1 +

+

+

-1

+

x0 x2 x1 x6 x8

<<1

x7

+

Layer 1

Layer 2

Layer 3

Layer 4

v0 v1 v2 v3 v4

v5 v6 v7

v8

v9

(a) GX (b) GY

Fig.6 DFG of Sobel operator

The Sobel operator is mainly used for edge detection. The

calculations of the filter coefficients in the horizontal

direction and the filter coefficients in the vertical direction are

shown in equation (3), (4) respectively.

Expand Sobel's filtering formulas separately, there are

many constant operations, such as, and so on. The dataflow

diagram of the Sobel operator in the horizontal and vertical

directions is shown in Figure 6.

2) DFG construction of SAD algorithm

In the previous section, the SAD algorithm was optimized

for loop unrolling. The code after loop unrolling can unroll

the cumulative calculation of each row and each column. In

this paper, the smallest divided block 4×4 is used as an

example to implement the SAD algorithm, and the loop

calculation operation is expanded to obtain the SAD dataflow

diagram, as shown in Figure 7. Among them, a0, b0, c0, and

d0 represent original pixels, and a1, b1, c1, and d1 represent

reference pixels.

- - - -

|| || || ||

+ +

+

a0
a1 b0

b1 c1 d1c0
d0

v0 v1 v2 v3

v4 v5 v6 v7

v8 v9

v10

Layer 1

Layer 2

Layer 3

Layer 4

Fig.7 DFG of SAD

3) DFG construction of matrix multiplication

Matrix multiplication is mostly used in multimedia

applications. Scalar replacement is used in the calculation of

reconfigurable array processors. After scalar replacement,

array elements can be effectively reused and memory access

operations can be concentrated, thereby improving memory

access efficiency. The numbers in the array are sequentially

stored in the fixed address of the data storage, and after the

calculation is completed, the temporary variable

corresponding to the array element is written back to the array

element. The DFG of matrix multiplication is shown in Figure

9. In 4×4 matrix multiplication, each element of the output

matrix requires 4 multiplication operations and 3 addition

operations. A total of 64 multiplications and 48 additions are

required, that is, a total of 112 DFG operation nodes are

required. The algorithm requires 32 input data (16 a and b

matrices each) and 16 output data. Where a[0], a[1], a[2], a[3],

b[0], b[1], b[2], b[3] respectively represent the first row of the

first matrix And the first row of the second matrix.

for(i=0;i<4;i++)

{

 c[i][0] = a[i][0] * b[0][0] + a[i][1] * b[1][0] + a[i][2] * b[2][0] + a[i][3] * b[3][0];

 c[i][1] = a[i][0] * b[0][1] + a[i][1] * b[1][1] + a[i][2] * b[2][1] + a[i][3] * b[3][1];

 c[i][2] = a[i][0] * b[0][2] + a[i][1] * b[1][2] + a[i][2] * b[2][2] + a[i][3] * b[3][2];

 c[i][3] = a[i][0] * b[0][3] + a[i][1] * b[1][3] + a[i][2] * b[2][3] + a[i][3] * b[3][3];

}
Fig.8 4×4 matrix multiplication core code

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

109

× × ×

+

+

×

+

Layer 1

Layer 2

Layer 3

b[0]a[0] a[1] b[1] a[2] b[2] a[3] b[3]

C[0]

v0 v1 v2 v3

v4 v5

v6

Fig.9 DFG of matrix multiplication

C. Mapping

Taking the 4×4 coding block size as an example, Figure

10 shows three different mapping schemes of the SAD

algorithm on the array processor. Figure 10.(a) is the mapping

scheme for serial implementation. The original code loop

body of the SAD algorithm contains only one subtraction and

one absolute value operator operation. Only 2 of the 16 PEs

are working, and the remaining 14 are The PEs are all in an

idle state. Figure 10.(b) is the parallel mapping scheme of the

SAD algorithm after loop unrolling optimization. #PE00,

#PE01, #PE02, #PE03 calculate the difference operation of 4

lines of code blocks respectively, #PE10, #PE11, #PE12,

#PE13 respectively perform absolute value operations. In this

case, there are 8 PEs working at the same time. Figure 10.(c)

is a parallel mapping scheme based on the DFG of SAD.

According to Figure 7, the operation in each node in the DFG

is mapped to a PE of the array processor. In this case, there

are 11 PEs working at the same time. Therefore, compared

with serial implementation and parallel implementation after

loop optimization, the DFG mapping method allows more

PEs to work at the same time, which greatly improves the

operating efficiency of the array processor.

SUB
ADD

ABS

PE00 PE01 PE02 PE03

PE10 PE11 PE12 PE13

PE20 PE21 PE22 PE23

PE30 PE31 PE32 PE33
(a) Serial mapping

SUB
ADD

ABS

SUB ABS

SUB

SUB

PE00 PE01 PE02 PE03

PE10 PE11 PE12 PE13

PE20 PE21 PE22 PE23

PE30 PE31 PE32 PE33

ABS

ABS

（b）Loop Optimization mapping

SUB SUB SUB

ADD

ABS ABS ABS

ADD

SUB

PE00 PE01 PE02 PE03

PE10 PE11 PE12 PE13

PE20 PE21 PE22 PE23

PE30 PE31 PE32 PE33

ABS

ADD

(c) DFG mapping

Fig.10 Three mapping schemes of SAD algorithm on the array processor

Table 2 Performance analysis of Sobel operator, SAD and Matrix Multiplication

Sobel Operator SAD Matrix Multiplication

Serial
Loop

Optimization
DFG Serial

Loop

Optimization
DFG Serial

Loop

Optimization
DFG

Total execution

time (ms)
1804.15 902.097 243.81 4.151 1.437 0.798 3.236 1.341 0.709

Cycle execution
time (ms)

1665.52 460.97 110.94 3.570 0.332 0.160 2.880 0.439 0.192

Loop ratio

(%)
92.3 51.1 45.5 86 22.4 20 89 32.7 27

PE utilization
rate (%)

12.5 50 62.5 12.5 50 68.75 12.5 43.75 93.75

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

110

Table 3 Comparison of execution time of different test sequences

Sobel Operation (ms) SAD (ns) Matrix Multiplication (ns)

Serial
Loop

Optimization
DFG Serial

Loop

Optimization
DFG Serial

Loop

Optimization
DFG

carphone_qcif

(176×144)
1804.15 902.097 243.81 4151347 1437004.8 798336 3236064 1341204 709632

bridge-far_qcif

(352×288)
1762.3 879.15 238.61 4151295 1436497.2 797941 3236075 1341172 708937

foreman_qcif
(1280×720)

1759.22 881.52 235.25 4151332 1436853.5 798219 3235956 1341216 709657

highway_qcif

(1920×1080)
1767.24 884.62 239.01 4151352 1437121.5 798461 3236112 1341147 709841

Average 1773.23 886.84 239.17 4151332.3 1436869.18 798239.25 3236051.75 1341184.75 709516.75

IV. EXPERIMENTAL RESULTS

A. Performance comparison of three implementation

methods

As shown in Table 2, the experimental results such as the

execution time and PE usage rate of the three algorithms after

different implementations are counted. Compared with the

serial implementation, the loop time of DFG implementation

is reduced 94.06% on average, the execution time of DFG

implementation is reduced by 81.79% on average, the

speedup ratio can reach 7.4x, the average speedup is 5.72x,

and the PE utilization rate is increased by 62.5% on average.

Compared with the implementation of loop optimization, the

loop time of DFG implementation is reduced by an average of

61.33%, and the execution time is reduced 54.61%, the

average acceleration ratio was 2.4x, and the PE utilization rate

increased by 27.08%.

Table 3 shows the execution time statistics of Sobel

operator, SAD and matrix multiplication algorithm under

different test sequences after using three implementation

methods. The experimental data shows that the execution time

of the DFG method is reduced by 81.77% and 54.86% on

average, compared with the serial implementation method and

after loop optimization.

B. Performance analysis comparison

Table 4 shows the performance comparison and analysis of

the SAD algorithm after it is implemented on hardware.

Literature [13] proposed a pipeline design for SAD parallel

processing, which can process code blocks from 4×4 to 64×64

in size. The proposed SAD calculation is applicable to various

search algorithms in motion estimation. Literature [14]

proposed an effective parallel pipeline SAD structure, which

realizes coding block grouping and hardware resource sharing,

can process coding blocks from 4×4 to 64×64 in size, and can

realize the calculation of flexible block division in HEVC.

Although the hardware operating frequency of the SAD

algorithm implemented in this paper is lower than that of

literature [13] and [14], its execution delay is reduced by

7.2% compared to literature [13]. The architecture proposed

in [14] requires 2048 cycles to execute a 64×64 encoding

block, and each clock cycle can only process 2 pixels. The

SAD algorithm based on DFG proposed in this paper takes

the smallest partition 4×4 as an example. The coding unit with

the largest size of 64×64 can be divided into 256 4×4

prediction blocks. Each 4×4 SAD value is independent of

each other and can be implemented in parallel. It takes 8 clock

cycles to realize an 8×8 coding block, and each clock cycle

processes 8 pixels, which is 6 pixels more than [14], which

greatly reduces the execution time.

Table 4 Performance analysis of SAD algorithm

 [13] [14] This paper

Implementation platform Virtex-5 Artix-7 Virtex-6

Maximum frequency

（MHZ）
475.21 498.2 120.72

LUTs 14761 25072 31730

Execution delay（ns） 44.19 32.06 41

Number of pixels

（pixel）
- 4096 64

Calculation time

（cycles）
- 2048 8

Throughput

（pixel/cycle）
- 2 8

V. CONCLUSIONS

In this paper, through analysis of the data dependence and

parallelism of the HEVC algorithm, after optimizing the loop

algorithm that takes up more execution time, a DFG of the

HEVC algorithm is constructed. The algorithm with a smaller

DFG is simulated and verified. The experimental results

show that compared with serial implementation and parallel

implementation after loop optimization, the PE utilization rate

of Sobel operator DFG is increased by 80% and 20%,

respectively. The execution time was reduced by 86.51% and

73.03% respectively. Compared with serial implementation

and parallel implementation after loop optimization，the PE

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

111

utilization rate of SAD algorithm DFG is increased by

66.67% and 33.33% respectively, the execution time is

reduced by 80.7% and 44.45% respectively. Compared with

the serial implementation and the parallel implementation of

the loop optimization, the DFG implementation of the matrix

multiplication algorithm has increased the utilization rate of

PE by 86.67% and 53.33%, and the execution time has been

reduced by 78.07% and 47.1% respectively.

In order to obtain high-performance HEVC encoding, this

paper only analyzes the mapping implementation of smaller

DFGs. Later we will continue to study how to divide the DFG

with a large number of nodes on the array processor.

ACKNOWLEDGMENT

This research is supported by the National Key Research

and Development Project of China (No. 2020AAA0104603),

and the National Natural Science Foundation of China

(No.61834005, 61772417, 61802304, 61602377, 61874087,

61634004), and the Shaanxi province key R&D plan

(NO.2021GY-029).

REFERENCES

[1] Chen S, Huang J, Xu X, et al. “Integrated optimization of

partitioning, scheduling, and floorplanning for partially

dynamically reconfigurable systems”. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems,

2018, 39(1): 199-212.

[2] Yun Z, Jiang L, Wang S, et al. “Design of reconfigurable array

processor for multimedia application”. Multimedia Tools &

Applications, 2018, 77(3):3639-3657.

[3] Kalali E, Hamzaoglu I. “An Approximate HEVC Intra Angular

Prediction Hardware”. IEEE Access, 2019, 8: 2599-2607.

[4] Kou M, Gu J, Wei S, et al. “TAEM: fast transfer-aware effective

loop mapping for heterogeneous resources on CGRA”.2020

57th ACM/IEEE Design Automation Conference (DAC), San

Francisco, USA. IEEE, 2020: 1-6.

[5] Akbari O, Kamal M, Afzali-Kusha A, et al. “X-CGRA: An

energy-efficient approximate coarse-grained reconfigurable

architecture”. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 2019, 39(10): 2558-2571.

[6] Wu C, Deng C, Liu L, et al. “A multi-objective model oriented

mapping approach for NoC-based computing systems”. IEEE

Transactions on Parallel and Distributed Systems, 2016, 28(3):

662-676.

[7] Kullu P, Tosun S. “MARM-GA: mapping applications to

reconfigurable mesh using genetic algorithm”. 2019 22nd

Euromicro Conference on Digital System Design (DSD).

Kallithea, Greece, IEEE, 2019: 13-18.

[8] Yin S , Liu D , Sun L , et al. “DFGNet: Mapping dataflow graph

onto CGRA by a deep learning approach”,

2017IEEEInternationalSymposium on Circuits and Systems

(ISCAS). Baltimore, MD, USA, IEEE, 2017:1-4

[9] G. J. Sullivan, J. Ohm, W. Han and T.Wiegand, “Overview of the

High Efficiency Video Coding (HEVC) Standard”. IEEE

Transactions on Circuits and Systems for Video Technology,

2012, 22(12): 1649-1668.

[10] Bin Li, Gary J. Sullivan, Jizheng Xu. “Compression

performance of high efficiency video coding (HEVC) working

draft 4”. 2012 IEEE International Symposium on Circuits and

Systems, 2012, 13(21): 886 - 889

[11] Zeng L, Xu C, Li R. “Partition and Scheduling of the Mixed-

Criticality Tasks Based on Probability”. IEEE Access, 2019, 7:

87837-87848.

[12] Wang Z, Tang Q, Guo B, et al. “Resource Partitioning and

Application Scheduling with Module Merging on Dynamically

and Partially Reconfigurable FPGAs”. Electronics, 2020, 9(9):

1461.

[13] Joshi A M, Ansari M S, Sahu C. “VLSI Architecture of High

Speed SAD for High Efficiency Video Coding (HEVC)

Encoder”. 2018 IEEE International Symposium on Circuits and

Systems (ISCAS). IEEE, 2018:1-4.

[14] Nagaraju M, Gupta S K, Bhadauria V, et al. “Design and

Implementation of an Efficient Mixed Parallel-Pipeline SAD

Architecture for HEVC Motion Estimation”. Advances in VLSI,

Communication, and Signal Processing, Springer, Singapore,

2021,605-621.

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

112

