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Abstract— In this paper, a Temperature Probability Prediction 

with Multi Factor (TPPMF) based on Naive Bayesian algorithm 

(NB) is designed for weather data including multiple types and 

forms. The defect of continuous variable analysis is solved through 

the variable - probability transformation. A temperature 

increment algorithm is proposed to improve the accuracy of NB. 

And a compressed encoding method for feature vector of 

incompatible incidents achieve the dimensionality reduction of 

data expression, which reduced the training time for about 20%. 

The experiment results show that the root-mean-square of the 

mean-absolute-error minimum reached 1.698℃, in the 24-hour air 

temperature prediction of 12 typical cities. 

Keywords—Air Temperature Prediction; Naive Bayesian; 

variable - probability transformation; feature vector 

compression 

I. INTRODUCTION 

The impact of agricultural, ecological, environmental and 

industrial development on climate changing has always been 

attention. Among various meteorological characteristics, air 

temperature is the most concerned one due to its close 

relationship with energy industry and agriculture. Therefore, 

accurate temperature prediction models have been the focus of 

research for years [1].  

In academia, there has been searching for data-driven 

temperature prediction models with high spatial and temporal 

resolution and accurate results for a long time. Two directions 

were mainly focused on, time series analysis based on ARMA 

and machine learning algorithms based on neural network. 

ARMA is a linear statistical technique for time series analysis 

and prediction. Reference [2] has made qualitative and 

quantitative prediction of air temperature in Harbin with 

ARMA. Based on the unique time correlation and bias of 

temperature and precipitation in time series, reference [3] 

proposed a forecasting method for statistical time series based 

on ARIMA model. Which has achieved remarkable results in 

regional prediction. Reference [4] achieved monthly 

temperature and precipitation prediction with Autoregressive 

Fractional Integral Moving Average (a variant of ARIMA). 

Meanwhile, other statistical models have also been attempted 

for temperature prediction. Relying on the monthly periodicity 

of air temperature, reference [5] achieved temperature 

prediction in 2000’s Guangzhou, using a grey Markov model 

based on seasonal index. To make full use of prior information, 

reference [6] selected several different Bayesian models to 

predict the temperature in Nanning.  

In recent years, the ANN (Artificial Neural Networks), SVM 

(Support Vector Machines) and other machine learning 

algorithms had been tried to deal with comprehensive analysis 

of a variety of weather indicators. MLPNN (Multilayer 

Perceptron Neural Networks) and RBFNN (Radial Basis 

Function Neural Networks) are the conventional strategies, 

among which Levenberg-Marquardt and gradient descent are 

the most commonly used optimization algorithms [7]. However, 

in real-world applications, once the type of meteorological 

indicators provided is changed, an extremely long period of 

time will be needed to retrain the neural network parameters. 

Meanwhile, the NN algorithms are also too complicated to 

adjust the edge computing applications with constrained 

resource.  

In this paper, NB (Naïve Bayes) model is introduced to 

process the non-quantitative meteorological information and 

construct the Temperature Probability Prediction with Multi 

Factor (TPPMF). NB model cannot accurately analyze the 

continuously-changing parameters directly, a variable-

probability-transformation function is constructed to transform 

the continuous time variable into probability, which helps 

realize the NB analysis of the continuous variable. Probability 

density of predicting temperature is constructed based on fitting 

and numerical differentiation, and proposes an accurate 

algorithm that finding temperature increment to improve 
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accuracy, which aims to supply the deficiency of TPPMF that 

it only outputs the probability distribution function of 

temperature change. In addition, in order to avoid the cost of 

computational efficiency caused by non-quantized parameters, 

a coding method is presented of feature vector compression 

based on mutually exclusive events to achieve dimensionality 

reduction processing of data sets. Finally, we crawled the daily 

weather data of 3529 days in several cities, and uses the 

proposed method to forecast the daily average temperature. The 

results show that the mean absolute error (MAE) of the 

proposed method is 1.698℃, and the error can be further 

reduced if data samples of the same season are selected for 

training or the meteorological conditions of the forecasting city 

is relatively stable.  

II. NB-BASED MULTI-FACTOR AIR TEMPERATURE 

PREDICTING MODEL 

NB is a typical probabilistic analysis method. The model can 

be used to analyze the inducements of an event, and the analysis 

results can be used to accurately predict whether the event will 

occur. NB takes the non-cooccurrence of features as the 

premise, and learns the joint distribution law from input to 

output through a given training set.  

In practical application, when there are n mutually exclusive 

events 𝐴1, 𝐴2, 𝐴3, ⋯ , 𝐴𝑛 that may induce event 𝐵, NB can be 

defined with (1), in which a series of known cases are used to 

form analysis data to determine whether event 𝐵 will occur in 

any given situation.  

  𝑃(𝐴1, 𝐴2, 𝐴3 ⋯ 𝐴𝑛|𝐵) =
𝑃(𝐵|𝐴1,𝐴2,𝐴3⋯𝐴𝑛)𝑃(𝐴1,𝐴2,𝐴3⋯𝐴𝑛)

𝑃(𝐵)
 (1) 

NB is usually used to analyze whether a series of features 

have an impact on a target event and how much the impact is, 

and to predict whether a specific combination of features will 

lead to the occurrence of a target event. Weather prediction is a 

typical nonlinear decision problem which can predict results 

according to the characteristics of discrete events, so it can be 

solved by using NB. In this case, the target event is: the 24-hour 

increase of temperature exceeded a preset specific value.  

In the analysis below, all meteorological characteristics that 

may lead temperature change, such as weather type, wind force, 

and wind direction, represented by features 𝐹1, 𝐹2, 𝐹3, ⋯ 𝐹𝑚 , 

form up the set of weather features 𝕃, as shown in (2). 

  𝕃 = {𝐹1, 𝐹2, 𝐹3, ⋯ , 𝐹𝑛}  (2) 

Set 𝕋  is constructed based on 𝕃 , which indicates the 

weather conditions corresponding to different observed 

temperatures. Each element of 𝕋, 𝒑𝒊 = (𝑝𝑖,1, 𝑝𝑖,2 ⋯ 𝑝𝑖,𝑛)
T

 is 

used to mark the combination of weather features at a particular 

sampling time, which is a vector with the same length as the 

size 𝕃, as shown in (3).  

Since NB is a probabilistic model, each dimension of 𝒑𝒊 can 

only represent the " occurrence" or " non-occurrence" state of 

weather feature 𝐹𝑗  from 𝕃  at the sampling time point. 

Specifically, if the 𝑗th feature 𝐹𝑗 from L appears, then the 𝑗th 

element 𝑝𝑖,𝑗 in 𝒑𝒊 values 1, otherwise it values 0.  

  𝕋 ≔ {𝒑𝒊,𝒋 = {
1, 𝐹𝑗 ∈ {𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝒑𝒊}

0, 𝐹𝑗 ∉ {𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝒑𝒊}
} (3) 

Prediction result vector 𝒒 is also defined in a similar way, 

as shown in (4).  

𝒒𝟏×𝒎 = {𝑞𝑖 =  {
1, 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 𝑓𝑜𝑟 𝒑𝒊 ≥  𝑝𝑟𝑒𝑠𝑒𝑡 𝑣𝑎𝑙𝑢𝑒
0,   𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 𝑓𝑜𝑟 𝒑𝒊 <  𝑝𝑟𝑒𝑠𝑒𝑡 𝑣𝑎𝑙𝑢𝑒

} (4) 

From (1), the probability of each feature causing the 

temperature increment ∆𝑇 to be higher than a specific value 

(denoted as event 𝑅) can be obtained, as shown in (5),  

  𝑃(𝑅|𝐹1, ⋯ , 𝐹𝑛) =
𝑃(𝐹1, ⋯ , 𝐹𝑛|𝑅)𝑃(𝐹1,⋯,𝐹𝑛)

𝑃(𝑅)
≈

∑ 𝑞𝑖𝑝𝑖𝑝𝑖∈𝕋 ∑ 𝑝𝑖𝑝𝑖∈𝕋

(∑ 𝑞𝑖𝑝𝑖∈𝕋 )
2   (5) 

where 𝑃(𝐹1, ⋯ , 𝐹𝑛) ≈ ∑
𝒑𝒊

𝑚𝒑𝒊∈𝕋  stands for the probabilities 

that characteristics in training sets turn up, 𝑃(𝑅) ≈ ∑
𝑞𝑖

𝑚𝒑𝒊∈𝕋  

stands for the probability that the temperature increment ∆𝑇 

exceeds a specific value, 𝑃(𝐹1, ⋯ , 𝐹𝑛|𝑅) ≈
∑ 𝑞𝑖𝒑𝒊𝒑𝒊∈𝕋

∑ 𝑞𝑖𝒑𝒊∈𝕋
 stands for 

posteriori probabilities that the increment exceeds the value 

given the characteristics have turned up.  

Similarly, the probability that the temperature increment ∆𝑇 

doesn’t exceed a specific value can be calculated with (6). 

  𝑃(𝑅′|𝐹1, ⋯ , 𝐹𝑛) ≈
∑ (1−𝑞𝑖)𝑝𝑖𝑝𝑖∈𝕋 ∑ 𝑝𝑖𝑝𝑖∈𝕋

[∑ (1−𝑞𝑖)𝑝𝑖∈𝕋 ]
2  (6) 

Obviously, the characteristic 𝐹𝑗 may lead to the temperature 

increment going higher than the specified value (event 𝑅 ) 

given that 𝑃(𝑅|𝐹𝑗) is much larger than 𝑃(𝑅′|𝐹𝑗). In contrast, 

the characteristic 𝐹𝑗 will avoid event R given that 𝑃(𝑅|𝐹𝑗) is 

much less than 𝑃(𝑅|𝐹𝑗) . When 𝑃(𝑅|𝐹𝑗)  is approximately 
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equivalent to 𝑃(𝑅|𝐹𝑗), the characteristic 𝐹𝑗 has little effect on 

the temperature increment. 

In this essay, the calculations above that analyzes the 

possibility of temperature increment being higher than the 

specific value (event 𝑅) is summarized as TPPMF, as shown in 

(7). 

  𝑇𝑃𝑃𝑀𝐹 − 𝐵𝑎𝑦𝑒𝑠(𝑅) =
𝑃(𝑅|ℙ)

𝑃(𝑅|ℙ)+𝑃(𝑅′
|ℙ)

=
∏ 𝑃(𝑅|𝐹𝑖𝑗

)

∏ 𝑃(𝑅|𝐹𝑖𝑗
)+∏ 𝑃(𝑅′

|𝐹𝑖𝑗
)
 (7) 

The larger 𝑇𝑃𝑃𝑀𝐹 − 𝐵𝑎𝑦𝑒𝑠(𝑅)  is, the greater the 

probability of event 𝑅  will be. Therefore, 𝑇𝑃𝑃𝑀𝐹 −

𝐵𝑎𝑦𝑒𝑠(𝑅) values at different values of ∆𝑇 can be calculated 

respectively when temperature prediction is carried out, and the 

maximum value corresponding to ∆𝑇  is where the most 

probable temperature increment lies. 

Limited by the characteristics of NB model, (7) can only 

make inaccurate temperature predictions, but cannot meet the 

actual needs in practical applications. First of all, the weather 

features in the algorithm 𝐹1, 𝐹2, 𝐹3, ⋯ , 𝐹𝑛 can only be in two 

absolute states of "existence" and "non-existence", but cannot 

be in some intermediate state, and cannot be used in analysis of 

time, temperature and other continuously changing quantities. 

Secondly, the feature vector definition method in the algorithm 

has a lot of invalid redundant data, which may affect the 

efficiency of the algorithm. What’s more, the results of the 

algorithm are discrete, and TPPMF can only calculate the high 

or low probability of temperature increment higher than a 

specific value, rather than making more accurate temperature 

predictions. Therefore, improves the TPPMF model will be 

improved to avoid the defects above in Section 2.  

III. IMPROVEMENTS TO MULTI-FACTOR AIR TEMPERATURE 

PREDICTION 

A. variable - probability transformation    

In view of the problem that describing features with 

probability is too absolute, real numbers between 0 and 1 are 

used to describe intermediate states between "occurrence" and 

"non-occurrence". By constructing a transformation function 

𝑓𝑗: 𝔻 → [0,1], 𝑥 → 𝑝𝑖𝑗 , the continuous variable is converted 

into a decimal that can be used as a probability element in 𝒑𝒊s 

to deal with the problem of describing the continuous variables 

in NB model. Elements that are changed to decimals are called 

"probability terms" (or "probability dimensions"), while the 

functions are called variable-probability-transformation 

functions. There no fixed expression for transformation 

functions. Instead, they should be constructed according to the 

practical application and the characteristics to be expressed. 

The constructed function should meet the following limitations: 

(1) Should be a bijection from the interval that covers all the 

possible values of the continuous variable to [0,1].  

(2) The conversion function should be easy to understand; 

Several elements in 𝒑𝒊 , rather than only one, should to be 

involved to represent one continuous variable if necessary.  

For example, for the air humidity feature (which values the 

percentage of water vapor in the air), the conversion function 

could be 𝑓air_humidity(𝑥) = 𝑥 , since air humidity itself is a 

percentage value between 0 and 1. Another good example is the 

date feature, the transformation function can be 𝑓time(𝑥) =

1+sin
(𝑥+122)

365/2𝜋

2
, because the purpose of date features is to reflect the 

change of climate (especially temperature) over seasons. In this 

paper, we construct a year-period sine function (as shown 

above), whose value reaches the maximum in summer solstice 

and the minimum in winter solstice.  

Therefore, the training set 𝕋 in Section 1 can be expanded 

to include the set of continuous changes such as temperature, 

humidity and time, as shown in (8). 

  𝕋 ≔ {𝒑𝒊|𝑝𝑖,𝑗 = {

1, 𝐹𝑗 ∈ {𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝒑𝒊}

0, 𝐹𝑗 ∉ {𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝒑𝒊}
} , 𝑢𝑛𝑞𝑢𝑎𝑛𝑡𝑖𝑓𝑖𝑎𝑏𝑙𝑒 𝐹𝑗

𝑓𝑗(𝑥),                                          𝑞𝑢𝑎𝑛𝑡𝑖𝑓𝑖𝑎𝑏𝑙𝑒 𝐹𝑗: 𝑥

}(8) 

B. Compression of Feature Vector Based on Mutually 

Exclusive Events 

In weather description, certain features are obviously non-

coexisting. For example, "sunny," "cloudy," and "cloudy to 

clear" are not likely to appear on the weather record at the same 

time. As a result, once one dimension of the weather feature 

vector 𝒑𝒊  defined by (3) is valued as "1", the remaining 

dimensions must be valued as "0". Therefore, when the TPPMF 

model is used for weather feature data processing, there will be 

a large number of redundant "zeros" in the data set. In other 

words, if there’s a matrix foamed up by all 𝒑𝒊s, the matrix must 

be extremely sparse, which may waste a lot of memories and 

reduce the execution efficiency of the algorithm. 

Dealing with this problem, for the mutually exclusive events 

group in the weather features, the group can be defined as an 

"non-coexisting set". 𝕋𝑢  is the set composed of all "non-
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coexisting sets", as shown in (9). 

  𝕋𝑢 ≔ {𝔾 = {𝐹𝑘1
, 𝐹𝑘2

, ⋯ }, 𝑢𝑛𝑞𝑢𝑎𝑛𝑡𝑖𝑓𝑖𝑎𝑏𝑙𝑒 𝐹𝑘𝑖
|∀𝑖, ∑ 𝑝𝑖𝑘𝑗

= 1}(9)  

In addition, it is defined that the "maximum non-coexisting 

set" is the "non-coexisting set" that is not any subset of the 

"non-coexisting set". Set 𝕋𝑢𝑚𝑎𝑥   composed of all the 

"maximum non-coexisting sets" is given by (10). 

𝕋𝑢𝑚𝑎𝑥 ≔ {𝔾𝑚𝑎𝑥 ∈ 𝕋𝑢|∄𝔾 ∈ 𝕋𝑢, 𝑠. 𝑡. 𝔾𝑚𝑎𝑥 ⊂ 𝔾}(10) 

For "non-coexisting sets", a more efficient representation 

method of feature vectors is designed, as shown in Table 1.  

Table 1 Compress feature vector by non-coexisting set 

 
Ranking by frequency 

in training set 
 Coding 

Calculate 

vectors 

 features frequency 

⇒ 

Frequency 

ranking 
Code 

⇒ 

Feature 

vector 

1
9
 f

ea
tu

re
s 

in
 t

o
ta

l 

SE wind 2371 max 1 (0,0,0,0,1) 

NW 

wind 
244 2nd max 3 (0,0,0,1,1) 

⋮ ⋮ ⋮ ⋮ ⋮ 

E wind 18 medium 19 (1,0,0,1,1) 

⋮ ⋮ ⋮ ⋮ ⋮ 

E-SE 

wind 
2 2nd min 4 (0,0,1,0,0) 

N-NW 

wind 
1 min 2 (0,0,0,1,0) 

The specific methods are as follows:  

Step 1: Count the frequency of occurrence of all events in 

𝕋𝑢 and order them from most to least; 

Step 2: Code the events from both sides to the middle of 

frequency ranking. The event with highest frequency codes 1, 

the one with lowest frequency codes 2, 2nd most frequent one 

codes 3, 2nd less one codes 4, 3rd most one codes 5, and so on. 

Finally, the event with the frequency ranks the most middle 

codes the maximum number.  

Step 3: The compressed feature vector of the event 𝐹𝑘𝑖
 is 

obtained by converting the encoded value obtained in Step 2 

into binary.  

With the process above, the length of the feature vector of 

𝕋𝑢 for 𝑛 kinds of events are reduced from 𝑛 bit to [log2 𝑛] 

bit, while the coding method in Step 2 can make the probability 

of each dimension to be 1 after compression as close as possible 

to 0.5 to reduce the error.  

C. Accurate Method to Predict Temperature Increment  

In the utilization of temperature prediction, only obtaining 

the trend prediction result like " temperature will drop 

tomorrow" cannot meet the requirement in practice. Instead, the 

results are often need to be accurate to degrees, while its 

reliability is also of concern. Based on the TPPMF model in 

Section 1, we solve the problem of using NB to calculate 

probability distribution and expected value by linear fitting, 

with reference to the polynomial-fitting-and-derivation 

methods in numerical differentiation. The specific methods are 

as follows:  

Step 1: Set several thresholds {𝑎1, 𝑎2, 𝑎3 ⋯ 𝑎𝑛} in advance, 

so that the value of the target variable 𝑋 is more likely to lie 

near the thresholds.  

Step 2: Use TPPMF to calculate the probability 𝑃𝑘 that the 

variable value is larger than (or less than) a specified value 𝑎𝑘.  

  TPPMF-Bayes(𝑆𝑘) = 𝑃𝑘 , 𝑆𝑘: 𝑥 ≤ 𝑎𝑘 (11) 

Step 3: Carry out 𝑛-degree polynomial fitting of {𝑎𝑘} and 

{𝑃𝑘}, and get the fitting result of the form 𝐵(𝑦) = ∑ 𝑏𝑖𝑦
𝑖𝑛

𝑖=0 , 

where 𝑏𝑖 is the fitting coefficient.  

Step 4: Carry out m-degree polynomial fitting {𝑎𝑘}  and 

{
𝐵(𝑎𝑘)

𝑃𝑘
} , with 𝑚 > 𝑛 , and get the fitting result of the form 

𝐶(𝑦) = ∑ 𝑐𝑖𝑦
𝑖𝑚

𝑖=0 .  

Step 5: Obtain the fitting distribution function 𝐹(𝑦).  

  𝐹(𝑦) =
𝐵(𝑦)

𝐶(𝑦)
=

∑ 𝑏𝑖𝑦𝑖𝑛
𝑖=0

∑ 𝑐𝑖𝑦𝑖𝑚
𝑖=0

≈ TPPMF-Bayes(𝑆), 𝑆: 𝑥 ≤ 𝑦 (12) 

Step 6: Derivate and normalize the obtained function 𝐹(𝑦) 

to calculate fitting possibility density 𝛹(𝑦).  

  𝛹(𝑦)𝑑𝑦 = 𝜆𝑑𝐹(𝑦) (13) 

where λ is the normalized constant, and its value is such that 

  ∫ 𝛹(𝑦)𝑑𝑦
+∞

−∞
= 1 (14) 

Step 7: Calculate the expectation of random variable 𝑋 with 

𝛹(𝑦), which is the final prediction.  

  𝑦𝑒 = ∫ 𝛹(𝑦)𝑦𝑑𝑦
+∞

−∞
 (15) 

D. Improved Multi-factor Air Temperature Prediction 

Algorithm 

Based on the analysis above, variable-probability 

transformation and feature vector compression were involved 

to improve NB algorithm to achieve precise solution of 

temperature increment. The specific algorithm is as follows.  

Algorithm 1 Air Temperature Prediction Model Training 

Input: raw data, unquantifiable feature set F, quantifiable 

feature set G, feature set size m, training set size n, variable-

probability transformation functions f.  

Output: matrices R_Feature and R'_Feature describing 

correlation between weather features and 𝑅 or �̅� 

1: Calculate training set vectors 𝒑𝒊 with raw data through (8) 
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and (9) and variable-probability transformation functions 

f.  

2: for i=1 to n do 

3:  for j=1 to m do 

4:   Calculate R_Feature[i][j]s with 𝒑𝒊 -related 

temperature increment in training set through (5). 

5:   Calculate R’_Feature[i][j]s with 𝒑𝒊 -related 

temperature increment in training set through (6).  

6:  end 

7: end 

 

Algorithm 2 Air Temperature Prediction 

Input: sample data for prediction, matrices R_Feature and 

R'_Feature describing correlation between weather features 

and 𝑅 or �̅�, variable-probability transformation functions f, 

threshold array x for fitting. 

Output: prediction x_result.  

1: Calculate sample data vectors 𝒑′  with sample data for 

prediction through (8) and (9) and variable-probability 

transformation functions f. 

2: for i=1 to m do 

3:  Calculate value P[i]s of temperature possibility 

distribution function on x[i]s with 𝒑′, R_Feature and 

R'_Feature through (7).  

4: end 

5: Fit temperature possibility distribution function F with x[i], 

P[i] through (12).  

6: Calculate possibility distribution Ψ with F derivation 

through (13).  

7: Calculate expectation of temperature x_result as result with 

Ψ through (15).  

The specific form of each transformation function f in the 

above algorithm is determined by its corresponding variable 

characteristics. In this essay, the transformation function is used 

to calculate the two dimensionally reflecting seasons in the 

feature vector, and all the remaining information is directly 

transformed into the dimensions in the feature vector through 

(4) and (5). According to season and periodicity of seasonal 

temperature change, sine function is adopted for variable-

probability transformation between time and 𝑎1 . 𝑎2 , which 

indicates the season to differentiate time situation when 𝑎1 

values the same in spring and fall, equals 1 from winter solstice 

to summer solstice, or values 0 in other time during the year, 

reflecting the temperature change characteristics of rising 

temperature in the first half of a year and falling temperature in 

the second half of a year, as shown in (16),  

  𝑓
𝑇

(𝑎1, 𝑎2) {
𝑎1 =

1+sin
2𝜋(𝑇−𝑇𝑠)

365

2

𝑎2 = sgn [cos
2𝜋(𝑇−𝑇𝑠)

365
]
 (16) 

Where {𝑎1, 𝑎2} are the two elements in feature vector that 

indicate season, while 𝑇 is for time, 𝑇𝑠 stands for the time of 

summer solstice, and sgn() is the sign function.  

IV. SIMULATION EXPERIMENT AND RESULT ANALYSIS 

A. Dataset 

In order to verify the correctness and availability of the 

algorithm above, and to explore the influence of different 

environmental factors on the accuracy of the model, we 

programmed a crawler to obtain the historical weather dataset 

of 13 cities from January 2011 to August 2020 in the Weather 

Post-report Website, for the detection of the predicting model. 

The weather dataset includes daily temperature, wind direction, 

wind strength, weather conditions, etc. In order to verify the 

model in this essay, the date of each group in the above data 

was taken as a quantifiable feature, and the weather conditions, 

wind force and wind direction were taken as quantifiable 

features, and the increment of the average temperature of the 

day compared with the one of day before was predicted based 

on such features through the improved NB model. The 

unquantifiable features in the data are shown in Table 2. 

In order to analyze the influence of different environmental 

factors on the prediction accuracy of the model, we selected the 

temperature data of 12 cities including Kaohsiung, Haikou, 

Shanghai, Tianjin, Chongqing, Jinan, Yinchuan, Nanchang, Xi 

'an, Harbin, Urumqi and Lhasa for analysis according to 

different combinations of climate and hydrological 

characteristics. The selected environmental factors and control 

variables that have influence on the prediction accuracy of the 

model are shown in Table 3. The cities corresponding to the 

combination of climatic and hydrological characteristics are 

shown in Table 4. 

Table 2 Unquantifiable Features and Their Classification 

Classification Features 

Weather 

condition 

29 features include Cloudy, Light Snow, etc.  

Wind Strength 13 features include Breeze(unmeasurable)、3-4 

gale、≤3 gale, etc. 

Wind Direction 19 features include Cyclostrophic, E, Unstable, etc.  

Table 3 Environmental factors that have influence on the accuracy of model 

prediction and control variables (Abbreviations) 

Regional Climate 

Characteristics  

(C.C.) 

Regional 

Hydrological 

Characteristics 

Size of Training Set 

Equatorial Monsoon (TM) 

Sub-tropic Monsoon 

(STM) 

Seaside (S) 

Riverside (R) 

30(1 month) 

60(2 months) 
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Temperate Monsoon 

(NM) 

Temperate Continental 

(NC) 

Alpine (A) 

Inland (I) 90(1 quarter) 

182(half year) 

365(1 year) 

1096(3 years) 

1826(5 years) 

Table 4 Cities corresponding to the combination of climatic and hydrological 

characteristics 

C.C. S R I 

TM 
Kaohsiung 

Haikou (beside strait) 
- - 

STM Shanghai Chongqing Nanchang 

NM Tianjin Jinan 
Xi’an 

Harbin (near frigid zone) 

NC - Yinchuan Urumqi 

A - - Lhasa 

B. Experiment Scheme 

Ex. 1. Evaluation of Model availability 

Divide the weather data of Xi 'an from 2011 to 2018 into 9 

batches according to the year, and feed them into the model as 

training sets separately. Predict the daily temperature in 2019 

with the model whenever a batch was fed and the model was 

trained. Evaluate the availability of the model according to the 

error of predicting temperatures.  

Ex. 2. Evaluation of sensitivity to size of training set 

Set up batches with the sizes shown in Table2, column 3 

(more different sizes were tried for higher accuracy of analysis), 

which include the temperature data in Xi’an of days up to 31th, 

Dec, 2018. Train the model with the batches above separately, 

and predict the air temperature of days during Jan, 2019. 

Evaluate the sensitivity of the model according to the difference 

of errors.  

Ex. 3. Evaluation the impact of geographic environment (of the 

predicting place) 

Set up batches with different sizes and include the 

temperature data of different cities up to 31th, Dec, 2019. Train 

the model with the batches above separately, and predict the air 

temperature of days during Jan, 2020. Evaluate the influences 

of the environments according to the difference of errors.  

The errors of the model in the experiments above are 

evaluated by Mean Absolute Error (MAE), as shown in (17).  

  𝑆𝑀𝐴𝐸 =
∑ |𝑦𝑖−𝑦𝑖,𝑟𝑒𝑎𝑙|𝑛

𝑖=1

𝑛
 (17) 

C. Experiment Results 

 

Fig. 1 Curve of predicting error of the model changing by year 

The experiment indicates that the average MAE of the 

prediction results of the model is approximately 3℃, as shown 

in Fig.1. Before 2017 (the year 2017 is included), the MAE 

stabilized between 2.361℃ and 2.778℃, which is acceptable 

for practical applications. However, the value saw a sudden 

increase to around 4.5℃ in 2019 and 2020, which is 

presumably caused by the extreme weather in Xi'an from winter 

2017 to summer 2019. Therefore, an accuracy prediction may 

be produced by the model in this paper given that the climate 

condition is relatively stable.  

The MAE-sample number curve in Fig.2 reflects the 

influence of the number and type (seasons) of training samples 

on the accuracy of the model in this paper. It can be seen that 

the MAE value decreases with the increase of data quantity at 

the beginning, which reaches the very low point (2.372℃) 

when the number of samples reaches 60 days (2 months); then 

it rises, reaches the highest point (3.127℃) when the number 

of samples reaches about 365 days (1 year); finally it declines 

and gradually approaches a certain limit value (about 1℃). The 

reason for the occurrence of minimum point is that the time of 

the sample data adopted is basically in the same season with the 

time of temperature prediction, so the climate pattern is similar, 

and the learning effect of the model is relatively good. At the 

maximum point, although the training samples at this time can 

basically cover the weather type data of the whole year, the 

climate pattern learned at this time are not complete enough, so 

the prediction accuracy is unacceptable. With the increase of 

training set size, the climate pattern obtained from the model is 

gradually completed, so the prediction accuracy is gradually 
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increased and converges to the limit value of algorithm 

accuracy. 

 

Fig. 2 Curve of predicting error of the model changing by size of training sets 

In conclusion, we believe that training sets from the same 

season as the predicting time may ensure the accuracy of the 

model when the size of training set or the computing source of 

equipment is limited. Meanwhile, obtaining training sets with 

size over thousand may also help to lessen the error to a stable 

value efficiently. 

Table 5 shows the influence of geographical factors of 

predicted locations and the number of training samples on the 

accuracy of the model. From the perspective of model accuracy, 

the MAE value of the model prediction results related to the 

urban climate characteristics presents a pattern of " Alpine (A) 

< Equatorial Monsoon (TM) < Sub-tropic Monsoon (STM) < 

Temperate Monsoon (NM) < Temperate Continental (NC)”, 

and the related hydrological characteristics presents a pattern of 

“Riverside (R) < Seaside (S) < Inland (I)”. Generally, the 

patterns above fit the law that the more stable the environment 

is, the more accuracy the prediction will be. From the 

perspective of the optimal size of training sets, it is advisable to 

use short-term samples, especially the samples gained nearly 

one month, to forecast the temperature of cities with relatively 

stable meteorological conditions; for cities with unstable 

conditions, a large training set with long-term sample data 

should be considered for prediction. Anyway, the accuracy of 

this model for temperature prediction in different cities has 

reached a high level in general. According to calculation, the 

square mean root of the lowest MAE in Table 3 is 1.698℃. 

Therefore, it shows that the model in this paper has good 

adaptability to utilizations in different geographical 

environments. 

Table 5 Model error varies in size of training data and predicting cities 

Cities 30 60 90 182 365 1096 1826 

Haikou (TM-S) 1.320 1.430 1.876 1.308 1.776 1.275 1.252 

Kaohsiung (TM-S) 2.611 2.379 2.083 2.226 2.156 1.908 1.699 

Shanghai (STM-S) 2.817 3.296 3.607 2.147 3.055 2.453 2.234 

Chongqing (STM-R) 1.471 1.732 1.893 2.074 1.896 1.481 1.491 

Nanchang (STM-I) 2.485 4.643 4.093 3.371 2.866 4.058 4.453 

Tianjin (NM-S) 1.917 2.423 2.227 2.166 3.088 1.955 1.949 

Jinan (NM-R) 1.414 1.448 2.701 1.858 2.317 1.642 1.935 

Xi’an (NM-I) 2.613 2.980 2.552 2.173 2.064 2.446 1.687 

Harbin (NM-I) 3.909 4.772 3.809 3.274 3.771 2.451 1.833 

Yinchuan (NC-R) 3.198 2.337 2.790 2.339 2.389 1.886 1.651 

Urumqi (NC-I) 2.207 2.418 2.661 1.941 1.506 1.373 1.465 

Lhasa (A) 0.851 1.415 1.992 1.792 1.524 2.194 2.242 

In order to verify the effect of feature vector compression 

based on mutually exclusive events, statistics on the model 

training time before and after optimization in the case of input 

of different amounts of data was conducted, as shown in Fig. 3. 

With the increase of the amount of data, the advantages of 

feature vector compression become more and more obvious.  

When the training set is large enough, the feature vector 

compression can reduce the model training time by about 20%. 

 

Fig. 3 Training time before and after optimization with different amount of 

training data 

We also compared the training speed and accuracy of our 

model with some popular neural network model[8][9]. As shown 
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in Table 6, our algorithm indicates a great advantage on the 

accuracy (still measured by MAE) while consuming such a 

short training time compared to the NN models. Meanwhile, the 

neural network models also show a great inflexibility while 

dealing with unquantifiable features (input in form of binary 

data): almost all neurons become inactivated (even under 

regularization) because of the monotonous 0-1 input, which 

finally leads to a larger error.  

Table 6 Training time and accuracy of some neural network models and our 

model 

Method Training Time (s) MSE (℃) 

MLP[8] 330.1 2.376 

LSTM[9] 9.1 2.472 

LSTM&MLP[8] 17.5 2.539 

NB (ours) 1.7 1.687 

V. CONCLUSION 

In this paper, traditional air temperature prediction algorithm, 

with defects of low universality, high complexity and difficult 

to carry out multi-variant analysis, is improved in three 

directions based on NB algorithm to carry out predictions more 

efficiently:  

By constructing a set of result processing methods with 

fitting and derivation as the core, the expectation of temperature 

is calculated with the analysis results of NB algorithm, which 

makes the NB algorithm can be applied to accurate temperature 

value prediction. "Variable-probability transformation" makes 

it possible to input quantifiable and continuous variables into 

NB algorithm for analysis, which enables NB algorithm to deal 

with more different types of inputs. The mutually-exclusive-

events-based feature vector compression coding effectively 

reduces the data storage space of the feature vector and 

improves the computational efficiency of the algorithm. In the 

actual application of multi-city temperature prediction from 

2011 to 2020 based on weather conditions and wind conditions, 

the algorithm produces a series of high-accuracy results, and 

the lowest MAE reaches 1.698℃. Meanwhile, the prediction of 

cities with relatively stable meteorological conditions or the 

using training sets in the same quarter with the samples to be 

predicted can further reduce the model error. 
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