
An IDE for Reconfigurable Video Array Processor

Rong Yang*, Xiaoyan Xie*, Miaomiao Chai *, Lin Fang *, Wanqi He*, Jingtao Sun*

*Xi'an University of Posts and Telecommunications, Xi’an, China

E-mail: xxy@xupt.edu.cn Tel: +86-29-15389268117

Abstract— Integrated development environment (IDE) is one of

the key points to construct software ecological of reconfigurable

array processor (RAP) chips. However, transplanting from

conventional IDE is a daunting task, because of the complexity of

high-level behavior description in front-end and special spatial-

temporal instructions bind with hardware, such as branch

prediction, out-of-order execution, SIMD parallelism. Therefore,

we propose a hierarchical IDE design method. At the front-end,

the static back slicing is introduced to deconstruct the abstract

semantics of high-level language (HLLs) into relatively fixed

operations and simple structure. So that the spatial-temporal

features are easy to be peel out. At the bottom, the machine

instruction sets are encapsulated into instruction groups（IGs）.

The semantic abstraction level of hardware description is

enhanced. Physical hardware details are separated from the

Intermediate Representation（IR），the scalability is brought out.

Finally, an IDE is developed by this method, for high efficiency

video coding (HEVC) algorithm mapping. The testing results

show that the efficiency of algorithm development is greatly

improved while maintaining the same coding quality.

Keywords— IDE; static back slicing; instruction groups;

Reconfigurable Array Processor; HEVC

I. INTRODUCTION

In real time vision and video encoding, the power cost and

computing efficiency of hardware acceleration become the

bottleneck of edge computing, especially conventional

processor based on von Neumann architecture, such as CPU,

GPU, DSP etc. The accelerator based on application specific

integrated circuit (ASIC) can provide high computing energy

efficiency with low power consumption. But it couldn’t

effectively deal with the demand of developing cycle and fast

iterative caused by algorithm variability. In decade years,

coarse grained reconfigurable array (CGRA） is more and

more recognized in industry and academia. The CGRA offers

the promise of substantially accelerating computations through

the concurrent nature of hardware structures and the ability of

these architectures for hardware customization [1]. It has

gradually become the first choice of video coding or neural

network accelerators. But reconfigurable array present

numerous challenges to the average software programmer, as

they expose a hardware-oriented computation model where

programmers must also assume the role of hardware designers.

Existing operating system, compiler and IDE，suitable for

universal stored-program (Von Neumann Type) computing

models, could not give full play to features and true capabilities

of CGRA[2]. Bad software ecology and inherent programming

habits of programmer cause higher time costs of learning,

developing, maintenance and iteration, even no appreciated on-

chip resource utilization [3]. The new IDE toolkit has become

impending in industry, which could pad the gap between

abstract semantic of software and parallel computing models of

hardware.

The core of IDE is compiler, translating HLLs into binary

machine code which can be recognized by specific processor.

Compiler design is a very fussy and formidable task. The

syntax characteristics analyzed of HLLs, instructions and

memory structure and the standardization of generated code are

all involved. Although some mature tools had been developed

for syntax/morphology analysis or code generation, there still

needs heavy works to regular expression modified, HLLs logic

split and physical details mapping etc. Therefore, we propose a

hierarchical IDE design method. At the front-end, task-oriented

static back slicing is used to replace the lexical analysis and

syntax parsing. The abstract semantics of HLLs can be

deconstructed into relatively fixed operations and simple

structure. So that the patio-temporal features are easy to be peel

out. At the bottom, the machine instruction sets are

encapsulated into several instruction groups. The semantic

abstraction level of hardware description is enhanced in back-

end. Resource allocation relative mapping rules are defined in

Intermediate representation (IR) to mapping program pieces to

instruction groups. Physical details are separated from the

back-end，the portability is brought out. Based on the DPRAP,

a RAP developed by author’s team, an IDE for HEVC

algorithm mapping is developed. The hierarchical design

enhances the portability for different hardware platform.

II. RELATED WORKS

Traditional HLLs are stored-program, the von Neumann

manner adopted by CPU and GPU. The computing model relies

on an implicit sequential consistency. The storage in is

abstracted in a single large virtual address space with uniform

access time. In CGRA, every thread must be provisioned with

resources statically. The hardware execution is data flow driven.

In the early compilers, branch prediction, out-of-order

execution, SIMD parallelism are all not fully considered. The

trigger of computing advantages of CGRA is translating the

temporal sequential logic to tempo-spatial parallel logic. So,

researchers explored some schemes with the help of high-level

synthesis (HLS) joint with hardware prototype. In [3], a C

based ROCCC compiler is designed to compile HLLs into

FPGAs, a possibility for loop transformations and

optimizations. Baxter [4] develops a parallel toolset to provide

a series of matrix operation application program interfaces

(APIs), by software layer virtualizing Maxwell [5] components.

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

121978-988-14768-9-0/21/$31.00 ©2021 APSIPA APSIPA-ASC 2021

Bosshart [6] described a specific HLL and compiler for abstract

forwarding model of programmable switches. Specially

designed register file, mentioned in [7], is more compatible for

searching space, it makes loop nests compiling more efficiently.

The CGRA simulator proposed by [8], providing the HDLs

mapping from multithread concurrent tasks through an

optimizing compiler. All above efforts tries raising the

abstraction level of HDLs to that of HLLs, by using the

hardware/ software codesign theories. The research is also

focused on the hardware coupled loop-unrolling, loop iteration

and loop-merging. The scalability and portability are not being

actively considered. Another trying is to rebuild CGRA

compiler from LLVM [9], an open source compiler framework

developed by [10], made computationally intensive

applications working well on reconfigurable arrays.

Traditionally, LLVM is used to be front-end. As such it has

access to many software optimizations. However, hardware

and software programing paradigms are inherently different, so

we cannot expect all optimizations of LLVM to work

seamlessly for HLLs.

Almost all above works focuses on IR code generation and

loops optimization, excluding the front-end rebuilt. In fact, the

syntax tree generated from front-end is a kind of fine-grained,

ordering coherence intermediate code, after lexical and

syntactic analysis. It is not available for paralleling instructions

of CGRA. Complex computing segmentation, data allocation,

data flow control and other strategies need to be added. And the

back-end and IR remain a daunting to programmers. Recently,

program slicing [11] is especially act out in software analysis

and testing. It decomposes the program according to the

dependency inside the software. After the lexical and syntactic

analysis, program slicing also continue to extract semantics

according to different observation points and generate control

flow diagrams and source code fragments. Different from fine-

grained symbol table and syntax tree, figured out from front-

end, these code fragments are regular and single, the spatial-

temporal features are clearer. Then, IR code conversion rules

are simpler.

To generate target machine code has indivisible relationship

with hardware machine code, which is core of the back-end.

The optimization strategy for hardware structure is also

indispensable to maximize the parallelism of array processors.

Which will bring huge works to the reuse and migration of

compilers. If there defines an abstraction layer with simple

semantics, to encapsulate machine instructions and hardware

structure, between the hardware and the back-end. Such a

modify may be reduce the dependence of back-end on

hardware platform and improve the portability of compiler.

III. THE IDE DESIGN OF CGRA

A. The CGRA Oriented Compilation Framework

According to above thinking, the CGRA oriented

compilation flows can be constructed as in Fig.1. Instead of

simple lexical and syntactic analysis in normal front-end,

slicing tool is used to perform lexical analysis, semantic

extraction, Loops optimizing, fragmentation etc. By this way,

the output of front-end will be source code fragments and

corresponding control flow diagrams. According to the control

flow diagram, the computation mode maybe suitable for spatial

or temporal. Temporal refers to the splitting of computations in

sections to be executed by time-sharing the processing

elements (PEs), whereas spatial refers to the splitting of the

computations in sections to be executed on multiple PEs.

Which are supported with one or both in many of CGRA. The

temporal mode can be mapped into pipeline controlled by

instruction flow, the spatial mode can be controlled by dada

flow. This partitioning and the corresponding data partitioning

are guided by specific performance metrics, such as the

estimated execution time and power dissipation within IR.

Although the structural characteristics of computation are

more obvious handled by such a front-end, it is still difficult to

mapping it to machine codes. So as the last one thought

discussed above, we encapsulate machine codes into

instruction groups (IGs), according to customized special

application. What exposes to the back-end and IR is abstraction

semantics instead of machine code with physical structure

Description of Computations
(Program)

Static Back Slicing

Lexical Analysis
Semantic Extraction
Loops Optimizing

Fragmentation

Front-End

CGRA
Configurations

Assembler

Tags Parsing
Instruction Decode

Machine Code Generating

IR

Regularization

CGRA
Architecture
Description

IGs Library

Data Flow

PEs Designate
IGs Designate

Instruction Flow

Data Flow/Instruction Flow Partitioning

Back-End

PEs Designate
IGs Designate

Fig.1 The CGRA oriented compilation flows

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

122

features. So, the IR just need to judge the type of temporal or

spatial for the computations of slice, which are mapped to the

corresponding IGs of the CGRA. Such design of IR is very

simple.

At the back end, it also shows loose coupling with hardware

details. The assembler only translates IGs to machine codes by

calling IGs library interface, according to tag parsing. And then,

the CGRA configuration file is generating. The CGRA will

load the configuration file and perform the computations.

B. The IDE Architecture

The compilation flows given in Fig.1 are integrated into the

IDE, as shown in Fig.2. This IDE can be used to programming

for HEVC algorithms.

The GUI provides visual design components for

programmer, contains the source program and the video data

stream. With Code Editor, C syntax codes can be inputs and

compiling to IGs. In which the code completion and input

tracking functions for HEVC algorithm mapping are involved

in. Code completion is designed to complete the functions,

methods and keywords that users may use according to part of

their input. Input tracking can prompt if it exists spelling or

grammatical errors. PST is an embedded program slicing tool.

The mapping between program slicing segments and IGS is

performed within compiler. The assembler translates IGs to

configuration file in machine code form, which can be loaded,

recognized and distributed by controller of DPRAP. In the

system design, the disassembly module is provided to

disassemble the binary machine code into assembly

instructions, which is convenient for programmers to check and

modify errors.

C. IGs for HEVC

By accumulation of long-term HEVC algorithm mapping

works, we summarize up the common operations, shown in

Table 1.

Each IG provides parameters corresponding functional

requirements. Each parameter will be mapped to the fixed

position during translation. According to the functions, there

are two type of IGs. As shown in Table 1. The Data flow IG is

responsible for data flow computations. The control flow IG is

responsible for communication between PEs and external

memory. The translation process from API to IG is shown in

Fig. 3. The IG’s expressions are named in API. When scanned

by IR of compiler, they are mapped into IGs library, and

exported the corresponding assembly codes.

IV. TESTING AND VERIFICATION

A. The Hardware Platform Supported for IDE

The IDE indicated in this issue is to assist the works of

HEVC algorithms mapping on the DPRAP, a CGRA proposed

by our project team. Which It can support the calculations of

MPEG, HEVC, the other video coding algorithms and

convolution and pooling in neural networks. As shown in Fig.4,

GUI

Sourse Program

Code Editor

Configuration Files

IGs Library
IG Calling

Input Layer

Interaction

Layer

Mapping

Layer
Assembler

Compiler

PST

Fig.2 IDE framework

Table 1 IGs for HEVC

Type IG Name Function

Conrtrol

Flow

HandSend PE Handshake of Sender

HandRecv PE Handshake of Receiver

Load Data Loading

Store Data Storing

Routing Remote PE Routing

Add Addition

Sub Subtraction

Mul Multiplication

Compare Data Comparing

Data Flow

MatrixAdd Matrix Summation

MatrixSub Matrix Subtraction

MatrixMul Matrix Multiplication

MatrixTrans Matrix Transposition

SAD Sum of Absolute Difference

MatrixT Matrix Inversion

MatrixCh Matrix Blocking

HandRecv
HandSend

Load
Store

Routing
Add
Sub
Mul

Compare
MatrixAdd
MatrixSub
MatrixMul

MartixTrans

Parameters

Hand_From:ADDI R1,R0,#Signal
LDI R2,#511,#PE00
BEQ R1,R2,#Label
J #Hand_From

Mul:STI R12,#addrss,#PEID
SUB R5,R1,R3
SUB R5,R5,R4
ADD R12,R5,R5
ADD R12,R12,R2
STI R12,#addrss,#PEID

IG

trans

API

API

Parametric

analysis

Parameters

Table

Instruction group

Fig.3 Translation process from API to IG

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

123

the Global Controller (GC) is the kernel of reconfigurable

mechanism in DPRAP. Which provides the host interface (HI)

to IDE, maintains the controlling to processor array composed

with PE groups (PEG). Each PEG has 16 light-core PEs.

Communications among adjacent PEs are realized directly

through four shared registers, lies in east, south, west and north

(RE, RS, RW and RN). PEG communicated with each other by

the routers. The GC receives the configuration instruction

sequences from the bus of HI and reconfigures the functions of

PEs by changing the instruction in the memory. The H-Tree

network and mask-based addressing makes configuration

instruction distribution and calling simplifier. These designs

make the function of PEs reconfigured in runtime and flexible

changing between SIMD and MIMD modes.

B. The Software Tools of IDE

The QT is selected to support the GUI of IDE, The DPRAP

is simulated with Modelsim. The data interaction between IDE

and Modelsim use the inter-process communication function of

QT. The HLL codes are input to the GUI, then sliced and

interpreted into assembly instructions through compiler. The

assembly instructions are translated into binary machine code

through assembler. The functions of machine codes are

simulated by Modelsim. Figure 5 shows the interface and

running results of the IDE. The window 1 shows the HLLs

input. The window 2 shows the slicing results. IGI calling

results is shown in window 3, and binary codes is compiled in

windows 4.

C. The slicing verifications

In standards of HEVC, the positive transformation phase of

transform quantization is referred to (1) to (3).

𝐹 = 𝐴𝑓𝐴𝑇 (1)

𝐴(𝑖, 𝑗) = 𝑐(𝑖) cos [
(𝑗 + 0.5)𝜋

𝑁
𝑖] (2)

𝑐(𝑖) =

{

√
1

𝑁
, 𝑖 = 0

√
2

𝑁
, 𝑖 ≠ 0

 (3)

Where 𝐴 is the transfer matrix, 𝑓 is the pixels matrix, 𝐹

is the coefficient matrix of forward converter, 𝑁 is the

dimension of code block, 𝑖 and 𝑗 are horizontal and vertical

frequencies of 2D-wave respectively. They are described by

HLLs as shown in Fig. 6(a).

Given a slicing criteria, 𝐶 = (13, 𝐴1)，it means that the

interesting point is on line 13 of program. To the slice of

variable 𝐴1, the static backs slicing is to extract all sentences

that affect variable 𝐴1 before reaching the interesting point.

As this interpretation, the slicing result is shown as Fig.6(b).

1

1

PE

PE

PE

PE

0

PE

PE

PE

PE

1

PE

0

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

addressing

module

Data feedback module

mask detection

module

Global Controller

host interface

Fig.4 The functional diagram of DPRAP

Fig.5 The interface display of IDE

(a) HLLs description of positive transformation

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

124

Comparing Fig.6(a) to (b), it is clearly that the sentences

unrelated to the output have been deleted for sliced segment. In

slicing results, the operations before the interesting point is to

generate the transfer matrix and calculate the converter.

According to the semantics, the horizontal and vertical

frequencies of 2D-wave and the size of the pixels block can be

translated to IG calling.

D. IG mapping verifications

The IGs for handshake of are used for communication

between PEs in same PE group. The handshake signal is sent

and received through adjacent interconnection registers. So,

IGs defined for handshake are two types. The API function of

handshake IG used for sender is defined as

𝐻𝑎𝑛𝑑𝑆𝑒𝑛𝑑(𝑃𝐸𝐼𝐷, 𝑆𝑖𝑔𝑛𝑎𝑙)， there 𝑃𝐸𝐼𝐷 is the PE ID of

receiver, 𝑆𝑖𝑔𝑛𝑎𝑙 is the handshake signal. The API function of

handshake IG used for receiver is defined as

𝐻𝑎𝑛𝑑𝑅𝑒𝑐𝑣(𝐻𝑎𝑛𝑑𝐹𝑟𝑜𝑚, 𝑆𝑖𝑔𝑛𝑎𝑙, 𝑎𝑑𝑑𝑟𝑠𝑡𝑎𝑟𝑡, 𝑃𝐸𝐼𝐷, 𝐹𝑟𝑖𝑠𝑡𝐿𝑎𝑏𝑒𝑙) ，
there 𝐻𝑎𝑛𝑑𝐹𝑜𝑚 is the tag of Precursor algorithm, , 𝑃𝐸𝐼𝐷 is

the PE ID of sender, 𝑎𝑑𝑑𝑟𝑠𝑡𝑎𝑟𝑡 is the start address for

loading data, 𝐹𝑟𝑖𝑠𝑡𝐿𝑎𝑏𝑒𝑙 is the entry position of jumping. For

example, if it wants to shake hands between PE00 and PE01,

then operations for sender and receiver PE can be instantiated

𝐻𝑎𝑛𝑑𝑆𝑒𝑛𝑑(𝑃𝐸01,1234) and 𝐻𝑎𝑛𝑑𝑅𝑒𝑐𝑣(1234,511, 𝑃𝐸00, 𝑇𝑎𝑏𝑙𝑒) . The

compiled results of which are shown as in Fig.7 (a) and (b)

respectively. When these codes are assembled and distributed

to DPRAP, the waveform is shown as Fig.8(a) and (b).

E. HEVC Testing

Using the IDE developed by this paper, we map the intra-

coding of HEVC on DPRAP. We select 6 indicators to evaluate

the video coding quality of HEVC testing model (HM) and our

works. The testing sequences Container_qcif and Foreman_qcif

are used to compare the coding qualities between HM and our

works, results are shown in Table 2.

The peak signal-to-noise ratio (PSNR) of a I-frame

indicating the impact of noise introduced during coding. The

larger the PSNR value, the better the image quality, the smaller

the noise introduced in the coding. The structural similarity

(SSIM) makes up for the perceptual characteristics of human

visual recognition. The closer it is to the constant 1, the better

the reaction quality. The Kblur evaluates the difference

between the original pixel and the coded pixel. The mean

absolute error (MAE) calculates the average of absolute

difference of original pixels and the coded pixels. The mean

squared error (MSE) sums the square of the difference between

original pixels and the coded pixels, it is more sensitive to

outlier. △ is the difference of HM and our encoder. From Table

2, it is easy to see that the △ value of SSIM, KBlur, MAE and

MSE are small enough to be almost negligible. The PSNR of

our works are all superior to HM. But the workload and

difficulties of algorithm migrating is decreased largely.

V. CONCLUSIONS

In this paper, we focus on the trouble of transplanting

compiler to parallel CGRA. Thinking of the complexity of

(b) Results of slicing criterion 𝐶

Fig.6 HLLs description and slicing results of positive transformation

（a）Compiled sender （b）Compiled receiver

Fig.7 The compiled results of handshake IG

（a）Simulation results of sender IG calling

(b) Simulation results of receiver IG calling

Fig.8 Simulation results of handshake of PEs

Table 2 Coding qualities comparison

Testing

Sequences
Indicator HM Our works △

Container

_qcif

PSRN/dB 34.25 35.42 1.17

SSIM 0.9991 0.9992 0.0001

KBlur 0.999 0.998 -0.001

MSE 142 142 0

MAE 136 136 0

Foreman

_qcif

PSRN/dB 33.98 38.64 4.66

SSIM 0.9984 0.9985 0.0001

KBlur 0.998 0.997 -0.001

MSE 195 195 0

MAE 194 189 -5

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

125

high-level behavior description in front-end, we introduce the

static back slicing tools to deconstruct the abstract semantics of

HLLs into relatively fixed operations and simple structure. So

that the spatial-temporal features are easy to be peel out, and

tasks distributed on CGRA are more optimal. Aiming at special

spatial-temporal instructions are bind with hardware

architecture tightly, such as branch prediction, out-of-order

execution, SIMD parallelism. It makes compiler migrated

hardly. We encapsulate the machine instruction sets of common

operations into IGs. Resource allocation relative mapping rules

are defined in Intermediate representation (IR). Physical details

are separated from the back-end，the portability is brought out.

So, mapping program pieces to instruction groups made code

generation no longer associated with hardware instructions.

Oriented to the dynamic programmable reconfigurable array

processor (DPRAP), developed by author’s team, an IDE for

high efficiency video coding (HEVC) algorithm is developed

by this method. The testing results show that the slicing makes

the compiler simpler, algorithm mapping on DPRAP is more

convenient. If the CGRA platform is changed, there only needs

to rebuild IGs library and its corresponding API.

VI. ACKNOWLEDGMENT

This research is supported by the National Natural Science
Foundation of China (61802304, 61602377, 61874087), and
the Shaanxi province key R&D plan (NO.2021GY-029, 2021KW-
16).

D. REFERENCES

[1] Tu F, Yin S, Ouyang P, et al. Reconfigurable Architecture for Neural

Approximation in Multimedia Computing[J]. IEEE Transactions on

Circuits and Systems for Video Technology, 2019, 29(3), pp. 892-906.

[2] Cardoso J M P, Diniz P C, Weinhardt M. Compiling for reconfigurable

computing: A survey[J]. Acm Computing Surveys, 2010,42(4), pp. 1-65.

[3] Windh S, Ma X, Halstead R J, et al. High-Level Language Tools for

Reconfigurable Computing[J]. Proceedings of the IEEE, 2015, 103(3),
pp.390-408.

[4] R. Baxter et al., "The FPGA High-Performance Computing Alliance

Parallel Toolkit," Second NASA/ESA Conference on Adaptive Hardware

and Systems (AHS 2007), 2007, pp. 301-310.

[5] Baxter R, Booth S, Bull M, et al. Maxwell - a 64 FPGA supercomputer[J].
Engineering Letters, 2008, 16(3), pp.287-294.

[6] Bosshart P, Daly D, Gibb G, et al. P4: Programming protocol-independent

packet processors. ACM SIGCOMM Computer Communication Review,

2014,44(3), pp.87−95.

[7] WZ. Yin, ZY. Zhao, ZG. Mao, Q. Wang, WG, Sheng. A fast and efficient

compilation framework for coarse-grained reconfigurable architecture [J].
Microelectronics and Computer,2019,36(08):45-48+53.

[8] YP. Niu. Research on Co-Verification Technology of Software and

Hardware in Reconfigurable Multi-core System [D]. Hefei University of

Technology,2020.

[9] Sun Y,Zhang Y,Qian J.Program Slicing Method of LLVM IR Based on
Information-Flow Analysis[C]// 2019 International Conference on Cyber-

Enabled Distributed Computing and Knowledge Discovery (CyberC).

IEEE, 2020: 166-172.

[10] Lattner C, Adve V. The LLVM Compiler Framework and Infrastructure

Tutorial[J]. Lecture Notes in Computer Science, 2005, 3602:15-16.

[11] XJ. Zhang. Program slicing technology research and slicing scheme
design [D]. University of Electronic Science and Technology,2017.

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

126

