
Performance Characterization of Rasterization

Algorithms for Reconfigurable Graphics Processor

Junyong Deng
*
 , Qingqing Ma

†
and Zekun Ye

‡

*
Xi'an University of Posts and Telecommunications, Xi’an, China

E-mail: djy@xupt.edu.cn Tel: +86-29-18192964908
†
Xi'an University of Posts and Telecommunications, Xi’an, China

E-mail: 784597682@qq.com Tel: +86-29-15709106471
‡
Xi'an University of Posts and Telecommunications, Xi’an, China

E-mail: 1226785825@qq.com Tel: +86-29-15771783882

Abstract— For different rasterized scenes, even different

areas of the same scene, the performance bottleneck of

rasterization may be different, and current graphics processors

cannot choose the appropriate rasterization algorithm according

to the specific rendering scene. Therefore, a reconfigurable

graphics processor that supports switching of algorithms to

achieve the best performance is a promising choice. The

existing graphics processor suffers the constraints of calculation,

memory and power consumption in different rasterization

application scenarios. Therefore, it is very important to

determine how to schedule different rasterization algorithms

with different performance according to the actual requirements

in the reconfigurable graphics hardware. This paper evaluates

and analyzes the performance characteristics of three

main-stream rasterization algorithms (scan-line filling algorithm,

edge filling algorithm, and flood filling algorithm) in different

application scenarios. Pearson correlation coefficient (PCC)

analysis is leveraged to analyze the relationship between

performance/energy and evaluation metrics. Based on these

performance characterization data, this paper puts forward some

reconstruction suggestions for the reconfigurable graphics

processor. We hope to contribute to reconfigurable graphics

processing.

Index Terms— Rasterization Algorithms; Performance

Characterization; Reconfigurable Graphics Processor

I. INTRODUCTION

Rasterization is a very important part in the GPU (graphics

processing unit). It is the process of converting basic

primitives (points, line segments, triangles) into pixels. The

rasterization quality and efficiency of primitives directly

affect the performance of the entire GPU pipeline [1].

Among all the primitive objects of the GPU, triangle

primitives are the most basic and most important primitives,

and also the basic primitives that make up any other more

complex 2D or 3D objects. The process of triangle

rasterization includes a large number of arithmetic operations

and complex logic control, which has become a key link for

improving the performance of graphics processors [2].

The most important indicator of triangle rasterization is

efficiency [3], that is, how many triangle primitives the GPU

can process in a unit of time. In response to the increasing

demand for GPU processing performance, high-performance

GPUs usually integrate dozens to hundreds of parallel

rasterization modules to improve performance. But relying

solely on increasing the number of modules to improve the

rasterization efficiency will increase the size and complexity

of the chip and increase the design cost. The efficiency of a

single rasterization module should be improved on the basis

of expanding the number of rasterization modules [4]. There

are many factors that affect the performance of rasterization.

For different rasterized scenes, or even different areas of the

same scene, the performance bottleneck may be different [5],

and the current GPU does not make all algorithms adapt to

real rendering scenes [6]. Therefore, a reconfigurable

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

133978-988-14768-9-0/21/$31.00 ©2021 APSIPA APSIPA-ASC 2021

graphics processor that supports the loading and switching of

algorithms to achieve the best performance is a promising

choice.

Rasterization algorithms are usually subject to

computational constraints, memory constraints, and power

consumption constraints in different application scenarios.

Deciding how to autonomously schedule different

rasterization algorithms based on actual needs is critical, but

there is no suitable standard to decide when to start

reconfiguring the graphics processor and which algorithm

should be selected. Therefore, for the design of

reconfigurable graphics processors, the first step is to

establish a performance evaluation model, which can provide

relevant data to decide when and how to perform

reconstruction [7]. This paper focuses on three widely used

rasterization algorithms: scan-line filling algorithm [8], edge

filling algorithm [9], and flood filling algorithm [10], and

conducts characterization analysis in different rendering

scenarios. Through the comparison of characteristic data

such as data movement, computation, power consumption,

IPC and cache MPKI, some reconfiguration suggestions in

the reconfigurable graphics processor are proposed.

The contributions of this paper can be summarized as

follows:

 The performance of three commonly used rasterization

algorithms: scan-line filling algorithm, edge filling

algorithm and flood filling algorithm, including data

movement per pixel, computation per pixel, power

consumption per pixel, and the MPKI of each level of

cache.

 In different graphics rendering scenarios, make

recommendations for algorithm scheduling based on the

comparison of performance data.

The rest of this paper is organized as follows: Section 2

summarizes the development trend of reconfigurable graphics

processors, briefly introduces three popular rasterization

algorithms, and the hardware platform on which this paper

runs all analyses. Section 3 describes the graphical scene

data set, analysis tools and indicators. In Section 4, we

introduced the performance comparison of the three

algorithms in detail, and provided suggestions for

reconstruction. Section 5 summarizes this article.

II. BACKGROUND

A. Reconfigurable Graphics Processor

Reconfigurable computing is considered to be an effective

solution that combines the high flexibility of traditional

processors with the high processing efficiency of

application-specific integrated circuits, and it has better

performance among the key indicators of chips such as

performance, power consumption, and functional flexibility.

The balance will be the future development direction of

computer architecture [11]. The fine-grained reconfigurable

architecture offsets the high repetitive engineering costs of

application specific integrated circuits through reconfigurable

logic element arrays, and achieves higher energy efficiency

by avoiding the overhead of general-purpose processors.

However, the bit-level reconfigurability in fine-grained

reconfiguration will generate a lot of area and power

consumption overhead [12]. The coarse-grained

reconfigurable architecture (CGRA) [13-14] has a denser

reconstruction unit, which can significantly reduce the system

configuration time and configuration memory consumption,

and can also share the reconstruction overhead, but in

programmability, flexibility and productivity are not yet

mature [15-17]. Therefore, for graphics processors,

reconfigurable computing is a trend. However,

reconfiguration standards for graphics processors have not

been established to determine when and how to refactor based

on actual needs. This paper takes the rasterization algorithm

in graphics rendering as an example, discusses the

performance characteristics of different algorithms, and puts

forward some reconstruction suggestions in reconfigurable

graphics processors.

B. Main-stream Rasterization Algorithms

Scan-line filling algorithm: Using a horizontal scan-line to

scan a polygon composed of multiple end-to-end line

segments from top to bottom (or from bottom to top), and

each scan-line generates a series of intersections with certain

edges of the polygon. Sort these intersection points

according to the x coordinate, and pair the sorted points in

pairs, as the two end points of the line segment, and draw a

horizontal straight line with the filled color. After the

polygon is scanned, the color filling is completed, and it can

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

134

be summarized into the following four steps: find the

intersection point (that is, the intersection point of the

scan-line and the polygon); sort the intersection points; match

the sorted points in pairs; update the scan-line to determine

whether the polygon scan is completed.

Edge filling algorithm: complement each side to the right,

you can process each side of the polygon in any order.

When processing each side, firstly find the intersection of the

side and the scan-line, and then complement all the pixels to

the right of the intersection on each scan-line. After all the

sides of the polygon are processed, the filling is completed.

Flood filling algorithm: starting from a starting node,

extracting or filling the neighboring nodes with different

colors, until all the nodes in the closed area have been

processed. It is a classic algorithm that extracts several

connected points from a region to distinguish them from other

adjacent regions (or dye them in different colors). The

algorithm uses three parameters: the start node, the target

node characteristics, and the processing to be performed on

the extracted object.

C. Hardware Platform

This paper is based on the Coffee Lake architecture of

Intel’s eighth-generation Core processor [18-19] to make

statistics on the hardware performance of different

rasterization algorithms. Coffee Lake is Intel’s

next-generation 14nm process processor after Skylake and

Kaby Lake. It consists of 6 cores. Each core has a 32KB

L1 data cache and 32KB L1 instruction cache, a 256KB L2

cache and 9MB L1 cache. Coffee Lake can decode and exit

at most 5 instructions per cycle. In theory, the number of

instructions executed per clock cycle is at most 5.

III. METHODOLOGY

A. Graphical Scene Dataset

In order to analyze the performance differences of

algorithms in a variety of different rendering scenes, this

paper selects four representative rasterized scenes, as shown

in Figure 1. During the performance evaluation of graphical

analysis, the data input has different data sizes and scenarios

[20]. Due to the large number of graphics scenes, the

number of vertices and triangles includes ranges from tens of

thousands to hundreds of thousands, and the number of pixels

per frame is about tens of thousands. In order to collect

performance data reliably, Table I lists selected rendering

scene data sets.

(a) Venus (b) Cube

(c) Cartoon (d) Teapot

Fig. 1 Graphics Scenes for Performance Characterization

Table I Rendering scene dataset

Dataset #Vertices #Triangles #Pixels/frame

Venus 4,254 1,418 47,650

Cube 48 16 12,075

Cartoon 21,372 13,376 78,081

Teapot 767 256 20,186

B. Analyzing Tool

This paper uses the Intel VTune performance analyzer [21]

to analyze the algorithm. VTune is a tool for analyzing and

optimizing program performance. It can perform

performance analysis on 32-bit and 64-bit x86 computers and

assist in various code analysis, including stack sampling,

thread analysis, and hardware event sampling. The result of

the analyzer consists of some details, such as the time spent in

each subroutine, which can go down to the instruction level.

In order to calculate the IPC, data movement, computation,

power consumption and cache MPKI of different algorithms

in different rendering objects, this paper will collect the cycle,

instruction count, load, store, branch, and miss count in each

level of cache for each algorithm program through the

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

135

analyzer, and the corresponding performance indicators can

be studied through these event sets.

C. Performance Metrics

The performance indicators for comparative analysis in this

paper are: IPC, data movement, computation, power

consumption, and L1, L2, and L3 data cache MPKI, which

will be introduced below [22].

IPC: IPC is a basic performance indicator that represents

the average number of instructions executed per clock cycle.

For example, the theoretical best IPC is 5, but it is affected by

various factors, such as long-latency memory, floating-point

numbers, or single instruction multiple data (SIMD)

operations, instructions that have not exited due to branch,

insufficient front-end instructions, etc., reduced the observed

IPC, resulting in the actual situation of IPC rarely reaching

the ideal situation.

Data movement: the cost of data movement is much higher

than the calculation operation, because the energy cost of

external memory access is hundreds or even thousands of

times of on-chip arithmetic or logical operations. Through

statistical performance events, according to formula (1), this

paper calculates the amount of data movement of each pixel

of the three algorithms in multiple scenes. Among them,

#load and #store are the total number of load and store

instructions, used to indicate data movement,

#pixels_per_frame is the number of pixels per frame.

#store

_
_ _

load
data mov

pixels per frame

 (1)

Computation: According to formula (2), the calculation

instruction number of each pixel is used to represent the

calculation amount required to complete the current algorithm

operation. Among them, #ins represents the total number of

current instructions, #branch represents the number of branch

instructions.

#

_ _

ins load store branch
compute

pixels per frame

 (2)

Power consumption: With the high performance and low

power consumption requirements of graphics processors,

power consumption is an important factor in graphics

rendering. The power consumption of each pixel can be

calculated according to formula (3).

_

_ _

power all
pwr

pixles per frame
 (3)

MPKI: MPKI is a general indicator that represents the

average number of misses per thousand instructions. This

indicator combines the advantages of cache hit ratio and load,

store or cache access. Although cache hits are much faster

than hits in DRAM, they still result in performance loss.

IV. PERFORMANCE CHARACTERIZATION AND

RECONFIGURATION SUGGESTIONS

A. Overview of the Performance Characteristics

In order to systematically analyze the performance

characteristics of different algorithms, this paper displays

different indicators in the form of radar charts, as shown in

Figure 2. The radar chart shows the performance indicators

of the three rasterization algorithms of scan-line filling

algorithm, edge filling algorithm and flood filling algorithm

in four different rendering scenarios. The performance

indicators in each figure include the algorithm's IPC, data

movement, computation, power consumption, and L1, L2,

and L3 data cache MPKI. Among them, the maximum value

of each indicator is regarded as 1, and other data have been

standardized.

 (a) Venus

 (b) Cube

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%
IPC

Datamov

Compute

PwrL1 MPKI

L2 MPKI

L3 MPKI

Flood Scan-Line Edge

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%
IPC

Datamov

Compute

PwrL1 MPKI

L2 MPKI

L3 MPKI

Flood Scan-Line Edge

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

136

 (c) Cartoon

 (d) Teapot

Fig.2 Performance comparison of three algorithms in different scenarios

It can be seen from the figure that in different rendering

scenarios, there is not much difference in IPC between

different algorithms, which indicates that the potential

parallelism of the three algorithms is similar. The edge

filling algorithm shows higher data movement in most cases,

while the flood filling algorithm has lower data movement in

most cases, indicating that when the data movement becomes

the system bottleneck, the flood filling algorithm is the best

select. The edge filling algorithm has lower computational

complexity in most cases, which shows that the edge filling

algorithm is the best choice when hardware computing

resources are limited. For power consumption, it can be

observed that the power consumption generated by the flood

filling algorithm is almost the least. Therefore, when power

consumption is very important, in order to reduce the power

consumption of the graphics processor, you can choose the

flood filling algorithm. At the same time, it can be found

that the flood filling algorithm has a smaller cache MPKI than

the other two algorithms. Therefore, the flood filling

algorithm is the best choice when the cache hit rate needs to

be improved.

The above performance data is only an overview of the

performance characteristics of different algorithms. It can

only show the relative data of each performance index, and

cannot accurately show the performance index of each

algorithm. The detailed measurement data will be analyzed

below.

B. Data Movement

Table II shows the data movement of each algorithm in the

four different rendering scenarios. It can be seen that tens of

thousands of instructions are needed to complete the data

movement to render each pixel. In most cases, the flood

filling algorithm has less data movement, and the edge filling

algorithm has the relatively most data movement. At the

same time, it can be found that the scan-line filling algorithm

has similar data movement to the edge filling algorithm.

Therefore, in order to improve GPU performance, the

scan-line filling algorithm or the edge filling algorithm can be

switched to the flood filling algorithm, so that the

rasterization module has the least amount of data movement.

Table II Data movement per pixel of the three algorithms

Dataset Flood Scan-Line Edge

Venus 18,678 21,616 24,554

Cube 54,658 102,692 109,317

Cartoon 10,886 16,521 16,777

Teapot 42,108 57,961 68,364

C. Computation

The computation of each algorithm in the four different

rendering scenarios is shown in Table III. Similar to data

movement, thousands of operations are required to complete

the rendering of one pixel. It can be seen that the flood

filling algorithm of the three algorithms has a larger amount

of computation, while the edge filling algorithm has fewer

calculation operations. Therefore, when the rendering scene

is limited by hardware computing resources, you can switch

the scan-line filling algorithm or the flood filling algorithm to

the edge filling algorithm, which can save approximately

45.53% of the computation.

Table III Computation per pixel of three algorithms

Dataset Flood Scan-Line Edge

Venus 17,343 12,256 12,390

Cube 23,883 35,014 21,664

Cartoon 12,331 5,968 2,075

Teapot 37,966 25,383 11,968

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%
IPC

Datamov

Compute

PwrL1 MPKI

L2 MPKI

L3 MPKI

Flood Scan-Line Edge

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%
IPC

Datamov

Compute

PwrL1 MPKI

L2 MPKI

L3 MPKI

Flood Scan-Line Edge

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

137

D. Power Consumption

In order to compare the power consumption of these three

algorithms, this paper counts the total power of each

algorithm running in different rendering scenarios, which

shows the energy consumed each time the program is

executed (unit: mJ). As shown in Table IV, although the

calculation amount of the flood filling algorithm is relatively

large, it consumes almost the least energy. Therefore, when

power consumption is very important, in order to reduce the

power consumption of the graphics processor, a flood filling

algorithm can be selected. In addition, when the power

consumption of the edge filling algorithm is large, switching

between the flood filling algorithm and the scan-line filling

algorithm is also a solution to reduce power consumption.

Table IV Power consumption per pixel of three algorithms

Dataset Flood Scan-Line Edge

Venus 0.0050 0.0153 0.0072

Cube 0.0042 0.0088 0.0103

Cartoon 0.0009 0.0038 0.0030

Teapot 0.0180 0.0115 0.0276

E. MPKI

The L1, L2 and L3 data cache MPKI of the three

algorithms are shown in Table V, Table VI, and Table VII,

respectively. It can be seen that in all cases, the L1 data

cache MPKI does not exceed 10, the L2 data cache MPKI is

almost half of the L1 data cache MPKI, and the L3 data cache

MPKI is less and can be almost ignored. Therefore, in

graphics rendering hardware, only L1 data cache is sufficient.

It can be found in the L1 data cache MPKI that, although the

flood filling algorithm has a larger amount of computation, it

has a smaller cache MPKI compared to the other two

algorithms. Therefore, choosing the flood filling algorithm

can improve the cache hit rate, and it can be concluded that

the flood filling algorithm uses a smaller MPKI to process

more computing operations.

Table V L1 data cache MPKI of three algorithms

Dataset Flood Scan-Line Edge

Venus 2.61 3.73 3.40

Cube 4.35 5.30 9.22

Cartoon 6.61 7.96 7.19

Teapot 5.05 5.73 4.22

Table VI L2 data cache MPKI of three algorithms

Dataset Flood Scan-Line Edge

Venus 0.92 1.47 1.96

Cube 1.63 3.01 2.62

Cartoon 1.30 1.33 3.12

Teapot 2.40 2.03 0.82

Table VII L3 data cache MPKI of three algorithms

Dataset Flood Scan-Line Edge

Venus 0.18 0.37 0.26

Cube 0.72 0.48 0.65

Cartoon 0.94 0.34 1.20

Teapot 0.34 0.48 0.23

F. Reconfiguration Suggestions

Based on the collected experimental data of a large number

of different performance indicators, the Pearson correlation

coefficient (PCC) [23] method is used to conduct a more

in-depth correlation performance analysis. Table VIII lists

the parameters that each index has on performance and energy

consumption. The parameter range is between +1 and -1. +1

means positive correlation, -1 means negative correlation, and

0 means no correlation. As can be seen from the table, data

movement and cache instruction missing have the highest

correlation with performance and energy consumption, and

should be the focus of algorithm optimization.

Table VIII Correlation of performance and energy to different metrics

Metrics
Correlation to

Performance

Correlation to

Energy

IPC 1.000 -0.267

Data movement -0.553 0.368

Computation -0.537 0.259

Energy Consumption -0.267 1.000

L1 MPKI -0.073 -0.270

L2 MPKI -0.316 -0.176

L3 MPKI -0.151 -0.521

Based on the analysis of the above data, this paper

proposes some reconstruction suggestions for the rasterization

module of the reconfigurable graphics processor:

a. When the amount of data movement becomes the

system bottleneck, the scan-line filling algorithm or

edge filling algorithm can be switched to the flood

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

138

filling algorithm to improve the performance of the

GPU. The switching basis can be obtained by

designing a counter to count the data movement of

accessing the memory.

b. When the rendering scene is limited by hardware

computing resources, the scan-line filling algorithm

or the flood filling algorithm can be switched to the

edge filling algorithm, and the switching basis can

be obtained by setting a counter in the execution

module.

c. When power consumption is very important, in

order to reduce the power consumption of the

graphics processor, you can choose the flood filling

algorithm. In addition, when the power

consumption of the edge filling algorithm is large,

switching between the flood filling algorithm and

the scan-line filling algorithm is also a solution to

reduce power consumption.

d. In the past few decades, the cache technology has

made great progress. In many cases, the cache has

less MPKI. Therefore, in the architecture of

reconfigurable graphics hardware, a first-level cache

is sufficient. At the same time, choosing the flood

filling algorithm can improve the cache hit rate.

Based on the above conclusions, three counters can be

inserted into the rasterization module, and the load

instructions, store instructions and branch instructions

executed by them can be counted respectively. Whenever

the respective instruction enable signal is monitored as 1, the

corresponding counter is increased by 1. The statistical

results are calculated according to formula (1) and formula (2)

through the adder and the subtractor to obtain the data

movement and calculation amount of the rasterization module,

and the most suitable algorithm in the current state is selected

according to the reconfiguration suggestions. The H-tree

hierarchical configuration network HRM [23] can be used to

configure and deliver different rasterization algorithms, and

use the reconfigurable array processor [24] to realize the

reconfigurable design of the rasterization module in the GPU.

V. CONCLUSIONS

Rasterization is an important part of the graphics processor,

always requires a lot of operations, and is a performance

bottleneck. Rasterization algorithms usually suffer

computational constraints, memory constraints, and power

consumption constraints in different application scenarios, so

it is important to determine how to independently schedule

different rasterization algorithms based on actual needs.

However, the reconfiguration standard for graphics processors

has not been established. Therefore, this paper evaluates

and analyzes the performance characteristics of three

rasterization algorithms (scan-line filling algorithm, edge

filling algorithm, and flood filling algorithm) in different

application scenarios. Pearson correlation coefficient (PCC)

analyzes the relationship between performance/energy and

evaluation metrics. Based on these performance

characterization data, this paper puts forward some

reconstruction suggestions in the reconfigurable graphics

processor: When the amount of data movement becomes a

system bottleneck or power consumption is very important,

the flood filling algorithm can be selected to improve the

performance of the GPU. When hardware computing

resources are limited, the edge filling algorithm is the best

choice. In addition, choosing the flood filling algorithm can

improve the cache hit rate. And you can insert a counter in

the rasterization module, set up a state monitoring module, etc.

to realize the reconfigurable design of the rasterization

module.

ACKNOWLEDGMENT

This work is supported in part by National Science

Foundation of China under Grant 61834005, 61772417,

61802304, and 61874087, International S&T Cooperation

Program of Shaanxi China under Grant 2018KW-006.

REFERENCES

[1] Xie C, Fu X, Song S, “Perception-oriented 3D Rendering

Approximation for Modern Graphics Processors,” 2018 IEEE

International Symposium on High Performance Computer

Architecture (HPCA). IEEE, 2018, pp. 362-374.

[2] Christian K, Tobias S, Wolfgang B. “Efficient Point Cloud

Rasterization for Real Time Volumetric Integration in Mixed

Reality Applications,” 2018 IEEE International Symposium on

Mixed and Augmented Reality. IEEE, 2018, pp. 1-9.

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

139

[3] Nguyen-Phuoc T, Li C, Balaban S, et al. “RenderNet: A Deep

Convolutional Network for Differentiable Rendering from 3D

Shapes,” 2018.

[4] Tao H, Manchun L, Xiaohui J, et al. “Implementation of

Parallel Algorithm for Rasterization Processing,” 2012

IEEE,20th International Conference on Geoinformatics. pp. 1-5.

[5] Akenine-Möller T, Haines E, “Hoffman N. Real-time Rendering

(Third Edition),” CRC Press, 2008, pp. 697-725.

[6] Deng J, Jiang L, Cui J. “An Energy Efficiency-driven

Programmable and Self-reconfigurable Architecture of Mobile

Graphics Processor,” International Conference on Computer

Science and Information Security. 2016, pp. 3639-3657.

[7] Issa J, Figueira S. “Graphics Processor Performance Analysis

for 3D Applications,” Proceedings of the 2nd International

Conference on Advances in Computational Tools for

Engineering Applications (ACTEA’12), Dec 12-15, 2012,

Beirut, Lebanon. Piscataway, NJ, USA: pp. 269 -272.

[8] Patel M, Hubbold R J. “A Scanline Method for Solid Model

Display,” John Wiley & Sons, Ltd. 1987, pp. 141-150.

[9] Lejun S, Hao Z. “A New Contour Fill Algorithm for Outlined

Character Image Generation,” Computers & Graphics, vol. 19,

no. 4, pp. 0-556, 1995.

[10] Arvo J, Hirvikorpi M. “Approximate Soft Shadows Win an

Image-space Flood-fill Algorithm,” Computer Graphics Forum,

vol. 23, no. 3, pp. 271-279, 2004.

[11] Wei S, Liu L, Yin S. “Key Techniques of Reconfigurable

Computing Processor,” Scientia Sinica (Informationis), vol. 42,

no. 12, pp. 79-96, 2012.

[12] Chen Y, Krishna T, Emer J, et al. “Eyeriss: An Energy-efficient

Reconfigurable Accelerator for Deep Convolutional Neural

Networks,” IEEE Journal of Solid-State Circuits, vol. 52, no. 1,

pp. 127-138, 2017.

[13] Liu L, Zhou Z, Wei S, et al. “DRMaSV: Enhanced Capability

against Hardware Trojans in Coarse Grained Reconfigurable

Architectures,” IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, 2017, 37(4):782-795.

[14] Kotra J B, Zhang H, Alameldeen A R, et al. “Chameleon: A

Dynamically Reconfigurable Heterogeneous Memory System,”

2018 51st Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO). IEEE, 2018, pp. 533-545.

[15] Prabhakar R, Zhang Y, Koeplinger D, et al. “Plasticine: A

Reconfigurable Accelerator for Parallel Patterns,” IEEE Micro,

vol. 38, no. 3, pp. 20-31, 2018.

[16] Gao M, Yang X, Pu J, et al. “Tangram: Optimized

Coarse-grained Dataflow for Scalable an Accelerators,”

Proceedings of the Twenty-Fourth International Conference on

Architectural Support for Programming Languages and

Operating Systems. ACM, 2019, pp. 807-820.

[17] Liu L, Zhu J, Li Z, et al. “A Survey of Coarse-grained

Reconfigurable Architecture and Design: Taxonomy,

Challenges, and Applications,” ACM Computing Surveys, vol.

52, no. 6, pp. 1-39, 2019.

[18] Cutress, Ian. “The AnandTech Coffee Lake Review: Initial

Numbers on the Core i7-8700K and Core i5-8400,”

https://www.anandtech.com/show/11859/the-anandtech-coffee-l

ake-review-8700k-and-8400-initial-numbers.

[19] Intel R. “Intel® 64 and IA-32 Architectures Software

Developer’s Manual Combined Volumes: 1, 2A, 2B, 2C, 2D,

3A, 3B, 3C, 3D, and 4,”

https://software.intel.com/en-us/download/

intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2

b-2c-2d-3a-3b-3c-3d-and-4.

[20] Jiang L, Chen L, Qiu J. “Performance Characterization of

Multi-threaded Graph Processing Applications on

Many-integrated-core Architecture,” 2018 IEEE International

Symposium on Performance Analysis of Systems and Software

(ISPASS). IEEE, 2018, pp. 199-208.

[21] Reinders J. “VTune Performance Analyzer Essentials:

Measurement and Tuning Techniques for Software Developers,”

Intel Press, vol. 1, no. 2, pp. 6, 2005.

[22] Deng J, Liu Y, Xie X. “Performance characterization of

illumination algorithms for reconfigurable graphics processor,”

Journal of China Universities of Posts & Telecommunications,

vol. 26, no. 5, pp. 60-71, 2019.

[23] Benesty J, Chen J, Huang Y, et al. “Pearson Correlation

Coefficient,” Noise reduction in speech processing. Springer,

Berlin, Heidelberg, 2009, pp. 1-4.

[24] Jiang L, Deng J, Song S, et al. “Hrm: H-tree Based

Reconfiguration Mechanism in Homogeneous PE Array for

Video Processing,” 2018 55th ACM/ESDA/IEEE Design

Automation Conference (DAC). p. poster, IEEE, 2018.

[25] Zhu Y, Jiang L, Shi P F, et al. “Parallelization of Intra

Prediction Algorithm Based on Array Processor,” High

Technology Letters, vol. 25, no. 1, pp. 74-80, 2019.

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

140

