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Learning

Hyunkook Park†, An Gia Vien†, Yeong Jun Koh‡, and Chul Lee†
†Department of Multimedia Engineering, Dongguk University, Seoul, Korea
E-mail: {hyunkook, viengiaan}@mme.dongguk.edu, chullee@dongguk.edu

‡Department of Computer Science and Engineering, Chungnam National University, Daejeon, Korea
E-mail: yjkoh@cnu.ac.kr

Abstract—We propose an end-to-end unsupervised learning
approach to image demoiréing based on cyclic moiré learning.
The proposed cyclic moiré learning consists of the moiré learning
network and demoiréing network. The moiré learning network
generates moiré images to construct a paired set of moiré and
clean images. Then, the demoiréing network is trained using
the generated paired dataset to remove moiré artifacts. Further,
the moiré learning network and the demoiréing network are
integrated together to be trained in an end-to-end manner.
Experimental results demonstrate that the proposed algorithm
outperforms state-of-the-art unsupervised image restoration al-
gorithms.

I. INTRODUCTION

Despite recent significant advances in digital imaging tech-
nologies, undesired artifacts appear in captured images, de-
grading image quality, depending on capturing environments.
For example, when we take pictures of screens, undesired col-
orful artifacts, called moiré artifacts, may appear in captured
images. Moiré artifacts are disruptive colorful patterns with
complex shapes and color variations. These moiré artifacts
are caused by frequency aliasing between the camera’s color
filter array and the screen’s subpixel layout. Extensive research
has been made to remove moiré artifacts in screen-captured
images. However, moiré artifact removal remains challenging,
since moiré artifacts are diverse and spread over a wide range
of regions in both spatial and frequency domains.

Early research on image demoiréing focused on the prior
information of moiré artifacts. For example, Pekkucuksen and
Altunbasak [1] and Menon and Calvagno [2] used multiscale
color gradients of multiple directions during demosaicking.
Yang et al. [3] removed moiré artifacts by dichotomizing a
moiré image into a background layer and a moiré layer based
on the assumption that moiré artifacts can be represented as a
sparse matrix in the frequency domain. Yang et al. [4] further
improved the decomposition-based demoiréing by exploiting
the low-rank and sparse constraints on the texture and moiré
images, respectively. However, since these model-based algo-
rithms rely on the specific priors of the moiré artifacts, they
may fail to effectively remove real-world moiré artifacts.
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Recently, learning-based approaches using convolutional
neural networks (CNNs) have achieved significant perfor-
mance improvement in image demoiréing through learning
from large-scale datasets. For example, in [5], [6], multiscale
CNNs were employed for image demoiréing. He et al. [7] ex-
ploited the multiple prior information to consider various types
of moiré patterns, including edge information and appearance
attributes. Also, frequency information has been exploited in
learning-based image demoiréing [8]–[10]. Zheng et al. [8]
developed learnable multiscale bandpass filters to deal with
the diversity of moiré artifacts in the frequency domain.
Vien et al. [9], [10] proposed joint learning approaches to
effectively exploit different characteristics of moiré artifacts
in both spatial and frequency domains. However, the existing
learning-based approaches are based on supervised learning,
which requires large amounts of paired clean and moiré
images. To address this limitation, Liu et al. [11] developed
an unsupervised deep learning technique by employing a
generative adversarial network (GAN) to handle real-world
moiré images. However, it also used paired training data in
the early training stage.

In this work, we develop an end-to-end image demoiréing
algorithm using an unpaired set of clean and moiré images
based on cyclic moiré learning. The cyclic moiré learning con-
sists of two networks: moiré learning network and demoiréing
network. The moiré learning network learns the distribution of
moiré artifacts from unpaired dataset and generates a paired
clean and moiré image set. The demoiréing network is trained
with the generated paired dataset in a supervised manner.
In addition, to improve the training efficiency, we propose
a two-stage training scheme for each network. Experimental
results show that the proposed algorithm provides higher
demoiréing performance than the state-of-the-art unsupervised
image restoration algorithms [12]–[14].

II. PROPOSED ALGORITHMS

We develop a learning-based end-to-end demoiréing al-
gorithm using an unpaired clean and moiré image dataset.
Fig. 1 shows the overall framework of the proposed algorithm.
Suppose that we are given the sets of clean images {Ici }Mi=1

and moiré images {Imi }Ni=1. The proposed algorithm consists
of two types of GANs. The first GAN in Fig. 1(a), called
moiré learning network, degrades the clean images {Ic} by
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Fig. 1. Overview of the proposed unpaired demoiréing algorithm. (a) The moiré learning network learns to construct the pseudo pairs {Ic, GM (Ic)} given
trained generator GD , and (b) the demoiréing network is trained with the pseudo pairs {Ic, GM (Ic)} in a supervised manner with learned GM .

adding moiré artifacts. The second GAN in Fig. 1(b), called
demoiréing network, removes moiré artifacts in the moiré
images {Im}. Let GM and GD denote the generators to add
moiré artifacts in clean images and remove moiré artifacts in
moiré images, respectively. Similarly, DM and DD denote dis-
criminators to discriminate between real moiré images {Im}
and generated fake moiré images {GM (Ic)} and between
demoiréd images {GD(Im)} and clean images {Ic}, respec-
tively. In other words, the moiré learning network constructs
the pseudo pairs {Ic, GM (Ic)} given trained generator GD,
while the demoiréing network learns to remove moiré artifacts
using the pseudo pairs {Ic, GM (Ic)} in a supervised manner
with learned GM . Let us describe each network subsequently.

A. Moiré Learning Network

As mentioned earlier, the moiré learning network in
Fig. 1(a) generates fake moiré images {GM (Ic)} by learning
the distribution of moiré artifacts in the real moiré images
{Im}. Thus, the moiré learning network constructs the pseudo
pairs {Ic, GM (Ic)} of clean and moiré images, which will be
used to train the demoiréing network.

It is well-known that training GANs may become unstable
and needs tricks [15]. Thus, if the moiré learning network
is trained with a single GAN, it cannot guarantee that the
generated fake moiré images are mapped to desired real moiré

images. To address this issue and make the training of the
moiré learning network stable, we employ cyclic color con-
sistency [16], which enforces similarity of the reconstructed
image to its origin. Specifically, the generator GM is learned
to yield reconstructed moiré images {GM (GD(Im))} that
are similar to the moiré images {Im}. This cyclic color
consistency makes the moiré learning network generate more
realistic artifacts while preserving the original clean image’s
information.

Fig. 2 shows the detailed architecture of generator GM

in Fig. 1. Moiré images contain both moiré patterns and
color degradation, thus generator GM should be capable of
generating images with both moiré patterns and color degra-
dation from clean images. To this end, we use two generators,
GM1 and GM2. The first generates color degradation, and
the second generates moiré patterns. In addition, the proposed
moiré learning network is based on the conditional generative
adversarial network (cGAN) [17]. Specifically, we use a clean
image Ic as conditional information for cGAN, which enables
the network to generate complex moiré artifacts by exploiting
the correlation between generated fake moiré images and real
clean images.

Architecture of the generators: We design a U-Net-like
structure [18] that takes a real clean image and random noise as
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Fig. 2. Architecture of generator GM that adds moiré artifacts in clean images {Ic} to synthesize fake moiré images {GM (Ic)}. The generator GM consists
of two generators: GM1 generates degraded colors, while GM2 generates moiré patterns.

input. The generator consists of an encoder, a decoder, and skip
connections at each scale. The encoder has four scales, each
of which consists of two convolutional layers with a kernel
of 3 × 3 and a stride of 1 and a convolutional layer with a
kernel of 2× 2 and a stride of 2. Each convolutional layer is
followed by a rectified linear unit (ReLU) layer. The decoder
consists of upsampling operators and two convolutional layers
with a kernel of 3× 3 and a stride of 1 followed by a ReLU
layer. At the final scale, a 1× 1 convolutional layer is used to
obtain the generated image.
Architecture of the discriminator: We employ the discrim-
inator network of DCGAN [19] as the baseline. To improve
the performance of the discriminator, we remove the batch
normalization layers and add two more convolutional layers
with ReLU, which increases the receptive field of the network.
Furthermore, to make the discriminator focus more on moiré
patterns, in addition to an image, we use high frequency
components in the image as input to the discriminator. The
high frequency components are obtained by applying a low-
pass filter to the image and then subtracting the low-pass
filtered image from the input image.

B. Demoiréing Network

Once the moiré learning network constructs the pseudo pairs
{Ic, GM (Ic)}, the demoiréing network is trained to remove
moiré artifacts in a supervised manner using the learned GM

as shown in Fig. 1(b). The overall structure of the demoiréing
network is similar to that of the moiré learning network. The
main difference is that the cyclic color consistency is computed
between Ic and GM (Ic), which we call the content loss.
Architecture of the generator: The demoiréing network
architecture is based on U-Net [18] with four scales. We
employ residual blocks (RBs) for exploiting complex moiré
patterns by learning features at multiple levels of abstraction.
Each level of the encoder consists of a convolutional layer
with a kernel of 3 × 3 and a stride of 1, three RBs, and a
convolutional layer with a kernel of 2 × 2 and a stride of 2
for downsampling. Each convolutional layer is followed by a
ReLU layer. Then, deeper moiré features are extracted using
three RBs. The architecture of the decoder is the same as that
of the generator in the moiré learning network.

C. Loss Functions
Moiré learning network: To train the moiré learning network,
we define the moiré learning loss LM as

LM = LGM
+ λMLcycle (1)

where LGM
and Lcycle are the generator loss and the cyclic

color consistency loss, respectively. Also, the parameter λM
controls the relative impact between the two losses.

For training the generator GM and discriminator DM , we
employ the least squares generative adversarial network (LS-
GAN) [20] to define loss functions. Specifically, we define the
generator loss LGM

and discriminator loss LDM
, respectively,

as

LGM
= EIc∼p(Ic)

[
(DM (GM (Ic))− 1)2

]
(2)

LDM
= EIm∼p(Im)

[
(DM (Im)− 1)2

]
+ EIc∼p(Ic)

[
DM (GM (Ic))2

]
. (3)

Next, we define the cyclic color consistency loss Lcycle for
the moiré learning network as the L1 norm between the
reconstructed moiré image and the original moiré image as

Lcycle = EIm∼p(Im)[‖GM (GD(Im))− Im‖1] . (4)

Demoiréing network: We define the demoiréing loss LD

as the sum of the generator loss LGD
and the content loss

Lcontent between Ic and its cyclically generated version, given
by

LD = LGD
+ λDLcontent (5)

where λD is a trade-off parameter between the two losses.
The generator and discriminator losses for GD and DD,

respectively, are defined as

LGD
= EIm∼p(Im)

[
(DD(GD(Im))− 1)2

]
(6)

LDD
= EIc∼p(Ic)

[
(DD(Ic)− 1)2

]
+ EIm∼p(Im)

[
DD(GD(Im))2

]
. (7)

Finally, we compute the content loss for the demoiréing
network as the sum of the L1 loss and advanced Sobel loss
(ASL) [8], given by

Lcontent = EIc∼p(Ic)[‖GD(GM (Ic))− Ic‖1]

+ λcEIc∼p(Ic)

[
4∑

i=1

‖Si(GD(GM (Ic))− Si(I
c)‖1

]
(8)
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TABLE I
QUANTITATIVE COMPARISON OF THE PROPOSED ALGORITHM WITH

CYCLEGAN [12], CWR [13], AND UID-NET [14].

CycleGAN [12] CWR [13] UID-Net [14] Proposed

PSNR 20.96 23.86 24.17 26.23
SSIM 0.8659 0.9276 0.8921 0.9504

where λc is a trade-off parameter between the L1 loss and
ASL, and Si(·) denotes the edge map obtained by the ith
filter in the Sobel filtering among the horizontal, vertical, and
two diagonal filters.

III. EXPERIMENTAL RESULTS

A. Dataset

We evaluate the performance of the proposed algorithm on
the LCDMoire dataset [21]. The LCDMoire dataset contains
10,100 synthetic moiré and clean image pairs, which are
composed of 10,000 training pairs and 100 validation pairs. To
construct the unpaired moiré dataset, we divide 10,000 training
pairs into two groups, and then pick 5,000 moiré images from
the first group and 5,000 clean images from the second group.
We use the unpaired moiré dataset for training the proposed
networks and the 100 validation pairs for the test.

B. Implementation Details

We train the proposed networks using the AdamW opti-
mizer [22] with a learning rate of 10−4, β1 = 0.5, and
β2 = 0.999. The batch size is fixed to 16. The training
is iterated for 150 epochs and takes about 12 hours using
an Nvidia GeForce RTX 2080 Ti GPU. During training, we
randomly crop patches of size 64 × 64 and shuffle moiré and
clean patches for each epoch. In the test, the test images of
the original resolution (1024 × 1024) are used. The weight
parameters λM in (1), λD in (5), and λc in (8) are set to 10,
10, and 0.5, respectively. Also, the kernel size for low-pass
filtering is 3× 3.

C. Quantitative and Qualitative Evaluation

To the best of our knowledge, this is the first attempt for
unpaired image demoiréing. Thus, by considering unpaired
image demoiréing as an image-to-image translation task, we
compare the proposed algorithm with the existing unpaired
image-to-image translation algorithms CycleGAN [12] and
CWR [13]. Also, we compare the proposed algorithm with
the unsupervised image denoising algorithm UID-Net [14].

For quantitative assessment, we employ the PSNR and
the structural similarity index (SSIM) [23] metrics. Table I
shows the average PSNR and SSIM scores over all images
on the validation set in LCDMoire. The proposed algorithm
outperforms all other unsupervised algorithms, providing the
higher PSNR score than CycleGAN, CWR, and UID-Net with
margins 5.27, 2.37, and 2.06 dB, respectively. The proposed
algorithm also provides the best demoiréing performance in
terms of SSIM. This indicates that the cyclic moiré learning
is effective for unpaired image demoiréing.

TABLE II
IMPACTS OF THE CYCLIC COLOR CONSISTENCY AND DUAL GENERATOR.

Cycle GM2 PSNR SSIM

23.91 0.9272
X 25.29 0.9368

X 25.89 0.9414
X X 26.23 0.9504

Fig. 3 compares demoiréing results qualitatively. The ex-
isting algorithms fail to remove complex moiré patterns and
to restore color degradation. For example, in the first row
in Fig. 3(c), CycleGAN loses the original colors in the
yellow and green rectangles. Also, in the second and fourth
rows, CycleGAN fails to remove complex moiré patterns. In
Fig. 3(d), CWR [13] removes moiré artifacts faithfully, but it
provides brightness changes, as shown in the second and third
rows. UID-Net [14] in Fig. 3(e) preserves information of the
original images, but it fails to remove complex moiré patterns
as shown in the first and fourth rows and to restore color
intensity faithfully. On the contrary, the proposed algorithm
effectively removes moiré artifacts while reconstructing the
color information faithfully.

Finally, to demonstrate the effectiveness of the cyclic color
consistency and a dual generator in the moiré learning net-
work, we conducted several ablation experiments. In Table II,
we observe that the performance is degraded severely without
both the cyclic color consistency and the second generator.
This indicates that both the cycle consistency and the second
generator are essential components of the proposed algorithm
for unpaired image demoiréing.

IV. CONCLUSIONS

We proposed an end-to-end unsupervised demoiréing al-
gorithm using an unpaired training dataset based on cyclic
moiré learning. The proposed network consists of the moiré
learning network and demoiréing network. The moiré learning
network constructs the paired dataset from an unpaired dataset,
whereas the demoiréing network is trained to remove moiré
artifacts in a supervised manner. Also, we reinforced the cyclic
color consistency, so that the moiré learning network generates
moiré-looking artifacts while preserving information of the
original clean image. Experimental results demonstrated that
the proposed algorithm outperforms state-of-the-art unsuper-
vised image restoration algorithms.
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