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Abstract—Recent developments in display and imaging devices
have prompted manufacturers to place a camera under the display
screen, delivering a larger display-to-body ratio that is genuinely
full-screen. However, this Under-Display Camera (UDC) imaging
system suffers from severe image degradation such as noise, blur,
low-light, and color-shift. This is due to the low light transmission
and diffraction property of the display panels. To tackle this
issue, we present an end-to-end framework based on U-Net to
restore the degraded image. Since the point spread function (PSF)
of the UDC degradation is known to be spatially dispersed, we
utilize dilated convolutions to increase the receptive field of the
model. Furthermore, we use spatially adaptive normalization to
regularize feature maps to help restore the image efficiently,
thereby improving the performance of our model. We show that
our method can restore UDC images with fewer artifacts and
produce competitive results to state-of-the-art methods.

I. INTRODUCTION

Under-Display Camera (UDC) [1] is an imaging system that
places cameras under the display panel, unlike conventional
smartphones. This allows manufacturers to provide consumers
with a truly bezel-free screen and a larger display-to-body
ratio device, enabling a better user experience. The UDC is
not confined to smartphones but can also be applied to other
devices such as laptops, tablets, and TVs. However, by placing
the camera under a screen, image quality is severely degraded
due to display panels’ low light transmission rate and diffraction
effects caused by pixel arrangement and electronic devices on
the display panel.

A typical UDC system places a camera closely underneath
the Organic Light-Emitting Diode (OLED) [2] display. As
incoming light passes through the OLED display screen, light
is diffracted, and its intensity is reduced because of the OLED
display pixel arrangement. The degradation process can be
modeled as

y = k ∗ x+ n, (1)

where the input ground-truth image x is convolved with the
point spread function (PSF) k of the OLED display, and the
noise n added. The output image y captured by the sensor
suffers from multiple degradations such as low-light, color-
shift, noise, blur, etc. There are two commonly used OLED
types (T-OLED, P-OLED) in modern smartphone displays [1],

(a) Ground Truth input.

(b) Image captured under T-OLED.

(c) Image captured under P-OLED.

Fig. 1: Images from the UDC dataset [1]. (a) Ground truth
input, (b) image degraded by T-OLED display, (c) by P-OLED.
T-OLED images suffer from blur and noise, while P-OLED
becomes low-lighted, color-shifted, and hazy.

and some examples of degraded images from UDCs of these
systems are shown in Fig. 1 [1].

Our objective of finding x from the observed y belongs to
an image restoration problem. Specifically, it can be regarded
as deblurring if we consider k as the blur kernel, though not
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the same as the conventional out-of-focus or motion blur. A lot
of works have been proposed over several decades to alleviate
image degradations. Traditional image restoration methods such
as Wiener Filter [3] use deconvolution to restore the image
convolved with a given degradation kernel (PSF). However, the
traditional deconvolution-based methods do not work well due
to the ill-posedness of the image restoration problem (inverse
of the PSF), especially when the given PSF is spatially wide,
which is the case with the UDC systems.

Recent developments in learning-based methods for im-
age restoration have achieved state-of-the-art performances in
various areas like deblurring [4], denoising [5]–[7], dehaz-
ing [8], light-enhancement [9], high dynamic range imaging
(HDR) [10], [11], super-resolution (SR) [12]–[14], and joint
HDR and SR [15]. These deep learning-based methods gener-
ally work well even with small-sized training image patches.
However, using small-sized patches in training is not suitable
for UDC image restoration models because the PSF of UDC
degradation is spatially very wide. More specifically, the UDC
image restoration requires contextual information from wider
areas to restore the clean image because the PSF kernel of the
display panel is much larger than the kernel of traditional out-
of-focus or motion-blur problems.

To address the problem mentioned above, we propose an
end-to-end, deep learning-based image restoration model. Our
model is a U-Net [16] based architecture that utilizes dilated
convolutions [17] and spatially adaptive normalization [18].
Using the dilated convolution, we can suppress the excessive
memory increase due to large training patches needed to cope
with wide PSF. Also, by using the spatially adaptive normal-
ization scheme, we can exploit additional spatial information
for successful restoration.

In summary, our contributions can be summarized as follows.
• We propose an end-to-end convolutional neural network

(CNN) for UDC image restoration, which utilizes dilated
convolutions and spatially adaptive normalization.

• We show that the spatially adaptive normalization can
provide the network with additional spatial information,
thereby improving the performance.

• The method can effectively restore images and achieve
comparable or often better results than state-of-the-art
algorithms.

II. RELATED WORK

A. Under-Display Camera

Since UDC image restoration is a relatively new topic in
image restoration fields, there is only a handful of research on
this topic. One of the representative works for this topic is [1],
where they provide a dataset based on DIV2K using MCIS
(Monitor-Camera Imaging System). A challenge [19] was also
held to encourage researchers to improve the performance of
UDC image restoration, and numerous methods mainly based
on deep learning were proposed. Some methods mentioned
in [19] use skip or dense connections, while others cascade
traditional methods with learning-based algorithms.

B. Image Restoration

Image restoration is an ill-posed problem that aims at restor-
ing a clean image from its degraded version. There are various
types of degradations such as blur, noise, down-sampling, etc.
In the image degradation process in (1), setting the PSF k as a
low-pass filter corresponds to the conventional out-of-focus blur
model. Also, setting k as an identity matrix makes it a denoising
problem, and a composite operator of blurring and down-
sampling makes a super-resolution model. The UDC image
restoration problem is the most analogous to deblurring among
these image restoration problems, where the blur kernel is a PSF
corresponding to the UDC image degradation model. Hence,
traditional methods for deblurring, such as Wiener Filter [3]
and Richarson-Lucy deconvolution [20], [21], can be used for
the restoration of UDC images.

More recently, deep learning-based methods have achieved
state-of-the-art performance in image restoration problems as
stated previously [4]–[15]. In these works, numerous techniques
were introduced, which have been shown to impact restoration
performances. For example, dilated convolution [17] was shown
to effectively increase the receptive field without increasing
parameter size and thus has been successfully used in various
computer vision tasks [22], [23]. Wang et al. [24] used dilated
convolution in denoising to achieve comparable performance to
the ones having a larger number of parameters. Also, residual
connection [25], [26] and skip connection [27], [28] are the
most commonly used techniques in image restoration for better
performance and optimization.

C. Normalization

Normalization layers are useful in speeding up and stabi-
lizing the training of neural networks, and the most famous
normalization layer is batch normalization [29]. Zhang et al. [5]
used batch normalization for denoising to speed up the training
and boost the performance. Other normalization layers include
instance normalization [30], group normalization [31], and layer
normalization [32]. These normalization layers do not use ex-
ternal data to normalize the layers, as their main objective is to
regularize distributions internally. On the other hand, adaptive
instance normalization [33] makes use of external data for
normalization. Park et al. [18] in particular proposed spatially
adaptive normalization, which utilizes semantic layout while
performing an affine transformation in normalization layers.
Kim et al. [34] adopted adaptive instance normalization in
denoising for better model generalization and efficient training,
resulting in performance improvement.

III. PROPOSED METHOD

To resolve the degradation in UDC images, we propose an
end-to-end framework that takes the UDC image as input and
outputs a restored image. Our method uses a large receptive
field while keeping memory usage at a reasonable level. We also
make use of additional spatial information through a spatially
adaptive normalization layer. Since the degradation caused by
UDC is complex and quite severe, a large receptive field
is crucial for improving the training performance. Therefore,
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Fig. 2: Proposed network architecture. Based on the structure of U-Net [16], we modify the encoder to use dilated convolutions
and residual connections. We also use spatially adaptive normalization [18] in the deepest channel.

the degraded image is processed through a set of encoders
which uses dilated convolution to capture features with a larger
receptive field without increasing memory consumption. The
features are then put through a set of decoders to reconstruct a
clean image. Spatially adaptive normalization [18] is applied
in the layer of the deepest channel depth to regularize the
features and recover the original image using additional spatial
information in reconstruction.

A. Network Architecture

The overall architecture of our network is shown in Fig.
2. Based on the well-known architecture of U-Net [16], our
network is comprised of a set of encoders and decoders with
skip connections. Also, we add dilated convolutions and resid-
ual connections at the encoder step of U-Net to maximize the
performance. In the layer where the channel depth is deepest,
we add a spatially adaptive normalization layer to reconstruct
the image more efficiently using additional spatial information.
The design of the encoder and decoder is illustrated in Fig. 2.

Encoder The encoder of our network differs from the
conventional U-Net in that it has a residual connection and
uses dilated convolutions. Residual connections in the encoder
help the model to extract better features. We exploit dilated
convolution to increase the receptive field without losing spatial
resolution so that the model can capture more information to
restore a clean image. We use the Average Pool (avgpool)
operation as the downsampling operator.

Decoder As the upsampling operator of our decoder, we use
transposed convolution. There are several upsampling opera-
tions such as pixelshuffle [35], but as we will show in section
IV-C, using the pixelshuffle leads to unwanted block and line
artifacts in the restored image.

Spatially Adaptive Normalization In the layer where the
channel depth is deepest, we add a spatially adaptive nor-
malization layer, also known as SPADE (SPatially Adaptive
(DE)normalization) [18], which is illustrated in Fig. 2. Accord-
ing to [18], the SPADE module projects the input mask m with
the size of H × W × C onto an embedding space, and they
are convolved to produce spatially variant learned parameters
γ and β. Then, the learned parameters γ and β are multiplied
and added element-wise to the normalized activations. Let hi

be the activation value of the i-th layer of a network, and Ci,
Hi, and W i be the number of channels of the layer, height,
and width of the i-th activation map in the layer for a batch
of N samples, respectively. Then, the activation values at site
(n ∈ N, c ∈ Ci, y ∈ Hi, x ∈ W i) can be expressed as:

γi
c,y,x(m)

hi
n,c,y,x − µi

c

σi
c

+ βi
c,y,x(m), (2)

where hi
n,c,y,x is the activation at the site before normalization.

Also, µi
c and σi

c are the mean and standard deviation of
activations in channel c, which can be expressed as:

µi
c =

1

NHiW i

∑
n,y,x

hi
n,c,y,x, (3)

σi
c =

√
1

NHiW i

∑
n,y,x

(
(hi

n,c,y,x)
2 − (µi

c)
2
)
. (4)

Adding this spatially adaptive normalization layer assists our
model by regularizing the features and providing additional
spatial information. In our model, the input mask m is the
same input that we put in our restoration process, which is the
degraded UDC image that we aim to restore, with the size of
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(a) T-OLED image (b) EDSR (c) U-Net(double encoder)

(d) Ground Truth (e) ResUNet (f) ours

Fig. 3: Visual comparison of restored T-OLED images using methods mentioned in section IV.

(a) P-OLED image (b) EDSR (c) U-Net(double encoder)

(d) Ground Truth (e) ResUNet (f) ours

Fig. 4: Visual comparison of restored P-OLED images using methods mentioned in section IV.
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TABLE I: Comparison of models for UDC image restoration. The best results are denoted in red and the second best in blue.

T-OLED P-OLEDMethod # Parameters PNSR SSIM PNSR SSIM
EDSR [12] 1.26M 35.16 0.9674 26.62 0.9104

U-Net(double encoder) [1] 35.72M 36.23 0.9724 29.60 0.9353
ResUNet [36] 33.20M 36.32 0.9708 31.62 0.9471

ours 30.31M 37.05 0.9732 32.20 0.9526

TABLE II: Effects of dilated convolution, spatially adaptive normalization layer, and upsampling layer on performance. Best
results are highlighted in bold.

Method T-OLED P-OLED
dilated conv norm pixelshuffle convt PSNR SSIM PSNR SSIM

(a) ✓ 36.32 0.9708 31.62 0.9471
(b) ✓ ✓ 36.41 0.9702 31.84 0.9484
(c) ✓ ✓ ✓ 36.86 0.9722 32.19 0.9519
(d) ✓ ✓ ✓ 37.05 0.9732 32.20 0.9526

H
2 × W

2 × 4. We will show that this strategy is effective in
improving the performance of our model in the ablation study
of section IV-C.

Upscaler The upscaler at the end of our model is a simple
convolutional layer with kernel size 1×1, followed by pix-
elshuffle with factor 2.

B. Loss Function

We train our network using L1 loss. Our loss function is
defined as:

L = ||F(y)− x||1, (5)

where y and x are a UDC image and a ground-truth image
defined in (1), and F is our model for restoration.

C. Implementation Details

The proposed model takes 4-channel raw data and outputs
a 3-channel RGB image. There are five encoder-decoder pairs,
and the kernel size of convolutional layers are all 3×3 except
the upscaler. We train the model using Adam optimizer (β1 =
0.9, β2 = 0.999 and ϵ = 10−8), with initial learning rate of
10−4 and decay factor 0.5.

IV. EXPERIMENTS

A. Experimental Settings

Datasets We use the dataset provided by [1] for both training
and testing. The dataset consists of 240 images for training, 30
for validation, and 30 for testing for both T-OLED and P-OLED
images. We use 256×256 sized patches for T-OLED images,
while we use 1024×1024 sized patches for P-OLED because
the degradation is more severe with the P-OLED. As only an
8-bit RGB version of the dataset is available, we make an 8-bit
raw version of the dataset and form the input training data as

in [9]. The training data is augmented with random horizontal,
vertical flips, and 180-degree rotations.

Evaluation Metrics We evaluate the methods using PSNR
and SSIM. Higher PSNR and SSIM mean better performance.

B. Experimental Results

Quantitative Evaluation We compare our results with base-
line models (EDSR, U-Net double encoder) introduced in [1]
and a model (ResUNet) [36] introduced in the UDC 2020
challenge [19] that inspired our model. Each method is trained
according to the training scheme mentioned in [1] and [36]. To
make a fair comparison between methods based on U-Net (U-
Net with double encoder, ResUNet, ours) regarding parameter
numbers, each channel depth in layers of U-Net with double
encoder has been doubled from the baseline proposed in [1].

Our method achieves the best performance compared to
all the aforementioned methods and especially has significant
improvements in P-OLED image recovery. Our method also has
the fewest number of parameters except for EDSR [12]. The
detailed results are shown in Table I.

Qualitative Evaluation Visual comparisons of the meth-
ods are shown in Figs. 3 and 4, for T-OLED and P-OLED
images, respectively. Compared to other methods of UDC
restoration, our method produces high-quality images in color
and texture. Simple models such as EDSR [12] and U-Net
(double encoder) [1] do not work well in recovering color in
P-OLED images and produce artifacts. ResUNet [36] performs
moderately but produces unsatisfactory line and block artifacts.

C. Ablation Study

In this part, we analyze the effect of techniques used to
improve the performance of our model by conducting ablative
experiments. All experiments are conducted under the same
condition as aforementioned. The results are in Table II.
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Dilated Convolution By comparing the rows (a) and (b)
in Table II, we can see that adding dilated convolution at the
encoder blocks of the model results in a noticeable increase
in PSNR. This shows that dilated convolution enlarges the
receptive field of the model, improving the performance of
restoration in return.

Spatially Adaptive Normalization Using spatially adaptive
normalization in the deepest block of the model helps the
restoration process as the model has additional spatial con-
text. From the rows (b) and (c), we can see that there is
an increase of 0.45dB and 0.35dB in T-OLED and P-OLED
images, respectively. This demonstrates that adopting spatially
adaptive normalization is an effective strategy in improving the
performance of the model.

Transposed Convolution Compared to transposed convo-
lutional layers, using the pixelshuffle layer for upsampling
generates block and line artifacts that are obviously unnatural
and undesirable. These artifacts are more prevalent in P-OLED
images, and thus we need a more sophisticated restoration
process. Therefore, we choose transposed convolution as our
upsampling operator. As shown in Fig. 5, the model using
transposed convolutional layers suppresses the artifacts and can
produce visually plausible results.

(a) (b)

(c) (d)

Fig. 5: Comparison of restored images from our baseline model
with pixelshuffle and transposed convolution as upsampling
layers. (a): T-OLED with pixelshuffle, (b): T-OLED with trans-
posed convolution, (c): P-OLED with pixelshuffle, (d): P-OLED
with transposed convolution. Zoom in for a closer view.

V. CONCLUSION

In this paper, we have presented a new method for restor-
ing Under-Display Camera images. The proposed model uses
dilated convolutions to increase the receptive field. Also, we

add spatially adaptive normalization to provide the model
with extra spatial information. These two techniques improve
the performance of UDC image restoration. We have also
demonstrated quantitatively and qualitatively that our model can
effectively recover degraded images.
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