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Abstract—This paper presents a lossless image compression
method based on the image decomposition and progressive
prediction of decomposed images and their coding contexts using
convolutional neural networks (CNNs). We first decompose a
given input into sub-images by sub-sampling into horizontal and
vertical directions. The first sub-image is encoded by an existing
non-learning lossless compressor, and the others are encoded
progressively using the already encoded ones. While state-of-
the-art learning-based encoders proceed with the auto-regressive
prediction (pixel-by-pixel raster-scan order prediction) so that the
runtime is not practical, our method predicts each sub-image at
once and thus executes in practical time. We also design the CNNs
to predict pixel values and coding contexts jointly and send the
prediction error to the arithmetic encoder for the given coding
context. In the case of color input, it is converted to YUV using a
reversible transform, and each channel is partitioned in the same
way above. Then, all the sub-images are processed progressively
from Y to V. Experiments on high-resolution datasets show that
the proposed method outperforms all the non-learning codecs
and practical-time CNN-based encoders. Compared to learning-
based auto-regressive approaches, our method shows comparable
results while requiring much less runtime.

I. INTRODUCTION

With the advancement of imaging and display devices,
ultra-high-definition (UHD) cameras and displays are getting
more affordable. Thus, a demand for more efficient image
compression methods is growing as well. Lossy compression
is widely adopted for image archiving and transmission due
to limited storage capacity or channel bandwidth. On the
other hand, lossless compression is required for medical and
science applications where the integrity of image information
is needed. Also, as the price of memory is getting lower and
the quality of cameras are getting higher, people may wish to
save their artistic and valuable shots losslessly.

The approaches for lossless compression can be separated
into two, engineered (non-learning) codecs and learning-based
codecs. Some examples of engineered lossless codecs are
PNG [4], WebP [25], JPEG2000 lossless mode [21], JPEG-
LS [22], BPG-lossless [3], FLIF [23], etc., which achieve
desirable performances with reasonable computation time.
These methods focus on reducing spatial redundancy in images
through pixel prediction and entropy encoders.

Deep neural networks have achieved significant successes
in artificial intelligence and signal processing fields, providing

promising solutions in image compression as well. The deep
learning-based lossless encoders can be roughly classified into
two; one is based on the raster scan order pixel prediction
conditioned on causal neighbors, and the other is to find the
probability model of the entire image. In other words, the
methods in the first category are exploiting auto-regressive
pixel prediction, and some examples are pixel-RNN [24],
pixel-CNN [11], MS-pixel-CNN [13], and Schiopu’s methods
[16], [18], [17], [19]. Another type of auto-regressive method
is the integer discrete flow (IDF) [6], which achieves similar
performance to the pixel-CNN. The deep-learning-based auto-
regressive methods are shown to provide better performance
than all the engineered codecs. However, since the pixel
prediction is performed one by one due to the nature of auto-
regressive prediction that can use only causal neighbors, they
take very long computation times. Specifically, the CNN-based
prediction should be performed H ×W times where H and
W are the height and width of the image, and hence takes
impractical runtime for HD images. Hence, the performances
of pixel-CNN and pixel-RNN are reported only for very small
images such as ImageNet-32 and ImageNet-64 [5]. The fastest
CNN-based auto-regressive methods may be Schiopu’s [19],
but according to their paper, it takes more than 12 minutes for
compressing a 4K grayscale image.

To exploit CNN’s capability for lossless compression while
requiring fewer computations, Mentzer et al. [10], [9] intro-
duced methods to predict a whole image instead of predicting
each pixel. In [10], they first encode an image by a non-
learning lossy compressor (BPG), and then find the probability
model of the image conditioned on the lossy compressed
image. In terms of bits per pixel (bpp), it outperforms existing
non-learning-based methods except for the FLIF and shows
better or worse results than the FLIF depending on the dataset.
The virtue of these methods is the practical computation
time compared to the auto-regressive methods. It needs less
computation time compared to the FLIF, though requiring
GPU computation.

In this paper, we propose a new lossless image compression
method that belongs to the second category. Specifically, our
method does not proceed with pixel by pixel but predicts
partitioned blocks in a progressive manner. Hence, the pro-
posed method needs practical GPU runtime closer to the
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CPU time of FLIF while providing lower bpp. For a given
input, we first partition the image into sub-images by sub-
sampling. Then, one of the sub-images is compressed by the
best non-learning encoder FLIF, and it is used to predict
the next sub-image. These ”already-encoded” sub-images are
concatenated and used to predict the next, and so on. Since
the sub-images are encoded one by one progressively, we
name our method Progressive Lossless Image Compression
via Image Partitioning (PLIC-IP). By the partitioning and
block-wise progressive coding, we can reduce the computation
time and also exploit noncausal neighbors from the second
sub-image. For the color input, the RGB is converted by an
integer reversible color transform [12], and Y is compressed
by the above mentioned process. For U and V, they are
also partitioned the same, and the first sub-image is also
compressed by the FLIF. From the second sub-image, the sub-
images are also progressively compressed using the already-
encoded ones. Experiments on several high-resolution datasets
show that our method requires practical runtime as stated
above, and the bpp comes in between the FLIF and CNN-
based auto-regressive methods.

II. RELATED WORK

A. Engineered lossless codecs/arithmetic coding

One of the widely used engineered lossless image compres-
sion codecs is PNG, which uses LZ77 and Huffman coding
to compress an image. Also, JPEG2000 has both lossy and
lossless compression modes, where the lossy JPEG2000 is
also a competent method. More recent codecs, such as WebP,
BPG, and FLIF, generally show better performances than the
PNG and JPEG 2000. Specifically, the WebP improves the
performance by applying different entropy codecs for each
channel. BPG is based on HEVC/H.265, which shows faster
encoding/decoding speed than WebP. FLIF outperforms all
of the codecs above, which uses the reversible YCoCg color
space and applies a context-adaptive arithmetic coder named
MANIAC (Meta-Adaptive Near-zero Integer Arithmetic Cod-
ing).

The key ingredients of lossless compression are the pre-
dictor and entropy coder, where arithmetic coding is widely
adopted as the entropy coder in recent codecs. When the
approximate distribution of specific data is known, the arith-
metic coder assigns fewer bits to frequently appearing symbols
and vice versa. According to Shannon’s source coding theo-
rem [20], without information loss, the size of the compressed
bitstream has a lower bound defined by the entropy. If the
predicted distribution gets closer to the true distribution, the
size of the compressed bitstream gets closer to the optimal
bits. In this regard, various neural network-based attempts
have been introduced to precisely predict the distribution
of natural images. In an image, there are high-frequency
pixels, such as the ones around the edges and within textured
areas, where the pixel variation is relatively large. Since the
distribution of the high-frequency pixels differs from that of
the low-frequency ones, applying various arithmetic coders for
various frequencies yields a high compression rate. Hence, the

selection of the arithmetic coder needs to be based on context
(property of pixel values around the encoding pixel), where
we adopt the arithmetic coder from [14], [15].

B. Pixel Prediction

Various approaches to compressing data via deep learning
have been introduced, along with the prosperity of deep learn-
ing technologies. As stated above, pixel prediction is one of the
most important parts of lossy/lossless codecs that influences
compression performance. In the following subsections, we
categorize the pixel prediction method into two types, pixel by
pixel prediction (auto-regressive type) and block prediction.

1) Pixel-by-pixel prediction: In natural images, each pixel
value is highly correlated with adjacent ones. Oord [11] put
causal neighbors into the neural network to predict the pixel
value, where a masked convolution was introduced to prevent
a non-causal neighbor from affecting the prediction. This
method ensures precise pixel value prediction, leading to a
great decrease in the size of the encoded bitstream. However,
the pixel-by-pixel prediction method has a critical limitation.
Specifically, a tremendous amount of computational cost is
needed since one neural network computation is needed per
one-pixel prediction.

2) Block prediction-based codecs: The pixel-by-pixel pre-
diction using CNN takes a very long computation time and
large power consumption with GPU, and thus it is impractical
to encode a high-quality image over 2K resolution, as stated
previously. For reducing the computation time in pixel predic-
tion, block prediction methods were also introduced, where a
neural network predicts a whole image or a block of pixels at
once. For example, Mentzer et al. [10] used BPG lossy coding
for the block prediction. A BPG coded image is treated as a
prediction, then the prediction is put into the neural network
and the arithmetic coder. The BPG is known to be a fast lossy
coder, and thus they could significantly reduce the computation
time for the prediction compared to the auto-regressive types.
Our work is also based on a block-based prediction framework
to achieve practical lossless compression.

III. PROPOSED METHOD

A. Image partitioning

Different from Mentzer et al. [10], we propose image par-
titioning for the prediction of a block of pixels, the process of
which is illustrated in Figure 1. Before partitioning the image,
the RGB input is converted to YUV by using an invertible
transform, like in most lossless color image compression
methods. Then, image partitioning is applied for each channel,
specifically partitioning of each channel into 12 blocks.

For the YUV-transformed image X ∈ ZH×W×C , we apply
the image partitioning and set the sub-images in order. We
call this PP (partition-prioritized) ordering. For channel types
c = 0, 1, 2 (each denotes Y, U, V channel, respectively), the
PP ordered images XDk

∈ ZH/2×W/2(k = 0, 1, ..., 11) are
expressed as
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Fig. 1. The decomposition of an image.

XDc(m,n) = X(2m, 2n, c) (1)
XDc+3(m,n) = X(2m+ 1, 2n+ 1, c) (2)
XDc+6(m,n) = X(2m, 2n+ 1, c) (3)
XDc+9(m,n) = X(2m+ 1, 2n, c). (4)

B. Hierarchical network

We first encode the first partition of each channel using
the engineered codec FLIF. The firstly-encoded data X↓2 ∈
ZH/2×W/2×C can be expressed as

X↓2 =

2⋃
i=0

XDi
, (5)

and its pixel-wise brief expression can be described as as

X↓2(m,n, c) = X(2m, 2n, c). (6)

Given that we know X↓2, the other 9 ordered images can
be defined as the conditional probability of previous images,
described as

p(XDi
, XD0

, XD1
, ..., XDi−1

) =

p(XDi
|XD0

, XD1
, ..., XDi−1

)· (XD0
, XD1

, ..., XDi−1
). (7)

Since XD0
, XD1

, XD2
∈ X↓2 are already encoded, there are

9 possible i values for equation (7), i = 3, 4, ..., 11.
In our work, inspired by Kim [7], 9 neural networks(CNNi)

are modeled to obtain the prediction X̂Di
, where the overall

encoder network is shown in Figure 2. Each network also
predicts the context of the target image, Ci ∈ ZH/2×W/2.
Then, the context value and the prediction are forwarded to
the adaptive arithmetic coder. Returning to the neural network,
by the equation (7), the prediction X̂Di

and the context Ci can
be defined as a function of other causal sub-images as

X̂Di
= fi(XD0

, XD1
, ..., XDi−1

)

Ci = gi(XD0
, XD1

, ..., XDi−1
). (8)

However, for already encoded three sub-images {XDi |XDi ⊂
X↓2}, the prediction and the context are not calculated. This
is the reason why 9 neural networks are needed, instead of 12.

The context is learned to predict the prediction error, i.e.,
the difference between the original image and the predicted
image. If a pixel is easy to predict, in other words, if it is in
the low-frequency area, the context value for the pixel will be
near zero. On the contrary, if a pixel value is hard to estimate,
the context value will be relatively large. Based on the size
of the context value Ci(m,n), the pixel is assigned to one of
24 arithmetic coders by the mapping function L ∈ Z. Thus,
the adaptive arithmetic coder (AAC) takes the original pixel
value XDi

(m,n), the predicted pixel value X̂Di
(m,n), and

the context value Ci(m,n) as inputs, and generates bitstream,
described as

bitstreami(m,n) =

AAC(XDi(m,n), X̂Di(m,n), L(Ci(m,n))). (9)

For each arithmetic coder, accumulated prediction values
form a distribution function pdfj(j = L(Ci(m,n)), j ∈
{1, 2, ...24}). These 24 different distribution functions ensures
the effective compression. In the training stage and encoding
stage, all networks are computed parallel since all original
sub-images XDi

are known, while in the decoding stage, the
images are restored in sequential order.

C. Loss
For each neural network, two losses are defined; one is the

prediction loss and the other the context loss. The prediction
loss is defined as the mean difference between the original and
the predicted images, where the difference (EDi

∈ ZH/2×W/2)
and its mean (the loss Lpred,i) are expressed as

EDi
(m,n) = |X̂Di

(m,n)−XDi
(m,n)| (10)

Lpred,i =
1

HW

H,W∑
m,n

EDi(m,n). (11)

The context loss is defined as the mean difference between
the context and the prediction error, described as

Lctx,i =
1

HW

H,W∑
m,n

|Ci(m,n)− EDi(m,n)|. (12)

Thus, the overall loss function is denoted as

Loverall =

11∑
i=3

Lpred,i + λLctx,i, (13)
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Fig. 2. The overall encoding structure.

where λ is a parameter that balances two losses.

IV. EXPERIMENTS

A. Experimental Settings

1) Dataset: To evaluate the performances under practical
circumstances, we test on high-resolution images (2K images).
Thus we select DIV2K [2] dataset and Flickr2K [1] dataset
for training and evaluation. DIV2K dataset is a widely-used
high-resolution image dataset. It is divided into 800 training
data and 100 validation data. We use all 800 training data for
training. For evaluation (encoding/decoding), we use DIV2K
original validation dataset and the randomly cropped version
of DIV2K validation dataset (denoted as DIV2K (crop)). The
crop size is set to 512 × 512 for the fair comparison to
L3C[9]. Flickr2K dataset consists of 2,650 2K images, and
we sampled 100 images among them. For the evaluation of
Flickr2K dataset, the network is trained with DIV2K training
dataset.

2) Network details: All neural network NN3, NN4, ...,
NN11 are composed of 4 3 × 3 × 64 convolutional layers
and 3 ReLU layers between them. We designed such simple
networks for the low computational cost.

B. Training Procedures

We first randomly crop the original image to size 256×256
and batch size 4. We used Adam optimizer [8] for the
optimization. Setting the learning rate to 10−4 for the better
convergence, we first train each neural network CNNi indi-
vidually by using only loss terms (Lpred,i+λLctx,i) related to
the CNNi, for 3,000 epochs (2,400K iterations) each. After
this step, we train all networks with the overall loss defined
in equation (13) for 500K epochs (400,000K iterations). We
used 1 for the value of the balancing factor λ.

V. RESULT

A. Comparison with other codecs

We evaluate the coding result on DIV2K and Flickr2K in
terms of bpp. We compare the result with the other codecs
in Table I. Compared to ours, PNG and BPG show almost
50% higher bpp in DIV2K full-resolution dataset. Our method
also outperforms WebP and FLIF. Our method shows the

highest performance as well on the 512×512 cropped dataset
(DIV2K(crop)). It outperforms all the other engineered codecs
and L3C, the high-performance learning-based codec.

B. Runtime comparison

We also compare the encoding speed between our method
and other codecs in Table II. While PNG shows the fastest
speed, followed by BPG, our method is 4.8 times faster than
WebP and 2.4 times faster than FLIF on 512 × 512 cropped
DIV2K dataset in terms of encoding time. On the other hand,
L3C shows a faster speed than ours by about three times.

C. Performance comparison between different experimental
settings

We also test another way of ordering the partitioins, such
that the sub-images from Y channel come first, followed
by sub-images from U and V. We call this CP (channel-
prioritized) ordering, described as

XDc
(m,n) = X(2m, 2n, c) (14)

XD3c+3
(m,n) = X(2m+ 1, 2n+ 1, c) (15)

XD3c+4
(m,n) = X(2m, 2n+ 1, c) (16)

XD3c+5
(m,n) = X(2m+ 1, 2n, c) (17)

For comparing the effectiveness of the hierarchical predic-
tion schemes CP and PP (Section III), we set a baseline that
does not exploit the dependency of channels, and compare
their performances in Table III. In addition, we add experi-
ments with the extension of layers. As shown in Table III,
models with eight layers do not show any improvements in
terms of bpp compared to the models with four layers, which
means that only four layers are enough to generate accurate
predictions and contexts. The result also shows that the bpp
of the baseline is worse than that of PP and CP orderings.
With this result, we can see that the correlation between the
different channels is significant, and thus better results can
be obtained by exploiting the hierarchical encoding. Also, PP
ordering provides better compression performance than CP.
This shows that the order of the image partitioning is also
important.
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TABLE I
BITS PER PIXEL (BPP) OF LOSSLESS COMPRESSION METHODS ON HIGH RESOLUTION DATASETS.

Type Method Flickr2K DIV2K DIV2K(crop)
PNG[4] 12.74 12.69 14.62

Engineered BPG[3] 13.69 13.26 14.05
Codecs WebP[25] 9.32 9.34 9.68

FLIF[23] 8.73 8.74 9.35
Learning-based L3C[9] 9.53 9.52 9.70
Codecs Ours(PLIC-IP) 8.69 8.57 9.14

TABLE II
ENCODING TIME(S) OF OUR METHOD COMPARED TO OTHER CODECS ON

512× 512 CROPPED DIV2K DATASET.

Type Method DIV2K(crop)
PNG[4] 0.001

Engineered BPG[3] 0.224
Codecs WebP[25] 3.105

FLIF[23] 1.572
Learning- L3C[9] 0.242
based Codecs Ours(PLIC-IP) 0.647

TABLE III
PERFORMANCE COMPARISON BETWEEN DIFFERENT EXPERIMENTAL

SETTINGS ON DIV2K DATASET.

Setting bpp
baseline 9.004

PP 8.574
PP(layer 8) 8.596

CP 8.632
CP(layer 8) 8.655

D. Computation Bottleneck

Table IV shows the average running time for each step in
encoding and decoding. FLIF enc/dec denote the times for
encoding and decoding of X↓2 using FLIF. Encoding/decoding
NN denotes the encoding/decoding time, including neural
network computing and arithmetic coding. Merge means the
time consumption for merging all 12 restored sub-images into
one whole RGB image. Note that it takes more time to decode
an image than encoding. It is because parallel computing is
performed in the encoding stage, while serial computing is
necessary for the decoding stage.

TABLE IV
RUNNING TIME FOR EACH STEP IN ENCODING/DECODING ON DIV2K

DATASET.

Stage Elapsed time(s) Elapsed time(%)
FLIF enc 4.684 38.8%

encoding NN 2.091 17.3%
FLIF dec 0.022 0.2%

decoding NN 3.332 27.6%
merge 1.931 16.0%
total 12.060 100.0%

VI. CONCLUSION

In this paper, we have proposed a lossless image compres-
sion framework that utilizes image partitioning, adaptive arith-
metic coder, and hierarchical network. The correlation between
the partitioned images is enhanced in the image partitioning
stage so that we could use the correlation in the hierarchical
network. The outputs of the network are forwarded to the
adaptive arithmetic coder, yielding a competent result. Our
method outperforms engineered codecs, PNG, BPG, WebP,
and FLIF while achieving practical running time on high-
quality 2K images from DIV2K and Flickr2K datasets.
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