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Abstract—We propose a facial video frame interpolation al-
gorithm, which combines symmetric and asymmetric motions
to complement each other. We generate multi-scale contextual
features and intermediate frame candidates using both kinds
of motion vectors. Then, through a frame synthesis block, we
refine those intermediate frame candidates, by exploiting the
contextual features, to produce the final output. Extensive experi-
mental results demonstrate that the proposed algorithm provides
state-of-the-art performance by combining both symmetric and
asymmetric motion information effectively.

I. INTRODUCTION

Video frame interpolation (VFI) is a low-level vision task to
synthesize intermediate frames between successive real frames
[1]–[3]. It increases the temporal resolution (i.e. the frame rate)
of a video sequence, so it is useful in various applications such
as slow-motion video [4], [5], video quality enhancement [6],
and frame recovery in video streaming [7]. Recently, lots of
attempts have been made to develop VFI algorithms based on
convolutional neural networks, which can be classified into
two categories: flow-based and kernel-based ones.

Flow-based algorithms use optical flow to interpolate in-
termediate frames. Optical flow estimation is a classical prob-
lem [8]; effective flow estimation methods have been proposed
recently [9], [10]. Based on these optical flow estimators, many
flow-based VFI algorithms have been developed. Niklaus and
Liu [11] used forward warping and exploited contextual fea-
tures to interpolate frames. Forward warping, however, incurs
hole and occlusion problems. Hence, most VFI algorithms
[3], [5], [12], [13] use backward warping, which does not
cause holes or collided regions. Instead, backward warping
needs bilateral motion vectors, representing the motion from
an intermediate frame to real frames. Bao et al. [12] proposed
a depth-aware VFI algorithm, which estimates bilateral motion
vectors based on depth information. Park et al. [3] employed
symmetric bilateral motion vectors based on the linear motion
constraint. However, these flow-based algorithms rely heavily
on optical flow. Therefore, they tend to yield poor interpolation
results when optical flow is estimated unreliably.

Kernel-based algorithms convolve dynamic kernels with
input frames for VFI. Niklaus et al. [14] proposed an adaptive
convolution scheme, which selects two regions in input frames
adaptively and estimates 2D kernels to process those selected
regions for the interpolation. Niklaus et al. [4] also proposed
estimating such 2D kernels more efficiently. However, these
algorithms [4], [14] need large memory to estimate even small

motions; they cannot estimate large motions greater than a
predefined kernel size. Therefore, Lee et al. [15] introduced
adaptive deformable convolution, called AdaCoF, to estimate
larger motions than [4], [14] do, but using the same kernel
size. These kernel-based algorithms, however, do not enforce
any constraint on bilateral motion vectors, which are highly
correlated to each other.

In this paper, we propose a kernel-based VFI algorithm
combining symmetric and asymmetric motions. The proposed
algorithm uses motion information more explicitly than the
conventional kernel-based algorithms [4], [14], [15]. Whereas
the conventional algorithms perform motion estimation and
frame synthesis jointly, the proposed algorithm divides the VFI
task explicitly into symmetric motion estimation, asymmetric
motion estimation, and frame synthesis. First, we estimate
symmetric and asymmetric motion fields from input frames
and warp the input frames and contextual features using the
motion fields. Then, we combine the warped frames and the
warped feature pyramids, referred to as intermediate frame
candidates and feature pyramid candidates, and pass them
through the frame synthesis block to yield the final interme-
diate frame.

Recently, various researches have been carried out on fa-
cial data, such as facial landmark detection [16], [17], face
super-resolution [18], image generation [19], [20], and age
estimation [21], [22]. Also, the usage of facial video has
increased rapidly [23]–[25]. Such usage in telemedicine, video
conferencing, education, and online meetings demands high
frame rates to convey the speakers’ intention faithfully. Facial
video, however, has not been the main interest of the VFI
research, although the importance of facial VFI has risen. For
this reason, we focus on facial VFI in this work.

II. PROPOSED ALGORITHM

Fig. 1 is an overview of the proposed algorithm. Given
two adjacent frames I0 and I1, it generates an intermediate
frame I0.5. The proposed algorithm consists of five submod-
ules: context extraction, feature extraction, asymmetric motion,
symmetric motion, and frame synthesis blocks. Each motion
block estimates a motion field and kernel weights and gener-
ates two intermediate frame candidates through warping. Each
motion block also generates two feature pyramid candidates,
which are composed of warped multi-scale contextual features.
Then, the frame synthesis block combines all intermediate
frame candidates and feature pyramid candidates to construct
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Fig. 1. An overview of the proposed algorithm: Adjacent input frames pass through the context extraction block, resulting in feature pyramids. The input
frames are also processed by the feature extraction block and then the two motion blocks, respectively, to yield two kinds of intermediate frame candidates
through warping. Finally, all the intermediate frame candidates are combined by the frame synthesis block to generate the final intermediate frame.

a residual frame ∆I0.5. Finally, I0.5 is obtained by adding
∆I0.5 to Ī0.5, which is obtained from the two asymmetric
intermediate frame candidates in an occlusion-aware manner.
Let us describe the details of each block subsequently.

A. Context Extraction Block

We use 3×3 convolutional layers to extract contextual
features from input frames. To exploit multi-scale contextual
information, we generate feature pyramids. Specifically, we
employ three convolutional layers to yield 8, 16, and 32
contextual features, respectively, and perform downsampling
after the second and last convolutional layers. For the down-
sampling, we choose dilated convolution instead of pooling
to obtain high-quality features [26]. We generate two feature
pyramids C0 and C1 by processing the two input frames I0
and I1, respectively.

B. Feature Extraction Block

For feature extraction, we use the U-Net [27], which con-
sists of an encoder and a decoder with skip connections. In
the encoder, we use 3×3 convolutional layers and average
pooling layers for downsampling. In the decoder, we also
use 3×3 convolutional layers but bilinear interpolation for
upsampling. The feature extraction block takes two input
frames and generates features of 64 channels and of half the
spatial resolution in both width and height, which are then
used for both asymmetric and symmetric motion estimation.

C. Asymmetric Motion Block

In this block, the asymmetric motion estimation is first
performed, and the warping via asymmetric motion vectors
(WAMV) is then conducted.

Asymmetric motion estimation: We use seven subnetworks
to estimate seven kinds of parameters – two asymmetric
motion fields (αa

0.5→0, β
a
0.5→0) and (αa

0.5→1, β
a
0.5→1), two

kernel weights W a
0 and W a

1 , and an occlusion map O. Each
subnetwork has four convolutional layers and one upsampling
layer. The subnetworks for the kernel weights perform soft-
max activation to normalize each sum of weights to 1. The
subnetwork for the occlusion map adopts sigmoid activation
to normalize the range to [0, 1]. For all subnetworks, except
for the one for the occlusion map, we perform 2×2 average
pooling and 4×4 average pooling to yield multi-scale output.
Then, we divide the half-resolution motion fields by 2 and the
quarter-resolution motion fields by 4 for scaling.
WAMV: The WAMV layer is based on AdaCoF [15]. How-
ever, whereas AdaCoF considers a single-scale image only,
WAMV considers multi-scale features, as well as the single-
scale image. In AdaCoF, the intermediate frame candidate is
given by

I0.5(i, j) =

F−1∑
k=0

F−1∑
l=0

W (i, j, k, l) ×

I(i+ dk + α(i, j, k, l), j + dl + β(i, j, k, l))

(1)

where F is the kernel size and d is the dilation term. We
extend Eq. (1) to multi-scale features. For example, a feature
pyramid candidate is given by

Ca0,m
0.5 (i, j) =

F−1∑
k=0

F−1∑
l=0

W a,m
0 (i, j, k, l) × (2)

Cm
0 (i+ k + αa,m

0.5→0(i, j, k, l), j + l + βa,m
0.5→0(i, j, k, l))

where the multi-scale pyramidal level is m ∈ {1, 2, 3}. We
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Fig. 2. Empirical probabilities that α and β in Eq. (2) have positive
or negative values. We test the pre-trained model of AdaCoF [15] on the
Vimeo90K test dataset [6]. We randomly choose 10,000 motion vectors from
each motion field (αa

0.5→0, βa
0.5→0) or (αa

0.5→1, βa
0.5→1), and observe the

distribution of signs. Note that the motion vectors tend to have more positive
components than negative ones.

fix the dilation term to 1. The spatial resolution of Cm is
H

2m−1 × W
2m−1 , while the resolution of C is H ×W .

Eq. (2) represents the feature pyramid candidate warped
from C0. Similarly, WAMV obtains the other feature pyra-
mid candidate Ca1

0.5 from C1. Also, WAMV generates two
intermediate frame candidates Ia00.5 and Ia10.5. In the cases of
intermediate frame candidates, we consider only the finest
level m = 1.

D. Symmetric Motion Block

Fig. 2 demonstrates the problem of the WAMV layer. Note
that the motion vectors in WAMV tend to have more positive
components, which is not physically correct. To overcome this
issue, we introduce the warping via symmetric motion vectors
(WSMV) layer.

In this symmetric motion block, the motion field from I0.5
to I1 is assumed to be symmetric with that from I0.5 to I0.
Instead of WAMV, this block uses WSMV. Fig. 3 illustrates the
difference between WSMV and WAMV. Note that, compared
with WAMV, WSMV enforces linear motion trajectories [3]
between I0 and I1 using symmetric motion vectors.

Symmetric motion estimation: We employ four subnetworks
to estimate four kinds of parameters – a motion field (αs,
βs) and two kernel weights W s

0 and W s
1 . Similarly to the

asymmetric motion estimation, the subnetworks for the kernel
weights perform softmax activation. Also, each subnetwork
conduct 2 × 2 and 4 × 4 average pooling for multi-scale
processing. For scaling, we divide the half-resolution motion
field and the quarter-resolution motion field by two and four,
respectively. We then define symmetric motion fields as

αs
0.5→0 = αs, βs

0.5→0 = βs,

αs
0.5→1 = −αs, βs

0.5→1 = −βs,
(3)

satisfying the symmetry αs
0.5→1 = −αs

0.5→0 and βs
0.5→1 =

−βs
0.5→0.
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Fig. 3. Comparison of WAMV with WSMV. Red arrows depict motion
vectors. WAMV layer uses 2×F 2 motion vectors for each pixel. In contrast,
WSMV uses one pair of symmetric motion vectors for each pixel.
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Fig. 4. The network structure of the frame synthesis block. Black arrows are
residual units that do not change the resolution. Blue arrows are downsampling
units including one dilated convolutional layer with d = 2 and one ordinary
convolutional layer. Red arrows are upsampling units composed of bilinear
interpolation and two convolutional layers.

WSMV: For example, the feature pyramid candidate Cs0
0.5 is

given by

Cs0,m
0.5 (i, j) =

f∑
k=−f

f∑
l=−f

W s,m
0 (i, j, k, l) ×

Cm
0 (i+ k + αs,m

0.5→0(i, j), j + l + βs,m
0.5→0(i, j))

(4)

where the pyramid level is m ∈ {1, 2, 3} and f = F−1
2 .

Similarly to WAMV, the WSMV layer generates two feature
pyramid candidates Cs0

0.5, Cs1
0.5 and two intermediate frame

candidates Is00.5, Is10.5. For the intermediate frame candidates,
we fix m = 1.

E. Frame Synthesis Block

We use the GridNet [29] for frame synthesis. Fig. 4 shows
the network structure of the frame synthesis block, where Xi,j

represents the feature map in the ith row and jth column.
Feature maps in different rows have different resolutions and
channels. The three rows have the full-resolution with 32
channels, the half-resolution with 64 channels, and the quarter-
resolution with 96 channels, respectively. The frame synthesis
block accepts four intermediate frame candidates and four
feature pyramid candidates to yield a residual frame ∆I0.5.
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TABLE I
COMPARISON OF THE PROPOSED ALGORITHM WITH CONVENTIONAL ALGORITHMS ON THE 300VW DATASET ACCORDING TO THE DIFFICULTY LEVELS.

300VW
Whole Very Easy Easy Normal Hard

PSNR(↑) SSIM(↑) PSNR(↑) SSIM(↑) PSNR(↑) SSIM(↑) PSNR(↑) SSIM(↑) PSNR(↑) SSIM(↑)

SepConv-L1 [4] 37.85 0.9810 42.54 0.9914 39.90 0.9872 35.65 0.9747 33.50 0.9718
SepConv-Lf 37.44 0.9796 42.00 0.9906 39.53 0.9860 35.32 0.9731 33.05 0.9692
CyclicGen [28] 37.67 0.9799 42.38 0.9910 39.93 0.9867 35.48 0.9739 32.98 0.9688
DAIN [12] 37.97 0.9801 42.49 0.9911 40.09 0.9855 35.77 0.9730 33.73 0.9725
AdaCoF [15] 37.91 0.9811 42.54 0.9912 40.07 0.9872 35.70 0.9750 33.48 0.9717
BMBC [3] 38.12 0.9816 42.88 0.9914 40.24 0.9875 35.82 0.9752 33.80 0.9731

Proposed 38.22 0.9820 42.91 0.9918 40.44 0.9881 35.95 0.9760 33.75 0.9728

Also, we obtain Ī0.5 by

Ī0.5 = O � Ia00.5 + (1−O)� Ia10.5 (5)

where � represents the Hadamard product, and O is the
occlusion map from the asymmetric motion block. Then, we
reconstruct the final intermediate frame by

I0.5 = Ī0.5 + ∆I0.5. (6)

III. EXPERIMENTS

A. Datasets

We use the YouTube-8M dataset [30] for training. We select
the comedy, academic awards, and news program classes to
focus on facial videos. We download 7,327 videos and form
each triplet by choosing three adjacent frames. We select less
than ten triplets from each video and construct 30.6K triplets
in total. All frames have a spatial resolution of 640×360. We
also collect 284 YouTube videos containing interviews and
music videos and choose ten triplets per video to make 2,840
triplets for the validation set.

For the test, we use the 300VW dataset [31]. We choose
44 videos with the 640×360 resolution at 24 frames per
second. Then, we classify these videos into four difficulty
levels according to the amounts of movements: very easy,
easy, normal, and hard. We extract all the frames from the
video and skip every other frame. Then, we synthesize those
skipped frames and compare them with the ground-truth.

B. Training Details

The training is done by combining the reconstruction loss
and the smoothness loss [5]. We use the reconstruction loss
between a ground-truth frame IGT

0.5 and an output frame I0.5,
given by

Lr = ρ(IGT
0.5 − I0.5) (7)

where ρ(x) = (x2 + ε2)
1
2 with ε = 0.001 is Charbonnier

penalty function [32]. We also employ the smoothness loss to
encourage neighboring pixels to have similar motion vectors,
which is given by

Ls =ρ(∇(W0 � α0.5→0)) + ρ(∇(W1 � α0.5→1))

+ρ(∇(W0 � β0.5→0)) + ρ(∇(W1 � β0.5→1))
(8)

where ∇ is the gradient operator and � denotes the Hadamard
product. Then the total loss are defined as a weighted sum

Ltotal = Lr + λLs (9)

where λ = 0.01.

We pre-train the asymmetric motion block and the symmet-
ric motion block, respectively, for 0.2M iterations to minimize
Ltotal in Eq. (9). We use the Adamax optimizer with a
batch size of 8 for the pre-training. During the pre-training
of the asymmetric motion block, the WAMV layer generates
intermediate candidates and yields an output frame via Eq. (5).
In contrast, the symmetric motion block normally does not
produce an occlusion map, but we estimate an occlusion map
during its pre-training. Then, the symmetric motion block
generates an intermediate frame candidate

I0.5 = Os � Is00.5 + (1−Os)� Is10.5 (10)

where Os represents the occlusion map from the symmetric
motion block during the pre-training. Finally, we fine-tune
the overall network using Ltotal with λ = 0. The Adamax
optimizer is also used with a batch size of 8 for 0.2M
iterations.

C. Comparison with the State-of-the-Arts
We compare the proposed algorithm with conventional state-

of-the-art ones: SepConv [4], CyclicGen [28], DAIN [12],
AdaCoF [15] and BMBC [3]. The evaluation metrics are the
peak signal-to-noise ratio (PSNR) and the structural similarity
index measure (SSIM). Table I lists the average PSNR and
SSIM scores of each algorithm. Except for the ‘hard’ category,
the proposed algorithm provides the best PSNR and SSIM
results. In the ‘hard’ category, it ranks second after BMBC.
Note that the performance of the proposed algorithm is at
least 0.25dB higher than the other kernel-based algorithms
SepConv and AdaCoF. Moreover, the proposed algorithm even
outperforms the flow-based algorithms DAIN and BMBC in
most cases.

Fig. 5 show qualitative comparison results. The top six rows
compare facial parts, while the bottom six rows do non-facial
parts. In the facial parts, especially on the eyes and mouths,
the symmetric motion vectors represent the movements more
faithfully than the asymmetric ones do. On the other hand, the
non-facial parts have larger motions, so the asymmetric motion
vectors are more effective in these cases. It is observed that
the proposed algorithm provides reliable interpolation results
in both facial and non-facial parts, by combining symmetric
and asymmetric motions.

D. Ablation Study
We analyze the contribution of Ī0.5 in Eq. (5) to the frame

synthesis. To this end, we compare the proposed algorithm
with two modified versions: proposed-AS and proposed-S.
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(a) Sepconv-Lf (b) CyclicGen (c) DAIN (d) AdaCoF (e) BMBC (f) Proposed (g) Ground Truth

Fig. 5. Qualitative comparison of VFI results.

• Proposed-AS: We modify the subnetwork that estimates
the occlusion map in the asymmetric motion block to
consider four intermediate candidates. Then we set Ī0.5
as follows.

Ī0.5 = Oas
0 × Ia00.5 + Oas

1 × Ia10.5 +

Oas
2 × Is00.5 + Oas

3 × Is10.5.
(11)

• Proposed-S: We generate Ī0.5 using Eq. (10) instead of
Eq. (5).

Table II compares the results on the whole test set. In
Eq. (11), there are too many occlusion weights to be estimated,
so they cannot be reliably estimated. Thus, Proposed-AS
degrades the performance significantly. Also, by comparing
the proposed algorithm with Proposed-S, we see that the
asymmetric initial estimate in Eq. (5) is more effective than
the symmetric one in Eq. (10).

Fig. 6 shows qualitative results. The proposed algorithm
and Proposed-S show similar results in the facial part where
symmetric motions are more reliable. In the non-facial part,
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TABLE II
ABLATION STUDY. THE RESULTS ON THE WHOLE 300VW DATASET ARE

REPORTED.

PSNR(↑) SSIM(↑)
Proposed-AS 37.73 0.9804
Proposed-S 38.12 0.9817

Proposed 38.22 0.9820

(a) Proposed-AS (b) Proposed-S (c) Proposed (d) Ground Truth

Fig. 6. Examples of interpolated frames in the ablation study.

however, the proposed algorithm outperforms both Proposed-
AS and Proposed-S.

IV. CONCLUSIONS

We proposed a facial video frame interpolation algorithm,
which exploits both symmetric and asymmetric motion infor-
mation. We designed two motion estimation blocks: one for
symmetric motion and the other for asymmetric motion. We
then generated multi-scale contextual features and intermedi-
ate frame candidates using both symmetric and asymmetric
motion fields. Then, through a frame synthesis block, we
refined those intermediate frame candidates, by exploiting the
contextual features, to produce the final interpolation output.
Experimental results demonstrated that the proposed algorithm
outperforms conventional algorithms, by combining both sym-
metric and asymmetric motion information effectively.
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