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Abstract—This paper discusses the principles and properties
of complex-valued reservoir computing (CVRC), a proposed
method for adaptive processing of interferograms with low
computational cost. The topographic information of elevation,
slope and aspect, obtained from InSAR data, can be utilized
for hazard mapping and land use planning. Many recent studies
use convolutional neural networks (CNNs) for image recognition
tasks. However, CNNs have problems of high computational
cost and resolution degradation of classification results. CVRC,
a reservoir computing-based approach, provides a solution to
these problems. We compare between CVRC and real–imaginary
parts separated reservoir computing, and show that CVRC has
a high generalization ability through an experiment on aspect
classification.

I. INTRODUCTION

Synthetic aperture radar (SAR) is a remote sensing tech-
nology that observes ground surface with high resolution
by synthesizing radar echoes. In particular, the interferogram
obtained by interferometric SAR (InSAR) analysis, which uses
two SAR data of the same point at two different timings, in-
cludes topographic features such as elevation, aspect angle and
slope angle. These features are important for hazard mapping
and land use planning[1], [2]. In order to utilize radar echo
signals, SAR applications must be able to handle complex-
valued information, which is a unique feature compared to
applications for optical imageries.

Many recent studies have used convolutional neural net-
works (CNNs), a type of deep neural networks, for image
recognition[3]. CNNs have also been widely utilized in SAR
data [4], [5], [6], [7], [8]. However, CNNs require high com-
putational cost due to having multiple convolution layers. In
addition, CNNs cause resolution degradation of classification
results due to the pooling process. To solve these problems, we
proposed complex-valued reservoir computing (CVRC) and
demonstrated that CVRC has a higher accuracy and a lower
computational cost than complex-valued CNNs [8], [9], [10].

Complex numbers can be regarded as two-dimensional
information with amplitude–phase or real–imaginary parts.
Assuming that the real and imaginary parts are independent,
we are able to implement the real–imaginary type by using
traditional methods for real numbers. On the other hand, the
amplitude–phase type, having information of different qualities
each other, must be implemented in a way that handles

complex numbers directly. We implement and compare these
two types of reservoir computing-based methods.

The purpose of this paper is to reveal the classification
performance and process of CVRC by comparison between
CVRC and real–imaginary separated reservoir computing
(RVRC)[11], [12]. The experimental results of aspect clas-
sification show that CVRC has a higher generalization ability
than RVRC.

II. RESERVOIR COMPUTING

A. Amplitude–phase complex-valued reservoir computing

Fig. 1 shows the network structure of complex-valued
reservoir computing. The network has three layers, an input
layer, a hidden layer called reservoir and an output layer.
The complex vectors ut, xt and yt are the input signals,
the internal states of the reservoir and the internal states of
the output layer, respectively. The weights Win, Wres and
Wout are complex matrices and the bias bout is a complex
vector. Nin, Nres and Nout are the number of neurons in the
input layer, the reservoir and the output layer, respectively.
The continuous-time dynamics of CVRC is defined as

z = Winu+Wresx, (1)
dx

dt
= C (−ax+ tanh(|z|) ◦ exp(j arg(z))) (2)

y = Woutx+ bout. (3)

C is the time constant, a is a leaking decay rate, ◦ is the
Hadamard product and both tanh(·) and arg(·) are applied
element-wise. These dynamics can be discretized as

zt = Winut +Wresxt−1, (4)
xt = (1− δCa)xt−1 + δC tanh(|zt|) ◦ exp(j arg(zt)), (5)
yt = Woutxt + bout. (6)

where δ is a discrete interval. To reduce the number of
hyperparameters, (5) can be expressed as

xt = (1− c)xt−1 + c tanh(|zt|) ◦ exp(j arg(zt)) (7)

where c is a discrete global dynamic speed.
In order to deal with InSAR data appropriately, CVRC treats

the complex-valued signals input to the reservoir in a way that
is independent of phase reference. We defined two types of
activation functions, one for amplitude and one for phase, in
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Fig. 1: Structure of amplitude–phase complex-valued reservoir
computing

the dynamics of (2), (5) and (7). The activation function for
amplitude uses tanh(·) to represent the energy saturation. The
one for phase represents the rotation of the signals by using
the identity function.

We learn only Wout and bout connected to the output
layer. A static reservoir, having multiple neurons, plays a
significant roll in pattern memorization and separation. Since
y is obtained by a linear combination in (3) and (6), Wout

and bout are calculated by Tikhonov Regularization as[
Wout bout

]
= ((X∗X+ λI)−1X∗D)T . (8)

where λ is a regularization parameter, and X and D represent
an output matrix of all the reservoirs used for training and
their corresponding teacher signal matrix, respectively.

B. Real–imaginary separated reservoir computing

As a conventional implementation, we applied real-valued
reservoir computing (RVRC) to an interferogram by separating
the real and imaginary parts. The structure of the RVRC
network is shown in Fig. 2.

The continuous-time dynamics of RVRC is represented as

dx

dt
= C(−ax+ tanh(Winu+Wresx)) (9)

y = Woutx+ bout. (10)

The dynamics is discretized as

xt = (1− δCa)xt−1 + δC tanh(Winut +Wresxt−1),
(11)

yt = Woutxt + bout. (12)

To reduce the number of parameters, we simplify (12) as

xt = (1− c)xt−1 + c tanh(Winut +Wresxt−1) (13)

Fig. 2: Structure of real–imaginary parts separated real-valued
reservoir computing

(a) (b)

Fig. 3: Original complex interferogram data : (a) amplitude
and (b) phase images around Mt. Fuji

RVRC requires twice the number of input terminals as
CVRC because it deals with amplitude and phase signals
independently. Since all the weights of RVRC are composed
of real values, the number of neurons in the reservoiris also
twice as that of CVRC. We use (8) to learn Wout and bout.

III. SIGNIFICANCE OF AMPLITUDE–PHASE
COMPLEX-VALUED RESERVOIR COMPUTING

A. Experiment on aspect classification

We conducted an experiment to classify land forms into
aspect angles by using CVRC and RVRC. We used the inter-
ferogram obtained from two the Advanced Land Observing
Satellite (ALOS) data of the Japan Aerospace Exploration
Agency (JAXA) around Mt. Fuji, Japan, as shown in Fig. 3.
The aspects is defined as four types of slopes (north, west,
south and east directions) and a flat plane. The learning and
estimation procedures are the same as those for the aspect
classification performed in [9] and [10]. Table I shows the
hyperparameters of the CVRC and RVRC networks.

Fig. 4 shows the classification results in the whole area by
using (a) CVRC, (b) RVRC as well as (c) the ground truth. The
classification result of RVRC is not as good as that of CVRC,
especially in the flat plane. Fig. 5 shows the classification

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

175



TABLE I: Hyperparameters for CVRC and RVRC networks
in the experiment on aspect classification

Parameter Value
The number of neurons in the input layer Nin 5

The number of neurons in the reservoir Nres 5
The number of neurons in the output layer Nout 5

Desireble spectral radius σd 0.10
Discrete global dynamic speed c 0.45

Regularization parameter λ 10−12

TABLE II: Comparison of accuracy between CVRC and
RVRC

Accuracy [%]

Flat Periphery of Mt. Ashitaka Mt. Ashitaka OverallLake Ashi (west-ridge)
CVRC 93.1 56.2 48.6 65.6 64.3
RVRC 17.8 50.4 40.7 60.8 57.0

results in the flat area by using (a) CVRC, (b) RVRC as well
as (c) the ground truth. RVRC fails to classify the flat plane.
Since the amplitude of the flat plane is larger than that of the
other areas, the amplitude information is more information
rather than the phase information. RVRC is unable to capture
the features of flat plane well because it deals with the real
and imaginary parts separately. Fig. 6 shows the classification
results in a west ridge of Mt. Ashitaka area by using (a)
CVRC, (b) RVRC as well as (c) the ground truth. In this
area consisted of small ridges, the phase information is more
important than the amplitude information to classify it into the
aspect angles. CVRC presents a better results with less noise
than RVRC.

We show the accuracy of CVRC and RVRC in Table II.
CVRC classified land forms with higher accuracy compared
with RVRC in all areas. This indicates that CVRC has a high
generalization ability.

B. Analysis of the signals in the reservoir

We reveal the classification process by visualizing the
signals in the reservoir of CVRC and RVRC. Fig. 7 shows
(a) amplitude and (b) phase of the signals in the reservoir of
CVRC, and (c) the signals in the reservoir of RVRC in the
scanning of the area from the west slope passing the summit to
the east slope of Mt. Fuji. Although the phase values of CVRC
around the summit of Mt. Fuji are unstable, but those between
east and west slopes are clearly different. RVRC is difficult to
classify land forms into the two slopes because there are only
small differences in the magnitude of the signals.

Fig. 8 shows (a) amplitude and (b) phase of the signals in
the reservoir of CVRC, and (c) the signals in the reservoir
of RVRC in scanning of the area from the north slope to the
south slope of Mt. Fuji. This analysis shows the same trends
as Fig. 7.

IV. CONCLUSION

In this paper, we described the dynamics and characteristics
of amplitude–phase complex-valued reservoir computing and
real–imaginary separated reservoir computing. We conducted

aspect classification and analyzed the signals in the reservoir
by using CVRC and RVRC. CVRC classifies land forms with
higher accuracies in all areas compared to RVRC and has a
high generalization ability.
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(a) (b) (c)

Fig. 4: Classification results in whole area by using (a) CVRC and (b) RVRC as well as (c) ground truth.
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Fig. 5: Classification results in flat plane by using (a) CVRC and (b) RVRC as well as (c) ground truth.

0 10 20 30 40

0

5

10

15

20

25

30

35

40

(a)
0 10 20 30 40

0

5

10

15

20

25

30

35

40

(b)
0 10 20 30 40

0

10

20

30

40

(c)

Fig. 6: Classification results in a west ridge of Mt. Ashitaka by using (a) CVRC and (b) RVRC as well as (c) ground truth.
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Fig. 7: (a) Amplitude and (b) phase of the signals in the reservoir of CVRC, and (c) the signals in the reservoir of RVRC in
scanning of the area from the west slope passing the summit to the east slope of Mt. Fuji.

Fig. 8: (a) Amplitude and (b) phase of the signals in the reservoir of CVRC, and (c) the signals in the reservoir of RVRC in
scanning of the area from the north slope passing the summit to the south slope of Mt. Fuji.
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