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Abstract—Expressing multidimensional information as a value
in hypercomplex number systems (e.g., quaternion, octonion, etc.)
has great potential in signal processing applications. The benefits
from the algebraically natural operations of hypercomplex num-
bers can be inherited as well in hypercomplex tensors, which can
be widely used for representing huge volume of multi-relational
datasets. In this paper, we present a new algebraic real trans-
lations of hypercomplex tensors in order to extend tensor-SVD
(t-SVD) and related mathematical tools such as tensor tubal rank
and tensor low tubal rank approximation into general (Cayley-
Dickson) hypercomplex domain. We then propose an algorithmic
solution to the hypercomplex tensor principal component pursuit
based on a proximal splitting technique. Numerical experiments
are performed in quaternion domain and show that the proposed
algorithm outperforms a part-wise state-of-art real and complex
algorithm.

I. INTRODUCTION

The hypercomplex number system is one of the most ef-

fective models for representing multidimensional information

because we can express such information not in terms of

vectors but in terms of numbers among which we can define

the four basic arithmetic operations. Indeed, it has been used

in many areas such as computer graphics [1], robotics [2],

[3] and wind forecasting [4], [5]. In the statistical signal

processing field, effective utilization of the m-dimensional

Cayley-Dickson number system (C-D number system) [6], [7],

which is a standard class of hypercomplex number systems [8],

including, e.g., real R, complex C, quaternion H, octonion O

and sedenion S etc., have been investigated [9].

A hypercomplex number has one real part and possibly

many imaginary parts, and it can represent multidimensional

data as a single number. For any pair of such numbers, the four

arithmetic operations including multiplication and division are

available (Note: the four arithmetic operations are not available

with ordinary real multidimensional vectors). Certainly the

natural operations in hypercomplex number system have great

potential for such modelings of various correlations. For ex-

ample, the multiplication of hypercomplex numbers can enjoy

interactions among real and imaginary parts, algebraically.

However, because of the “singularity” of higher dimensional

C-D number systems (see e.g., Example 1), few mathematical

tools have been maintained [10]. To overcome this situation,

over the past few years, we have proposed several essential

mathematical tools, such as algebraic real translations for clar-

ifying the relation between C-D linear system and real vector

valued linear systems [11], singular value decomposition and

rank evaluation of C-D matrices which is consistent with those

of complex as well as quaternion matrices [12].

The benefits from the algebraically natural operations can

be inherited as well in hypercomplex multi-way arrays, i.e.,

tensors. In the areas of signal, image processing, and data

science, representing huge volume of multi-relational datasets

by tensors assuming low rank structure, has results in remark-

able achievements in many applications [13], [14]. To exploit

such low rank structure, the discussion about low-rankness of

tensors is indispensable.

However, the numerical algebra of tensors is fraught with

hardness results for applications [15]. The main issue for

estimating low-rank tensor, is originated from the definition

of tensor rank. Unlike the matrix rank, the tensor rank has not

yet been well-established from application point of view as

several different definitions of tensor rank have been proposed.

For example, CANDECOMP/PARAFAC (canonical polyadic,

CP) decomposition [16]–[18], which is typically used to

decompose a tensor into the sum of smallest number of rank

one tensors, is generally NP-hard and its convex relaxation is

intractable. Another direction is to use Tucker rank [14] (n-

rank) introduced as a vector-valued rank based on the matrix

ranks of mode-n matricization of a tensor and the sum of con-

vex relaxations of their components (We have already extended

this approach to hypercomplex domains in [12]). Recently,

the tensor tubal rank based on a new tensor decomposition

scheme called tensor singular value decomposition (t-SVD)

has been proposed [19]. The t-SVD is based on the t-product,

a new notion for tensor-tensor product. The t-SVD enjoys

many similar properties to the matrix case. However, t-SVD

is well-defined only up to complex domain since it requires to

perform SVD in Fourier domain for efficient computation. In

quaternion domain, Fourier transform is available [20] but it

is hard to be utilized for t-SVD in quaternion domain because

of the singularity of quaternion such as non-commutativity of

multiplication and arbitrarity of quaternion Fourier transform.

In this paper, to extend the notion of t-SVD to be applicable

in hypercomplex domain, we propose new algebraic real

translations of hypercomplex tensors, all of whose entries

are C-D numbers. The proposed translations are based on

the algebraic translations of C-D matrices proposed in [11].

We show that the t-product of any two hypercomplex tensors

can be equivalently transformed into that of two translated

real tensors, which can be efficiently computed with the fast

Fourier transform (FFT) in complex domain, thanks to the

algebraic properties of proposed real translations. We then

propose new hypercomplex variants of t-SVD, tensor multi
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rank, tensor tubal rank and a tensor low tubal rank approxi-

mation technique based on the proposed real translations. The

proposed approaches are natural extensions of t-SVD related

techniques in [19]. As an application to practical hypercom-

plex tensor recovery problems, we also present hypercomplex

tensor principal component pursuit (C-D tensor PCP) as a

convex relaxation of the tensor robust principal component

analysis (tensor RPCA) in C-D domain. Similar to the matrix

case in [21], the C-D tensor PCP can be modeled as a convex

optimization under a certain structure in real domain and

solvable with proximal splitting techniques. We finally propose

a hypercomplex tensor principal component pursuit algorithm,

Am-DRS-TPCP based on Douglas-Rachford splitting (DRS)

[22]. The proposed algorithm is a higher order tensor gen-

eralization of hypercomplex PCP algorithm (Am-DR-PCP)

proposed in [21] and can be applied to general C-D domains.

Numerical experiments are performed in the context of

recovering sparsely corrupted low tubal rank tensors in quater-

nion domain and demonstrate that the proposed algorithm

successfully utilizes algebraically natural correlations of real

and all imaginary parts to recover much more faithfully the

original tensors, corrupted randomly by noise, than a part-wise

real and complex tensor PCP algorithms.

II. PRELIMINARIES

A. Hypercomplex Number System

Let N and R be respectively the set of all non-negative

integers and the set of all real numbers. An m-dimensional

hypercomplex number in Am (m ∈ N \ {0}) is defined as [6]

a := a1i1 + a2i2 + · · ·+ amim ∈ Am, a1, . . . , am ∈ R (1)

with imaginary units i1, . . . , im, where i1 = 1 represents

the vector identity element. Any hypercomplex number is

expressed uniquely in the form of (1). For a ∈ Am the coef-

ficient aℓ (ℓ = 1, . . . ,m) of each imaginary unit iℓ ∈ Am is

represented as aℓ = ℑℓ(a). A multiplication table defines the

products of any imaginary unit with each other or with itself

(e.g., i21 = 1, i22 = −1 and i1i2 = i2i1 = i2 for A2(=: C)). The

addition and the subtraction of two hypercomplex numbers are

defined as component-wise operations:

a± b := (a1 ± b1)i1 + (a2 ± b2)i2 + · · ·+ (am ± bm)im

for a, b ∈ Am, where b := b1i1 + b2i2 + · · · + bmim,

b1, . . . , bm ∈ R. From the unique expression of (1), the

multiplication of two hypercomplex numbers

ab = (a1i1 + a2i2 + · · ·+ amim)(b1i1 + b2i2 + · · ·+ bmim)

:=

m∑

k=1

m∑

ℓ=1

akbℓikiℓ ∈ Am

is determined uniquely according to the multiplication table.

The conjugate of hypercomplex number a is defined as

a∗ := a1i1 − a2i2 − · · · − amim. (2)

In this paper, we consider the hypercomplex number systems

which are constructed recursively by the Cayley-Dickson con-

struction (C-D construction) [6]. The C-D construction is a

standard method for extending a number system. This method

has been used in extending R to C, C to H and H to O. By

using the C-D construction, an m-dimensional hypercomplex

number Am is extended to A2m [6], [7] as

z := x+ yim+1 ∈ A2m, x, y ∈ Am,

where im+1 6∈ Am is a newly introduced imaginary unit for

doubling the dimension of Am and satisfies i
2
m+1 = −1,

i1im+1 = im+1i1 = im+1 and ivim+1 = −im+1iv =: im+v

for all v = 2, . . . ,m. For example, the real number system

(A1 :=) R is extended into complex number system C (= A2)
by the C-D construction. Note that the value of m is restricted

to the form of 2n (n ∈ N). The hypercomplex number systems

constructed inductively from the real number by the C-D

construction are called Cayley-Dickson number system (C-

D number system). The imaginary units appeared in the C-

D number systems have many properties such as i
2
α = −1

and iαiβ = −iβiα(α 6= β) for all α, β ∈ {2, . . . ,m}. These

properties ensures aa∗ =
∑m

ℓ=1 a
2
ℓ ≥ 0 for any a ∈ Am in

(1) and a∗ ∈ Am in (2) and enable us to define the absolute

value of C-D number a as |a| :=
√
aa∗ (see, e.g., [11]).

Example 1. 1) A representative example of hypercomplex

number is the quaternion H. A quaternion number is a

4-dimensional hypercomplex number which is defined as

q = q1 + q2ı+ q3+ q4κ ∈ H, q1, q2, q3, q4 ∈ R

with the multiplication table:

ı = −ı = κ, κ = −κ = ı, κı = −ıκ = ,
ı2 = 2 = κ2 = −1 (3)

by letting m = 4, i1 = 1, i2 = ı, i3 =  and i4 = κ.

From (3), quaternions are not commutative, i.e., pq = qp
or pq 6= qp for p, q ∈ H in general.

2) The octonion O can be constructed from the quaternion

H by the C-D construction. Note that the multiplication

in O is neither commutative nor associative, i.e., neither

pq = qp nor (pq)r = p(qr) for p, q, r ∈ O holds in

general [8]. For the octonion multiplication table, see,

e.g., [8].

The C-D number system can be seen as an algebraically nat-

ural higher dimensional generalization of our familiar fields,

i.e., R and C.

We also define AN
m := {[x1, . . . , xN ]⊤|xi ∈ Am (i =

1, . . . , N)} for ∀N ∈ N\{0}, where (·)⊤ stands for the trans-

pose. Define 〈x,y〉
AN

m
:= xHy :=

∑N
i=1 x

∗
i yi ∈ Am, ∀x :=

[x1, . . . , xN ]⊤, ∀y := [y1, . . . , yN ]⊤ ∈ AN
m and ‖x‖

AN
m

:=

〈x,x〉1/2
AN

m

, ∀x ∈ AN
m, where (·)H denotes the Hermitian

transpose of vectors or matrices (e.g., xH := [x∗
1, . . . , x

∗
N ]).

We also define the addition of two hypercomplex vectors

x + y := [x1 + y1, · · · , xN + yN ]⊤ ∈ AN
m for x,y ∈ AN

m.

Let S := R, S := C or S := Am (m ≥ 4), and call the

element of S scalar. If we define the left scalar multiplication

as αx := [αx1, . . . , αxN ]⊤ ∈ AN
m for α ∈ S and x ∈ AN

m, we
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have αx + βy ∈ AN
m, ∀α, β ∈ S, ∀x,y ∈ AN

m. We can also

define the right scalar multiplication xα ∈ AN
m in a similar

way. For the case of S = R, the set of all Am matrices can

be regarded as a vector space over R.

B. Algebraic Translations

In this section, we introduce algebraic translation of C-D

vectors and matrices proposed in [11]. A trivial correspon-

dence (mapping) of hypercomplex vectors or matrices to real

ones is

(̂·) : AM×N
m → RmM×N : A 7→ Â :=



A1

...

Am


, (4)

where A = A1i1+ · · ·+Amim ∈ AM×N
m and A1, . . . ,Am ∈

RM×N . This correspondence is just concatenating a real and

all imaginary parts in the hypercomplex matrices. Obviously,

this mapping is invertible and thus we can define

|(·) : RmM×N → AM×N
m : Â 7→ A.

Only in terms of the mappings (̂·) and |(·), it is hard to obtain

the correspondence of matrix-vector product Ax, so we also

introduce the following non-trivial mapping:

(̃·) : AM×N
m → RmM×mN :

A 7→ Ã :=
[
L

(1)⊤
M Â, . . . ,L

(m)⊤
M Â

]
, (5)

where the matrix L
(ℓ)
M ∈ RmM×mM (ℓ = 1, . . . ,m) is defined

for the m-dimensional hypercomplex number Am as

L
(ℓ)
M =




δ
(ℓ)
1,1IM δ

(ℓ)
1,2IM · · · δ

(ℓ)
1,mIM

−δ(ℓ)2,1IM −δ(ℓ)2,2IM · · · −δ(ℓ)2,mIM

...
...

. . .
...

−δ(ℓ)m,1IM −δ(ℓ)m,2IM · · · −δ(ℓ)m,mIM



, (6)

with the M -dimensional identity matrix IM and

δ
(γ)
α,β :=





1 (if iαiβ = iγ),
−1 (if iαiβ = −iγ),
0 (otherwise).

(7)

By (5), the degree of freedom of Ã is at most that of Â ∈
RmM×N . More precisely, (̃·) is a mapping onto

SAm
(M,N) := {Ã ∈ RmM×mN |A ∈ AM×N

m }
=

{[
L

(1)⊤
M B, . . . ,L

(m)⊤
M B

]∣∣∣B ∈ RmM×N
}
.

The set SAm
(M,N) will play important roles in the context

of optimization such as in Section IV. Similar to the trivial

mapping, (̃·) is also invertible and thus we can define

(̃·) : SAm
(M,N)→ AM×N

m : Ã 7→ A.

These mappings have the following useful properties:

Fact 1 (Algebraic correspondence between real and C-D vec-

tors and matrices [11]). For all A,A′ ∈ AM×N
m , B ∈ AN×L

m

and x ∈ AN
m,

1) (Â+A′) = Â+ Â′, (α̂A) = αÂ,

(Ã+A′) = Ã+ Ã′, (α̃A) = αÃ for all α ∈ R,

2) (ÃH) = Ã
⊤

,

3) ‖x‖
AN

m
= ‖x̂‖

RmN ,

4) (ÂB) = ÃB̂ and (Âx) = Ãx̂,

5) (ÃB) = ÃB̃ if m ≤ 4, i.e., if Am = R or C or H.

Example 2. For a quaternion matrix A := A1+A2ı+A3+
A4κ ∈ HM×N , Â ∈ R4M×N and Ã ∈ R4M×4N are given as

Â =




A1

A2

A3

A4


, Ã =




A1 −A2 −A3 −A4

A2 A1 −A4 A3

A3 A4 A1 −A2

A4 −A3 A2 A1


.

Remark 1. Obviously, SAm
(M,N) is an mMN -dimensional

real vector space and the non-trivial mapping (̃·) is guaranteed

to be an isomorphism between AM×N
m and SAm

(M,N)
regarding AM×N

m as a vector space over R (see Section II-A).

III. HYPERCOMPLEX TENSOR SINGULAR VALUE

DECOMPOSITION

A. Hypercomplex Extension of Tensor Basics

In this section, we introduce the fundamental tensor nota-

tions in hypercomplex domain.

A tensor is a generalization of a matrix to higher dimension.

In this paper, we denote it by a calligraphic letter, e.g., X ∈
AN1×···×Nn

m . The order (also called ways or modes) n of tensor

is the number of dimensions. A matrix is denoted by a boldface

capital letter, e.g., X ∈ AM×N
m ; a vector is denoted by a

lower case bold letter, e.g., x ∈ AN
m, and a scalar is denoted

by lower case letter, e.g., x ∈ Am. For a 3-way tensor X ∈
AN1×N2×N3

m , we denote its (i, j, k)-th entry as Xijk or xijk,

and we use MATLAB-like notations Xi:: ∈ AN2×N3

m , X :j: ∈
AN1×N3

m and X ::k ∈ AN1×N2

m to denote respectively the i-th
horizontal, j-th lateral, and k-th frontal slices. Especially, we

denote the frontal slice X ::k simply as X(k) or (X )(k). We

also define the tube (fiber) by fixing the first two indices and

denote it by, e.g., xij: following [14].

Especially for real 3-way tensors X ,Y ∈ RN1×N2×N3 ,

the inner product of two same sized tensors is de-

fined as 〈X ,Y〉
RN1×N2×N3

:=
∑N3

k=1 tr(X
(k)⊤Y (k)) =∑N1,N2,N3

i,j,k=1 xijkyijk with its induced norm ‖X‖
RN1×N2×N3

.

Also, we denote X as the result of discrete Fourier transform

of X ∈ CN1×N2×N3 along the third dimension using the

MATLAB fast Fourier transform (FFT) function, i.e., X :=
fft(X , [], 3). In the same fashion, X can be recovered from X
by the inverse FFT, i.e., X =: ifft(X , [], 3).

B. Hypercomplex Extension of 3-way Tensor Algebra

We can also formally extend tensor algebra related to tensor

product (t-product [19]). For X ∈ AN1×N2×N3

m , its block
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circulant matrix bcirc(X ) ∈ AN1N3×N2N3

m is defined as:

bcirc(X ) :=




X(1) X(N3) · · · X(2)

X(2) X(1) · · · X(3)

...
...

. . .
...

X(N3) X(N3−1) · · · X(1)


 .

We also define a kind of matricization operator and its inverse:

unfold(X ) :=




X(1)

X(2)

...

X(N3)


 ∈ AN1N3×N2

m , fold(unfold(X )) := X .

Note that unfold(X ) is not equivalent to mode-n unfoldings of

X , another kind of well-known matricization of tensors intro-

duced in e.g., [14]. We then extend the t-product [19] between

two 3-way tensors, and conjugate transpose to hypercomplex

domain.

Definition 1 (t-product between two hypercomplex 3-way

tensors). Let X ∈ AN1×N2×N3

m and Y ∈ AN2×L×N3

m . The

t-product X ∗ Y ∈ AN1×L×N3

m is defined as:

X ∗ Y := fold(bcirc(X ) · unfold(Y)).
Definition 2 (Conjugate transpose of hypercomplex 3-way ten-

sors). The conjugate transpose of a tenspr X ∈ AN1×N2×N3

m

is the hypercomplex tensor XH ∈ AN2×N1×N3

m obtained by

conjugate transposing each frontal slice and then reversing

the order of the conjugate transposed frontal slices from 2-

nd through N3-th ones.

Since tensor algebra related to t-product and t-SVD is based

on multiplications of frontal slices, we define real translation

of hypercomplex 3-way tensors accordingly as follows:

Definition 3 (Real translation of hypercomplex 3-way tensors).

For a hypercomplex 3-way tensor A ∈ AN1×N2×N3

m , we

define its real translations Â ∈ RmN1×N2×N3 and Ã ∈
RmN1×mN2×N3 by applying algebraic real translations of

hypercomplex matrices for each frontal slice, i.e.,

Â := fold







Â(1)

Â(2)

...

̂
A(N3)







and Ã := fold







Ã(1)

Ã(2)

...

˜
A(N3)







.

We can also define the inverse of these translations:

|(·) : RmN1×N2×N3 → AN1×N2×N3

m : Â 7→ A,
(̃·) : SAm

(N1, N2, N3)→ AN1×N2×N3

m : Ã 7→ A,
where

SAm
(N1, N2, N3) := {Ã ∈ RmN1×mN2×N3 |A ∈ AN1×N2×N3

m }
⊂ RmN1×mN2×N3 .

If we define the real translation in this way, many algebraic

properties like Fact 1 are inherited in 3-way tensor cases. We

can easily verify that the following facts hold.

Fact 2 (Algebraic properties of real translations of hypercom-

plex 3-way tensors). For any hypercomplex tensors A,B ∈
AN1×N2×N3

m , the following proerties hold:

1) ̂(A+ B) = Â+ B̂, (̂αA) = αÂ,

˜(A+ B) = Ã+ B̃, (̃αA) = αÃ, ∀α ∈ R,

2) (̃AH) = Ã⊤.

Moreover, we can show that the algebraic properties of

matrix multiplication such as Fact 1-4) and Fact 1-5) are also

hold for t-product of hypercomplex 3-way tensors.

Theorem 1 (t-product of real translated hypercomplex ten-

sors). For the real translations of hypercomplex tensors and

their t-product, the following relations hold for any hypercom-

plex tensors A ∈ AN1×N2×N3

m and B ∈ AN2×L×N3

m

1) ̂(A ∗ B) = Ã ∗ B̂,

2) ˜(A ∗ B) = Ã ∗ B̃ if Am = C or H.

Proof: It can be verified with the original definition of t-

product in real domain (see [19]), Definition 1, and Fact 1-4)

and 1-1).

Note that Theorem 1 also gives a concrete computation of

t-product between any two C-D (hypercomplex) tensors.

Corollary 1. The t-product of any two C-D tensors A ∈
AN1×N2×N3

m and B ∈ AN2×L×N3

m can be efficiently calculated

with FFT in real domain by

A ∗ B = qC, C := Ã ∗ B̂. (8)

The second equation in (8) is just the t-product in real

domain, so we use the fact that t-product can be computed

efficiently with FFT.

Using real translations of hypercomplex tensor, we then

extend tensor singular value decomposition (t-SVD) [19] to

hypercomplex 3-way tensors.

Theorem 2 (C-D t-SVD). The real translation of any hyper-

complex tensor A ∈ AN1×N2×N3

m can be decomposed as

Ã = U ∗ S ∗ V⊤,

where U ∈ RmN1×mN1×N3 , V ∈ RmN2×mN2×N3 are or-

thogonal1 tensors and S ∈ RmN1×mN2×N3 is an f -diagonal2

tensor.

Fig. 1 illustrates the C-D t-SVD factorization. Note that

since this decomposition is performed in real domain, so it

can be efficiently computed based on the matrix SVD in the

Fourier domain similar to real tensor cases. This is based on a

key property that the block circulant matrix is diagonalizable:

1A real tensor Q ∈ RN×N×N3 is orthogonal if it satisfies QH ∗ Q =

Q ∗ QH
= I, where I ∈ RN×N×N3 is the identity tensor, whose first

frontal slice is N ×N identity matrix, and whose other frontal slices are all
zeros.

2A real tensor is called f -diagonal if each of its frontal slices is a diagonal
matrix.
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mN2

mN1

N3

mN1 mN2

mN2

mN2

= ∗ ∗

Ã U S

VT

Fig. 1. C-D t-SVD

(FN3
⊗ ImN1

)bcirc(Ã)(F H

N3
⊗ ImN2

)

= diag

{
Ã(1), . . . ,

˜
A(N3)

}
,

where FN3
∈ CN3×N3 denotes the discrete Fourier transform

(DFT) matrix and ‘⊗’ is the Kronecker product. We also

define the multi rank, tubal rank and tensor nuclear norm

of hypercomplex 3-way tensors based on C-D t-SVD.

Definition 4 (C-D tensor multi rank and tubal rank). For a hy-

percomplex tensor A ∈ AN1×N2×N3

m , we define the multi rank

as a vector r ∈ NN3 , whose i-th entry is the rank of the i-th

frontal slice of Ã ∈ CmN1×mN2×N3 , i.e., ri = rank

{
Ã(i)

}
.

We also define the tubal rank of hypercomplex tensor A,

denoted by rankt(A) as the number of non-zero singular tubes

of S , where S is from C-D t-SVD of Ã = U ∗ S ∗ V⊤. The

tubal rank can be defined also as the largest rank of all frontal

slices of Ã, i.e., maxi ri.

Definition 5 (C-D tensor nuclear norm). We define the tensor

nuclear norm of a hypercomplex tensor A ∈ AN1×N2×N3

m ,

denoted as ‖A‖
TNN

as the average of the nuclear norm of all

frontal slices of Ã, i.e., ‖A‖
TNN

:= 1
N3

∑N3

i=1

∥∥∥∥Ã
(i)

∥∥∥∥
∗
, where

the nuclear norm of a real matrix ‖X‖∗ is defined as the sum

of all positive singular values of X ∈ RM×N .

Lemma 1 (Best p rank approximation of hypercomplex 3-way

tensors). For a C-D tensor A ∈ AN1×N2×N3

m of tubal rank R,

a best p-tubal rank approximation is achieved by truncated

p-rank approximation of all frontal slices of Ã.

Theorem 3 (Existence of hypercomplex tensor corresponding

to the best low tubal rank approximation). For complex case,

i.e., m = 2 the followings hold:

1) There always exists A⋆ ∈ AN1×N2×N3

m that satisfies

Ã⋆ = Amp, i.e.,Amp ∈ SAm
(N1, N2, N3) whereAmp ∈

RmN1×mN2×N3 is the best mp tubal rank approximation

of A ∈ AN1×N2×N3

m by Lemma 1.

2) Ãmp also achieves the best p tubal rank approximation

of A in the sense of the original t-SVD in the complex

domain.

IV. HYPERCOMPLEX TENSOR ROBUST PRINCIPAL

COMPONENT ANALYSIS

A. Tools for Convex Optimization for Tensors

In this section, we formulate the tensor robust principal

component analysis (tensor RPCA) in C-D domain. Since the

tubal rank defined in Definition 4 is available for general C-

D 3-way tensors, we can formulate it in C-D domain as a

problem of decomposing an observation M into a low rank

L and a sparse S tensors:

minimize
L,S∈A

N1×N2×N3
m

rankt(L) + λ ‖S‖0,Am
, s.t.M = L+ S,

where λ > 0 and ‖A‖0,Am
is the number of non-zero entries

in A ∈ AN1×N2×N3

m . Similar to matrix cases in [21], we can

relax ‖·‖0,Am
to the sum of absolute values of all entries in A

‖A‖1,Am
:=

N1,N2,N3∑

i,j,k=1

|Aijk| =: ‖Â‖1,Am
.

By relaxing rankt(·) by tensor nuclear norm defined in

Definition 5, we can relax hypercomplex tensor RPCA to the

following convex optimization problem, which we call in this

paper C-D tensor principal component pursuit (C-D tensor

PCP):

minimize
L,S∈A

N1×N2×N3
m

‖L‖
TNN

+ λ ‖S‖1,Am
s.t.M = L+ S. (9)

Since ‖S‖1,Am
can be calculated in real domain similar to

matrix cases, both terms in (9) can be processed in real

domain.

Fact 3 (Proximity operator of tensor nuclear norm [23]). From

Fact 3, the proximity operator of tensor nuclear norm

proxγ‖·‖
TNN

(X ) := argmin
Y∈RN1×N2×N3

{
‖Y‖

TNN
+

1

2γ
‖X − Y‖2F

}

=: shrinkt(X , γ)
can be calculated in the Fourier domain as

{
shrinkt(X , γ)

}(i)
= argmin

Y ∈CN1×N2

{
‖Y ‖∗ +

1

2γ

∥∥∥X(i) − Y

∥∥∥
2

F

}

= shrink(X(i), γ) (i = 1, . . . , N3),

where the shrinkage operator of complex matrix X ∈ CM×N

is defined as shrink(X, τ) := UΣτV
H, with the singular

value decomposition of a complex matrix of rank r, X =
UΣV H and the shrunk diagonal matrix (Στ )ij := (Σij−τ)+
((·)+ := max(0, ·)).
Fact 4 (Proximity operator of tensor ℓ1-norm). Similar to

matrix cases in [21], the proximity operator of hypercomplex

tensor ℓ1-norm can be calculated group-wise as

[
proxγ‖·‖

1,Am

(Â)
]
ijk

=
Âijk∥∥∥Âijk

∥∥∥
2

[∥∥∥Âijk

∥∥∥
2
− γ

]
+
,

=: ST(A, γ). (10)
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B. Hypercomplex Tensor Principal Component Pursuit via

Convex Optimization

In this section, we derive a new algorithm based on the

Douglas-Rachford splitting technique [22] to solve the C-D

tensor PCP (9) efficiently. Denote the 2-fold Cartesian product

of the spaces of real tensors by H0 := RmN1×mN2×N3 ×
RmN1×N2×N3 . By defining the inner product 〈X ,Y 〉H0

:=
1
2 〈X1,Y1〉RmN1×mN2×N3

+ 1
2 〈X2,Y2〉RmN1×N2×N3

, where

X := [X1,X2] ∈ H0 and Y := [Y1,Y2] ∈ H0, (X1,Y1 ∈
RmN1×mN2×N3 , X2,Y2 ∈ RmN1×N2×N3 ) and induced norm

‖X ‖H0
:=

√
〈X ,X 〉H0

, H0 becomes a real Hilbert space.

First, we reformulate the problem (9) as an unconstrained the

sum of two functions as follows:

minimize
Z ∈H0

f(Z ) + g(Z ), (11)

where




f(Z ) := f1(Z1) + f2(Z2) = ‖Z1‖TNN + ‖Z2‖1,Am
,

g(Z ) := ιD1
(Z ) =

{
0 (if Z ∈ D1),

+∞ (otherwise),

Z := [Z1,Z2] ∈ H0,

D1 :=
{
[Z1,Z2] ∈ D2

∣∣∣M = Z̃1 + qZ2

}
⊂ D2,

D2 :=S× RmN1×N2×N3 ⊂ H0,

S :=SAm
(N1, N2, N3) ⊂ RmN1×mN2×N3 .

Note that the subspace D1 represents the constraint that the

observationM is from the sum of low rank and sparse tensors.

This requests that both Z1 belong to S, so we need the

subspace D2.

Apparently this reformulation (11) is equivalent to (9), so all

we need is to identify the concrete calculation of the proximity

operators of f and g. In the same way as [24], the proximity

operator of f is given by

proxγf (X ) =
[
prox2γf (X1), prox2γf (X2)

]
.

From Fact 3, the proximity operator of f1, i.e., the tensor

nuclear norm with index 2γ is given by

prox2γf1(X1) = shrinkt(X1, 2γ).

The concrete procedure of shrinkt(X , τ) is described in

Algorithm 1.

Algorithm 1: shrinkt(X , τ)
Input : X ∈ RN1×N2×N3 , τ > 0
Output: Z := shrinkt(X , τ)

1 X ← fft(X , [], 3);
2 for i = 1, 2, . . . , N3 do

3 Z(i) ← shrink(X(i), τ);

4 Z ← ifft(Z, [], 3)

By Fact 4, the proximity operator of f2, reduces to the

group-wise soft-thresholding (10):

prox2γf2(X2) = ST(|X2, 2γλ). (12)

For the function g, the proximity operator of the indicator

function ιD1
is the orthogonal projection PD1

onto the sub-

space D1, i.e.,

proxγg(X ) = PD1
(X ) := argmin

Y ∈D1

‖X − Y ‖H0
.

Since D1 ⊂ D2 ⊂ H0, we have by [25, 5.14, Reduction

principle]

PD1
(X ) = PD1

|D2 ◦ PD2
(X ).

Note that ‘|D2’ in PD1
|D2 stands for the restriction of the

domain to the subspace D2 and ‘◦’ stands for the composition

of mappings. The orthogonal projection PD2
: H0 → D2 and

PD1
|D2 : D2 → D1 respectively can be calculated as

PD2
(X ) = [PS(X1),X2]

and

PD1
|D2(X ) =

1

2

[
M̃+ X1 − X̃ ⋆

2 ,M̂ − X̂ ⋆
1 + X2

]
,

where X ⋆
1 := X̃ 1 ∈ AN1×N2×N3

m and X ⋆
2 := qX2 ∈ AM×N

m .

For PS(X1), let Epqrℓ := Epqriℓ ∈ AN1×N2×N3

m (ℓ =
1, . . . ,m), where Epqr ∈ RN1×N2×N3 is the tensor only

whose (p, q, r)-th entry (p = 1, . . . , N1, q = 1, . . . , N2,

r = 1, . . . , N3) is 1 and all other entries are 0. Then, we

can easily verify that

〈Ẽpqrℓ, Ẽp′q′r′ℓ′〉RmN1×mN2×N3

=

{
m (if (p, q, r, ℓ) = (p′, q′, r′, ℓ′)),

0 (otherwise).

and therefore, { 1√
m
Ẽpqrℓ}N1,N2,N3,m

p=1,q=1,r=1,ℓ=1 is an orthonormal

basis of S and thus PS(X1) can be easily calculated as:

PS(X1) =
1

m

N1∑

p=1

N2∑

q=1

N3∑

r=1

m∑

ℓ=1

〈X1, Ẽpqrℓ〉RmN1×mN2×N3 Ẽpqrℓ.

Now, we can calculate

proxγg(X ) = PD1
|D2 ◦ PD2

(X ) = PD1
|D2 [PS(X1),X2]

=
1

2

[
M̃+ PS(X1)− X̃ ⋆

2 ,M̂ − X̂ ⋆⋆
1 + X2

]
,

where X ⋆⋆
1 := P̃S(X1) ∈ AN1×N2×N3

m . Since all ingredients

are identified, we can summarize the proposed hypercom-

plex principal component pursuit algorithm in Algorithm 2.

Here, (tk)k≥0 ⊂ [0, 2] satisfied
∑

k≥0 tk(2 − tk) = +∞,

γ ∈ (0,+∞). Note that the shrinkage operator does not keep

the special structure of (̃·), i.e., shrinkt(Ã, 2γ) 6∈ S in general,

so we need the projection onto the structure PS. However, in

complex and quaternion domain, we experimentally observe

that it keeps the structure, so it seems that L(k) ∈ S and

PS(L(k)) = L(k) for all k ≥ 0, but its strict discussion will

be reported elsewhere. Especially if N3 = 1 (i.e., matrix case),
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Algorithm 2: Am-Douglas-Rachford splitting for hy-

percomplex tensor principal component pursuit (Am-

DRS-TPCP)

Input : M, tk, γ, λ
Output: Low tubal rank L and sparse S

1 Initialize k ← 0, L(k) ← 0, S(k) ← 0;

2 repeat

3 L⋆⋆ ← ˜PS(L(k)), S⋆⋆ ← qS(k);
4 L⋆ ← (M̃+ PS(L(k))− S̃⋆⋆)/2;

5 S⋆ ← (M̂ − L̂⋆⋆ + S(k))/2;

6 L(k+1) ←
L(k) + tk

(
shrinkt(2L⋆ − L(k), 2γ)− L⋆

)
;

7 S(k+1) ← S(k) + tk
(
ST(2S⋆ − S(k), 2γλ)− S⋆

)
;

8 k ← k + 1;

9 until convergence;

10 L⋆⋆ ← ˜PS(L(k)), S⋆⋆ ← qS(k);
11 L⋆ ← (M̃+ PS(L(k))− S̃⋆⋆)/2;

12 S⋆ ← (M̂ − L̂⋆⋆ + S(k))/2;

13 [L,S]← [L̃⋆, qS⋆];

Algorithm 2 is reduced to Am- DRS-PCP proposed in [21].

If m = 1, the proposed algorithm solves the same problem as

tensor robust PCA for real cases in e.g., [23], [26]. Therefore,

our proposed method is a natural generalization of these state-

of-the-art methods to general C-D domain and solves tensor

robust PCA in the most general cases.

Lastly, we state the convergence of the proposed algorithm.

Theorem 4 (Convergence of Am-DRS-TPCP). Let parameters

of Algorithm 2 be chosen so that γ ∈ (0,+∞), (tk)k≥0 ⊂
[0, 2] satisfying

∑
k≥0 tk(2 − tk) = +∞. Then, the output of

Algorithm 1 converges to a minimizer of (9).

Remark 2. In this paper, we employ the DRS for solving (9)

but it can be also solved by other advanced convex optimiza-

tion techniques such as the alternating direction method of

multipliers (ADMM) [27] as used in [23], [26] and the primal-

dual splitting (PDS) [28], [29].

It is worth mentioning that this paper focuses on 3-way

tensors. But it may not be difficult to generalize Am-DRS-

TPCP to the case of order-p (p ≥ 3) tensors, by using the

t-SVD for order-p tensors in [30].

V. NUMERICAL EXAMPLES

In this section, we perform some numerical experiments for

examining the effectiveness of the proposed method. Follow-

ing general settings in e.g., [23], [24], [26], [31], we randomly

generate ground truth pairs (L,S) as follows: L := LL∗LH

R ∈
AN1×N2×N3

m , where LL ∈ AN1×r×N3

m and LR ∈ AN2×r×N3

m

(r < min(N1, N2)) with the all real and imaginary parts of

each entry of LL,LR being i.i.d from N (0, 1). We choose

the support set of S uniformly at random from all support

set of size ρN1N2N3 (ρ ∈ (0, 1)). All real and imaginary

parts of the non-zero entries are independently drawn form

U(−256, 256). The input is generated by X := L + S + N
with a sufficiently small perturbation N with the all real and

imaginary parts being i.i.d. from N (0, σ2). We fixed λ =
1/
√

max(N1, N2)N3, γ = 1, σ = 10−8 in all experiments.

We perform experiments in the case where Am = H (m = 4)

and O (m = 8). We compare the proposed method Am-DRS-

PCP and two part-wise DRS-TPCP method, Cn-DRS-TPCP

and R2n-DRS-TPCP (n = 2 or 4, for H or O) based on the

standard t-SVD in complex and real domains. These part-

wise methods split H into C2 and R4, or O into C4 and R8,

and then estimate those parts separately. TABLE I shows the

TABLE I
PERFORMANCE COMPARISON IN H AND O

L,S ∈ H32×32×8, ρ = 0.2, r = 4

Algorithm
‖L∗−L‖

F

‖L‖
F

‖S∗−S‖
F

‖S‖
F

Am-DRS-TPCP 6.06e-10 1.13e-10

C2-DRS-TPCP 2.46e-1 4.76e-2

R4-DRS-TPCP 8.15e-1 1.58e-1

L,S ∈ O16×16×4, ρ = 0.2, r = 1

Algorithm
‖L∗−L‖

F

‖L‖
F

‖S∗−S‖
F

‖S‖
F

Am-DRS-TPCP 1.30e-9 5.18e-11

C4-DRS-TPCP 2.60e-1 1.17e-2

R8-DRS-TPCP 6.10e-1 2.73e-2

performance comparisons of all three algorithms with their

outputs L∗ and S∗. They show that the proposed method Am-

DRS-PCP successfully recovers the original tensor up to the

noise level and outperforms all part-wise methods in both H

and O, by exploiting all correlations among real and imaginary

parts. C2-DRS-PCP performs recovery a little bit better than

R4-DRS-PCP since it may utilize these correlations in part.

VI. CONCLUSION

In this paper, we have proposed new algebraic translations

of hypercomplex 3-way tensors with C-D extensions of t-

SVD, tensor multi rank, tensor tubal rank and tensor low tubal

rank approximation. The proposed translations are based on

algebraic translations of C-D matrices and we have shown that

useful algebraic properties are available in t-product of two

hypercomplex tensors. We also have proposed an algorithmic

solution to hypercomplex tensor principal component pursuit

based on a proximal splitting technique. This solution solves

the hypercomplex tensor principal component pursuit, which

is a convex relaxation of hypercomplex tensor robust principal

component analysis, utilizes the proposed mathematical tools

including C-D t-SVD and tensor nuclear norm of hypercom-

plex tensors. Numerical experiments show that the proposed

algorithm separates the observed tensors into the sum of

low rank and sparse ones much more faithfully than existing

algorithms.
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APPENDIX

The Douglas-Rachford splitting (DRS) [22], [32], [33] is a

well-defined proximal splitting method that solves the mini-

mization of the sum of two functions

f(x) + g(x), (13)

where f and g are assumed to be elements of the class,

denoted by Γ0(H), of proper lower semicontinuous convex

functions from a real Hilbert space H to R ∪ {+∞}. For

given γ ∈ (0,+∞), the DRS approximates a minimizer of (13)

with
(
proxγg(xk)

)
k≥0

by generating the following sequence

(xk)k≥0:

xk+1 ← xk + tk{proxγf [2 proxγg(xk)− xk]− proxγg(xk)},
(14)

where (tk)k≥0 ⊂ [0, 2] satisfies
∑

k≥0 tk(2 − tk) = +∞ and

the proximity operator [34] of index γ of f ∈ Γ0(H) is defined

as

proxγf : H → H : x 7→ argmin
y∈H

{
f(y) +

1

2γ
‖x− y‖2H

}

with the norm onH denoted by ‖·‖H. Indeed, if dim(H) <∞,(
proxγg(xk)

)
k≥0

converges to a minimizer of (13) (see e.g.,

[35]).
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