
Learning Properties of Feedforward Neural Networks
Using Dual Numbers

Yuto Okawa* and Tohru Nitta*
*Rikkyo University, Tokyo, Japan

Abstract— Real-valued neural networks (real-NN) with real
numbers is a popular neural network model. Complex-valued
neural network (complex-NN) is an extension of the real-NN to the
complex domain where the inputs, outputs, weights, and biases
are all complex numbers. Dual number is a two-dimensional
number and is kind of a relative of complex numbers. In this
paper, we investigate a feedforward neural network extended to
dual numbers (dual-NN). It is found that the dual-NN has
different properties from the real-NN and the complex-NN.
Specifcally, for the input (two-dimensional information), the
weights are trained with the constraint of the motion of shearing.
Experimental results show that the generalization ability is higher
than those of the real-NN and the complex-NNs for the training
pattern with the shearing relation.

I. INTRODUCTION
A dual number is one of the binarion expressed as
 			𝑧 = 𝑥 + 𝜀𝑦 , 𝜀! = 0. 				(1.1)
The complex number is also one of the binarion, so the dual
number and the complex number have similar properties. As
complex numbers, we call 𝑥 the real-part and 𝑦 the dual-part,
and denote them by 𝑅𝑒	𝑧 = 𝑥 and 𝐷𝑢	𝑧 = 𝑦 , respectively.
The conjugate for a dual number 𝑧 = 𝑥 + 𝜀𝑦 is defined by
𝑧̅ = 𝑥 − 𝜀𝑦. Also, a dual number 𝑧 can be viewed as a point (𝑥,
𝑦) in the dual plane. The absolute value of the dual number can
be obtained by multiplying z by the conjugate dual number 𝑧,̅
just like the complex numbers [1]. The difference from
complex numbers is that 𝑧 = 0 + 𝜀𝑦 itself is zero divisors,
and all zero divisors are on the y-axis (the dual-axis). If a
function 𝑓(𝑧) is represented by 𝑢 + 𝜀𝑣	in the dual plane, it is
differentiable for all 𝑧 = 𝑥 + 𝜀𝑦 ∈ 𝔻 since it satisfies the
Cauchy-Riemann equation, provided that 𝜕𝑢/𝜕𝑥 = 𝜕𝑣/
𝜕𝑦, 𝜕𝑢/𝜕𝑦 = 0 where 𝔻 is the set of dual numbers [2].
 Sven and Gerald compared the learning losses and test losses
of the multi-layer perceptrons (MLP) using real numbers,
complex numbers, hyperbolic numbers and dual numbers. As
a result, they showed that the MLP using dual numbers do not
learn some training data that uniformly drawn from [0,1]!
well [3].

Nitta proposed a feedforward complex-valued neural
network (complex-NN) in which the inputs, outputs, weights,
and biases of the real-valued neural network (real-NN) are
extended to complex numbers [4][5] and investigated its
fundamental properties [6]. In this paper, in accordance with

those researches, we formulate a feedforward dual-valued
neural network (dual-NN), which is an extension of the real-
NN to dual numbers, and clarify its learning properties.

II. PROPERTIES OF THE DUAL-NN

This section formulates a dual-NN and shows the properties
of the weight parameters.
 For simplicity, we consider a single-layer dual-NN, i.e., a
single dual-valued neuron. Like the real-NN, the dual-NN
multiplies each input with its corresponding weight and adds
all the values together. Add a bias value to it, and pass it
through the activation function to generate the output. The
single-layer dual-NN is an NN that outputs a single dual 𝑍 =
𝑋 + 𝜀𝑌 ∈ 𝔻 given n dual-valued inputs 𝑧" = 𝑥" + 𝜀𝑦"(1 ≤
𝑘 ≤ 𝑛) ∈ 𝔻 . The weights and biases are 𝑤" = 𝑤"

($) +
𝜀𝑤"

(&)(1 ≤ 𝑘 ≤ 𝑛) ∈ 𝔻 and 𝜃 = 𝜃($) + 𝜀𝜃(&) ∈ 𝔻 respect-
tively. The activation function 𝑓': 𝔻 → 𝔻 is defined as

𝑓'(𝑧) = 𝑓((𝑥) + 𝜀𝑓((𝑦) 𝑧 = 𝑥 + 𝜀𝑦, (2.1)
where 𝑓((𝑢) = 1 (1 + exp(−𝑢))⁄ ∈ ℝ where ℝ is the set of
real numbers. The output of the dual-NN 𝑋 + 𝜀𝑌 can be
expressed as
𝑋 + 𝜀𝑌

= 𝑓' LMNO𝑤"
($) + 𝜀𝑤"

(&)P(𝑥" + 𝜀𝑦")Q
)

"*+

+ O𝜃($) + 𝜀𝜃(&)PR

= 𝑓(SM𝑤"
($)𝑥"

)

"*+

+ 𝜃($)T

+ 𝜀𝑓(SMO𝑤"
(&)𝑥" +𝑤"

($)𝑦"P
)

"*+

+ 𝜃(&)T.

(2.2)
In this way, the dual-valued neuron with n inputs can be
represented by a real-valued neuron with n inputs and a real-
valued neuron with 2n inputs. Because of 𝜀! = 0, the real-
valued neuron corresponding to the real-part 𝑋 has 𝑛 fewer
terms than the real-valued neuron corresponding to the dual-
part 𝑌.
 The arguments of 𝑓(for the two terms in (2.2) are
expressed as

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

187978-988-14768-9-0/21/$31.00 ©2021 APSIPA APSIPA-ASC 2021

UU
𝑤+
($) 0

𝑤+
(&) 𝑤+

($)V ⋯ U
𝑤)
($) 0

𝑤)
(&) 𝑤)

($)VV

⎝

⎜
⎛
[
𝑥+
𝑦+
\

⋮
[
𝑥)
𝑦)
\
⎠

⎟
⎞
+ U

𝜃($)

𝜃(&)V

(2.3)
in a matrix form. And the first term in (2.3) can be rewritten as

[|𝑤+| [
cos 𝛼+ 0
sin 𝛼+ cos 𝛼+

\ ⋯ |𝑤)| [
cos 𝛼) 0
sin 𝛼) cos 𝛼)

\\

⎝

⎜
⎛
[
𝑥+
𝑦+
\

⋮
[
𝑥)
𝑦)
\
⎠

⎟
⎞
,

(2.4)

where 𝛼" ∶= tan,+(𝑤"
(ℰ)/𝑤"

($)) , and |𝑤"| [
cos 𝛼" 0
sin 𝛼" cos 𝛼"

\

is represented by

|𝑤"| cos 𝛼" [
1 0

tan𝛼" 1\[
𝑥"
𝑦"
\ 	 (2.5)

for any (1 ≤ 𝑘 ≤ 𝑛). Equation (2.5) is a transformation of the
input (𝑥" 𝑦"). by a matrix [1 0

tan𝛼" 1\ followed by the

multiplication by |𝑤"| cos 𝛼" . The transformation,

represented by the matrix [1 0
tan𝛼" 1\ , corresponds to a

motion called shearing. Shearing is the transformation of the

vector (𝑥" 𝑦"). by scalar multiplying 𝑦" without moving
𝑥" (Fig 1):

 [1 0
tan𝛼" 1\[

𝑥"
𝑦"
\ = n

𝑥"
𝑥" tan𝛼" + 𝑦"o . (2.6)

The net input to the dual-NN is a linear transformation of
shearing, scalar multiplication, and translation of the input dual
(2-dimentional information) as shown in Fig 1. In other words,
the weights are updated under the constraint with respect to the
movement of shearing.

III. BACKPROPAGATION LEARNING ALGORITHM
In this section, we derive a backpropagation (BP) learning

algorithm for a dual-NN. For simplicity, we assume that the
network has three layers.
 First, we formulate a three-layer dual-NN that has L input
neurons, M hidden neurons and N output neurons. Let 𝑿 =
𝒙 + 𝜀𝒚 = [𝑥+, … , 𝑥/]. + 𝜀[𝑦+, … , 𝑦/]. denote the input to the
dual-NN. We will use 𝑤01 = 𝑤01

($) + 𝜀𝑤01
(&) for the weight

between the input neuron 𝑖 and hidden neuron 𝑗 , 𝑣"0 =
𝑣"0
($) + 𝜀𝑣"0

(&) for the weight between the hidden neuron 𝑗 and
output neuron 𝑘, 𝜃0 = 𝜃0

($) + 𝜀𝜃0
(&) for the bias of the hidden

neuron 𝑗 , and 𝛾" = 𝛾"
($) + 𝜀𝛾"

(&) for the bias of the output
neuron 𝑘. The activation function of each neuron is defined in
(2.1). The net input to the hidden neuron 𝑗 is
 𝑈0 = 𝑈0

($) + 𝜀𝑈0
(&)

=M𝑤01
($)𝑥1

/

1*+

+ 𝜃0
($) + 𝜀 SMO𝑤01

(&)𝑥1 +𝑤01
($)𝑦1P

/

1*+

+ 𝜃0
(&)T,

(3.1)
and its output is

𝐻0 = 𝐻0
($) + 𝜀𝐻0

(&) = 𝑓(O𝑈0
($)P + 𝜀𝑓(O𝑈0

(&)P. 	(3.2)
Then, the net input to the output neuron 𝑘 is
𝑆" = 𝑆"

($) + 𝜀𝑆"
(&)

 =M𝑣"0
($)𝐻0

($)
2

0*+

+ 𝛾"
($)

+𝜀 SMO𝑣"0
(&)𝐻0

($) + 𝑣"0
($)𝐻0

(&)P
/

1*+

+ 𝛾"
(&)T,

(3.3)
and its output is

𝑂" = 𝑂"
($) + 𝜀𝑂"

(&) = 𝑓(O𝑆"
($)P + 𝜀𝑓(O𝑆"

(&)P. (3.4)
 Next, we derive the backpropagation learning algorithm for
the three-layer dual-NN described above (called dual-BP here).
The dual-BP is essentially the same as the Complex-BP, a
backpropagation learning algorithm for the complex-NN [4, 5].
First, we initialize the weights and biases with random numbers.
Next, we propagate the input forward and calculate the error
between the actual output 𝑶 = 𝑶($) + 𝜀𝑶(&) and the training
data 𝑻 = 𝑻($) + 𝜀𝑻(&) where, 𝑶(𝒓) = ~𝑂+

($), … , 𝑂4
($)�

.
,

Figure 1. Images of shearing (top) and two-dimensional motion
(bottom) for a dual signal

Du

Re

Du

(𝑥! , 𝑥! tan 𝛼! + 𝑦!)

Re

𝛼!

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

188

𝑶(&) = [𝑂+
(&), … , 𝑂4

(&)]. , 𝑻(𝒓) = [𝑇+
($), … , 𝑇4

($)]. , and 𝑻(&) =
[𝑇+

(&), … , 𝑇4
(&)].. Let 𝛿" be the error between the actual output

value 𝑂" = 𝑂"
($) + 𝜀𝑂"

(&) and the corresponding training data
𝑇" = 𝑇"

($) + 𝜀𝑇"
(&) of output neuron 𝑘 . That is, 𝛿" = 𝑇" −

𝑂" .	 We first considered the squared error (1 2⁄)∑ |𝑇" −4
"*+

𝑂"|! as the error function to minimize. However, the absolute
value of the dual number makes the real part disappear, that is,
due to the property of the dual numbers: 𝜀! = 0, the error
function becomes (1 2⁄)∑ O𝛿"

($)P
!4

"*+ . Thus, we realized that
the squared error is not suitable as the learning error function
for the dual-BP. Therefore, we adopted here the Euclidean
distance in the dual plane as the error function. That is, the error
function 𝐸 is defined as

𝐸 =
1
2M

‖𝑇" − 𝑂"‖=!
4

"*+

=
1
2M�𝛿"

($) + 𝜀𝛿"
(&)�

=

!
4

"*+

 		

=
1
2MnO𝛿"

($)P
!
+ O𝛿"

(&)P
!
o ,

4

"*+

 (3.5)

where ‖𝑧‖= = �𝑥! + 𝑦!, 𝑧 = 𝑥 + 𝜀𝑦 . Then, the error func-
tion E is partially differentiated with respect to each parameter
to obtain the gradient of the parameter. We then multiply the
gradient by a sufficiently small value 𝜂 > 0 (learning rate) to
obtain the update amount, and update it using the following
algorithm.

	𝛾")>? = 𝛾"@AB − 𝜂∆𝛾" , (3.6)

𝑣"0)>? = 𝑣"0@AB − 𝜂∆𝑣"0 , 			(3.7)

𝜃0)>? = 𝜃0@AB − 𝜂∆𝜃0 , 	(3.8)

𝑤01)>? = 𝑤01@AB − 𝜂∆𝑤01 . 			(3.9)
Each gradient is respectively expressed as

∆𝛾" =
𝜕𝐸
𝜕𝛾"

($) + 𝜀
𝜕𝐸
𝜕𝛾"

(&)

= 𝑂"
($)O1 − 𝑂"

($)PO−2𝛿"
($)P + 𝜀 n𝑂"

(&)O1 − 𝑂"
(&)PO−𝛿"

(&)Po,

(3.10)

∆𝑣"0 =
𝜕𝐸
𝜕𝑣"0

($) + 𝜀
𝜕𝐸
𝜕𝑣"0

(&)

 				 = O𝐻0
($)∆𝛾"

($) +𝐻0
(&)∆𝛾"

(&)P + 𝜀O𝐻0
($)∆𝛾"

(&)P, 	(3.11)

∆𝜃0 =
𝜕𝐸
𝜕𝜃0

($) + 𝜀
𝜕𝐸
𝜕𝜃0

(&)

= 𝐻0
($)O1 − 𝐻0

($)PMn𝑣"0
($)𝑂"

($)O1 − 𝑂"
($)PO−2𝛿"

($)P		
"

+ 𝑣"0
(&)𝑂"

(&)O1 − 𝑂"
(&)PO−𝛿"

(&)Po

+𝜀 S𝐻0
(&)O1 − 𝐻0

(&)PMn𝑣"0
($)𝑂"

(&)O1 − 𝑂"
(&)PO−𝛿"

(&)Po
"

T,

(3.12)

∆𝑤01 =
𝜕𝐸
𝜕𝑤01

($) + 𝜀
𝜕𝐸
𝜕𝑤01

(&)

= O𝑥1∆𝜃0
($) + 𝑦1∆𝜃0

(&)P + 𝜀O𝑥1∆𝜃0
(&)P. (3.13)

IV. LEARNING PERFORMANCE
 In this section, we evaluate the learning performance of the

dual-BP via computer simulations.
 We implemented the dual-BP using Python. The initial
values of each parameter such as weights and biases used for
training were set with random numbers generated from the
standard normal distribution. We considered the sum of the
learning errors for each pattern to be the learning error for one
epoch, and if the learning error for one epoch was less than 0.1,
we judged that learning was complete. The maximum number
of the number of learning epochs was set to 10,000 epochs
(1,000 epochs only for the first learning pattern). The learning
rate 𝜂 is varied from 0.1 to 1.0, and 50 trials are performed
for each learning rate.

Pattern ①	
 First, we used the training set in Table 1. The inputs are points
aligned on a line parallel to the real-axis in the dual plane, and
the outputs are parallel translations (shearing) by the value of
the dual-axis. If the input is 𝑧 = 𝑥 + 𝜀𝑦, the dual-part of the
corresponding output is (𝑥! + 𝑦) + 2 . For example, if the
input is a point 𝑐 = 𝑎 + 𝜀0 on the real-axis, then the expected
output is 𝑎 + 𝜀(𝑎! + 0 + 2) (Fig. 2).
 The convergence rates for the real-NN, the complex-NN and
the dual-NN are shown in Table 2. We compared the
generalization error of the dual-NN with those of the real-NN
and the complex-NN. The experimental results are shown in
Fig 3. We can find from Fig 3 that the generalization error of
the dual-NN is smaller than those of the real-NN and the
complex-NN at the learning rates ranging within 0.1 and 0.6.
All the generalization errors of the real-NN, complex-NN and
dual-NN were large at the learning rates ranging within 0.7 and
1.0.

Pattern No. Input pattern Output pattern
1 −4 − 2𝜀 −4 + 16𝜀
2 −3 − 2𝜀 −3 + 9𝜀
3 −2 − 2𝜀 −2 + 4𝜀
4 −1 − 2𝜀 −1 + 𝜀
5 −2𝜀 0
6 1 − 2𝜀 1 + 𝜀
7 2 − 2𝜀 2 + 4𝜀
8 3 − 2𝜀 3 + 9𝜀
9 4 − 2𝜀 4 + 16𝜀

Table 1．Learning patterns ①

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

189

Pattern ②
 Next, we changed the training set from the one for learning
quadratic functions to the one for learning sin functions. In the
same way as the pattern ①, the points aligned on a line parallel
to the real-axis in the dual plane are used as input to learn the
fitting to the sin function. Specifically, when we input 𝑧 = 𝑥 +
𝜀𝑦, 𝑥 + 𝜀(𝑠𝑖𝑛5𝑥 + 𝑦 + 0.5) is output (Fig 4). The training set
is shown in Table 3.
 The experimental results show that the generalization error
of the dual-NN is smaller than or nearly equal to those of the
other two NNs at the learning rates 𝜂 = 0.1,… , 0.7, although
the number of learning cycles of the dual-NN is somewhat
larger than those of other two NNs (Fig 5). We excluded the
experimental results for the learning rates ranging within 0.8
and 1.0 from discussions because the convergence rates were
extremely low. The convergence rate for the real-NN, the
complex-NN and the dual-NN are shown in Table 4. In the

𝜂 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Real 100 100 100 100 100 100 98 80 74 54

Complex 98 100 100 100 100 98 98 80 64 54

Dual 98 100 100 100 100 92 72 50 30 18

Pattern No. Input pattern Output pattern
1 −1.0 − 0.5𝜀 −1.0 + 0.96𝜀
2 −0.8 − 0.5𝜀 −0.8 + 0.76𝜀
3 −0.6 − 0.5𝜀 −0.6 − 0.14𝜀
4 −0.4 − 0.5𝜀 −0.4 − 0.91𝜀
5 −0.2 − 0.5𝜀 −0.2 − 0.84𝜀
6 0.5𝜀 0
7 0.2 − 0.5𝜀 0.2 + 0.84𝜀
8 0.4 − 0.5𝜀 0.4 + 0.91𝜀
9 0.6 − 0.5𝜀 0.6 + 0.14𝜀

10 0.8 − 0.5𝜀 0.8 − 0.76𝜀
11 1.0 − 0.5𝜀 1.0 − 0.96𝜀

Figure 3．Average number of learning epochs in convergence (top) and
average test error (bottom) for pattern ①

Table 3．Learning patterns ②

Figure 4．Learning patterns ②, input test patterns, output test patterns
(i.e., expected outputs for the input test patterns). “predict” means the

actual value output by the model learned the learning pattern ②for the
“test input”

Figure 2．Learning patterns ①, input test patterns, output test patterns
(i.e., expected outputs for the input test patterns). “predict” means the

actual value output by the model learned the learning pattern ① for the
“test input”

 -4 -3 -2 -1 0 1 2 3 4

14

18

-2

2

6

10

Table 2．The convergence rates (%) for the real-NN, the complex-NN
and the dual-NN for pattern ①

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

190

dual-NN, the convergence rate is nearly 0% for learning rates
𝜂 = 0.8, 0.9, 1.0, but this is not a drawback unique to the dual-
NN because the convergence rate of the real-NN is also nearly
0%.

Pattern ③
 Finally, we used a more complicated function: a function
that superimposed several sin functions. Specifically, we
considered a function that outputs 𝑥 + 𝜀(4 𝜋⁄ {sin 𝑥 +
(1 3⁄) sin 3𝑥 + (1 5⁄) sin 5𝑥 + (1 7⁄) sin 7𝑥} + 𝑦 + 0.5) for
an input point 𝑧 = 𝑥 + 𝜀𝑦	aligned on a line parallel to the real-
axis in the dual plane (Fig 6). The training set is shown in Table
5.

 Fig 7 shows that the generalization error of the dual-NN is
smaller than those of the other two NNs at almost all learning
rates. In the case of the learning pattern ③, the number of
learning cycles of the dual-NN needed to converge was almost
the same as those of the real-NN and the complex-NN. The
possible reason for this is that the function is difficult for the
real-NN and the complex-NN to learn. However, this needs to
be further investigated. As for the convergence rate, they are
shown in Table 6. There was no significant difference in the
convergence rate.

𝜂 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Real 100 100 100 100 98 70 32 0 0 0

Complex 100 100 100 100 100 100 92 6 0 0

Dual 100 100 100 100 100 90 80 4 0 0

Pattern No. Input pattern Output pattern
1 −1.0 − 0.5𝜀 −1.0 − 1.01𝜀
2 −0.8 − 0.5𝜀 −0.8 − 0.89𝜀
3 −0.6 − 0.5𝜀 −0.6 − 1.01𝜀
4 −0.4 − 0.5𝜀 −0.4 − 1.18𝜀
5 −0.2 − 0.5𝜀 −0.2 − 0.89𝜀
6 0.5𝜀 0
7 0.2 − 0.5𝜀 0.2 + 0.89𝜀
8 0.4 − 0.5𝜀 0.4 + 1.18𝜀
9 0.6 − 0.5𝜀 0.6 + 1.01𝜀

10 0.8 − 0.5𝜀 0.8 − 0.89𝜀
11 1.0 − 0.5𝜀 1.0 − 1.01𝜀

Table 5．Learning patterns ③

Figure 6．Learning patterns ③, input test patterns, output test patterns
(i.e., expected outputs for the input test patterns). “predict” means the

actual value output by the model learned the learning pattern ③	 for the
“test input”

Table 4．The convergence rates (%) for the real-NN, the complex-NN,
and the dual-NN for pattern ②

Figure 5．Average number of learning epochs in convergence (top) and
average test error (bottom) for pattern ②

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

191

V．CONCLUSIONS
We have formulated a feedforward dual-valued neural network,
derived a dual-valued backpropagation learning algorithm for
it, and investigated their fundamental properties. As a result,
we have found that the parameters of the dual-NN are learned
under the constraint of shear motion. Simulation results show
that when the learning pattern is one that learns shear motion
(e.g., when inputting points aligned on a real axis, the pattern
produces an output that fits a certain quadratic or trigonometric
function), the generalization performance is better than those
of the real-NN and the complex-NN.

In the future, we will study how to speed up the learning
process. As other issues, we will extend the activation function
ReLU, which is commonly used in NNs, to dual number to

further stabilize the learning. We also plan to construct deep
dual-NNs and study the differences in learning performance
among the deep dual-NNs, deep real-NNs, and deep complex-
NNs [7].

ACKNOWLEDGMENT

The authors would like to give special thanks to the members
of the Cooperative Research Project of the Research Institute
of Electrical Communication, Tohoku University for the
stimulated discussion, and the anony-mous reviewers for
valuable comments. This work was supported by JSPS
KAKENHI Grant Number JP16K00347.

REFERENCES
[1] Anthony A. Harkin and Joseph B. Harkin, "Geometry of
Generalized Complex Numbers", Mathematics Magazine, Vol.
77, No. 2, Permutations (Apr., 2004), pp. 118-129
[2] K. DenHartigh, and R. Flim, "Liouville theorems in the
Dual and Double Planes." Rose-Hulman Undergraduate
Mathematics Journal 12.2 (2011): 4.
[3] S. Buchholz, and G. Sommer. "On Clifford neurons and
Clifford multi-layer perceptrons." Neural Networks 21.7
(2008): 925-935.
[4] T. Nitta, "An Extension of the Back-Propagation Algorithm
to Complex Numbers", Neural Networks, Vol.10, No.8,
pp.1391-1415 (1997).
[5] T. Nitta, "An analysis of the fundamental structure of
complex-valued neurons." Neural Processing Letters 12.3
(2000): 239-246.
[6] T. Nitta and T. Furuya, "A Complex Back-propagation
Learning", Transactions of Information Processing Society of
Japan, Vol.32, No.10, pp.1319-1329 (1991) (in Japanese).
[7] C. Trabelsi, O. Bilaniuk, Y. Zhang, D. Serdyuk, S.
Subramanian, J. Felipe Santos, S. Mehri, N. Rostamzadeh, Y.
Bengio and C. J Pal, "Deep Complex Networks", ICLR 2018

𝜂 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Real 100 100 100 100 100 100 96 96 84 28

Complex 100 100 100 100 100 100 98 94 68 22

Dual 100 100 100 100 100 100 98 94 94 54

Table 6．The convergence rates (%) for the real-NN, the complex-NN,
and the dual-NN for pattern ③

Figure 7．Average number of learning epochs in convergence (top) and
average test error (bottom) for pattern ③

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

192

