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Abstract— Real-valued neural networks (real-NN) with real 
numbers is a popular neural network model. Complex-valued 
neural network (complex-NN) is an extension of the real-NN to the 
complex domain where the inputs, outputs, weights, and biases 
are all complex numbers. Dual number is a two-dimensional 
number and is kind of a relative of complex numbers. In this 
paper, we investigate a feedforward neural network extended to 
dual numbers (dual-NN). It is found that the dual-NN has 
different properties from the real-NN and the complex-NN. 
Specifcally, for the input (two-dimensional information), the 
weights are trained with the constraint of the motion of shearing. 
Experimental results show that the generalization ability is higher 
than those of the real-NN and the complex-NNs for the training 
pattern with the shearing relation. 
 

I. INTRODUCTION 
A dual number is one of the binarion expressed as 
       			𝑧 = 𝑥 + 𝜀𝑦 ,  𝜀! = 0.     				(1.1) 
The complex number is also one of the binarion, so the dual 
number and the complex number have similar properties. As 
complex numbers, we call 𝑥 the real-part and 𝑦 the dual-part, 
and denote them by 𝑅𝑒	𝑧 = 𝑥  and 𝐷𝑢	𝑧 = 𝑦 , respectively. 
The conjugate for a dual number 𝑧 = 𝑥 + 𝜀𝑦 is defined by 
𝑧̅ = 𝑥 − 𝜀𝑦. Also, a dual number 𝑧 can be viewed as a point (𝑥, 
𝑦) in the dual plane. The absolute value of the dual number can 
be obtained by multiplying z by the conjugate dual number 𝑧,̅ 
just like the complex numbers [1]. The difference from 
complex numbers is that 𝑧 = 0 + 𝜀𝑦 itself is zero divisors, 
and all zero divisors are on the y-axis (the dual-axis). If a 
function 𝑓(𝑧) is represented by 𝑢 + 𝜀𝑣	in the dual plane, it is 
differentiable for all 𝑧 = 𝑥 + 𝜀𝑦 ∈ 𝔻  since it satisfies the 
Cauchy-Riemann equation, provided that 𝜕𝑢/𝜕𝑥 = 𝜕𝑣/
𝜕𝑦, 𝜕𝑢/𝜕𝑦 = 0 where 𝔻 is the set of dual numbers [2].  
 Sven and Gerald compared the learning losses and test losses 
of the multi-layer perceptrons (MLP) using real numbers, 
complex numbers, hyperbolic numbers and dual numbers. As 
a result, they showed that the MLP using dual numbers do not 
learn some training data that uniformly drawn from [0,1]! 
well [3].  

Nitta proposed a feedforward complex-valued neural 
network (complex-NN) in which the inputs, outputs, weights, 
and biases of the real-valued neural network (real-NN) are 
extended to complex numbers [4][5] and investigated its 
fundamental properties [6]. In this paper, in accordance with 

those researches, we formulate a feedforward dual-valued 
neural network (dual-NN), which is an extension of the real-
NN to dual numbers, and clarify its learning properties. 

 
II. PROPERTIES OF THE DUAL-NN 

This section formulates a dual-NN and shows the properties 
of the weight parameters.  
 For simplicity, we consider a single-layer dual-NN, i.e., a 
single dual-valued neuron. Like the real-NN, the dual-NN 
multiplies each input with its corresponding weight and adds 
all the values together. Add a bias value to it, and pass it 
through the activation function to generate the output. The 
single-layer dual-NN is an NN that outputs a single dual 𝑍 =
𝑋 + 𝜀𝑌 ∈ 𝔻 given n dual-valued inputs 𝑧" = 𝑥" + 𝜀𝑦"(1 ≤
𝑘 ≤ 𝑛) ∈ 𝔻 . The weights and biases are 𝑤" = 𝑤"

($) +
𝜀𝑤"

(&)(1 ≤ 𝑘 ≤ 𝑛) ∈ 𝔻  and 𝜃 = 𝜃($) + 𝜀𝜃(&) ∈ 𝔻  respect-
tively. The activation function 𝑓': 𝔻 → 𝔻 is defined as 

𝑓'(𝑧) = 𝑓((𝑥) + 𝜀𝑓((𝑦) 𝑧 = 𝑥 + 𝜀𝑦,   (2.1) 
where 𝑓((𝑢) = 1 (1 + exp(−𝑢))⁄ ∈ ℝ where ℝ is the set of 
real numbers. The output of the dual-NN 𝑋 + 𝜀𝑌  can be 
expressed as 
𝑋 + 𝜀𝑌 

= 𝑓' LMNO𝑤"
($) + 𝜀𝑤"

(&)P(𝑥" + 𝜀𝑦")Q
)

"*+

+ O𝜃($) + 𝜀𝜃(&)PR 

= 𝑓( SM𝑤"
($)𝑥"

)

"*+

+ 𝜃($)T

+ 𝜀𝑓( SMO𝑤"
(&)𝑥" +𝑤"

($)𝑦"P
)

"*+

+ 𝜃(&)T. 

(2.2) 
In this way, the dual-valued neuron with n inputs can be 
represented by a real-valued neuron with n inputs and a real-
valued neuron with 2n inputs. Because of 𝜀! = 0, the real-
valued neuron corresponding to the real-part 𝑋 has 𝑛 fewer 
terms than the real-valued neuron corresponding to the dual-
part 𝑌. 
 The arguments of 𝑓(  for the two terms in (2.2) are 
expressed as  
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(2.3) 
in a matrix form. And the first term in (2.3) can be rewritten as 

[|𝑤+| [
cos 𝛼+ 0
sin 𝛼+ cos 𝛼+

\ ⋯ |𝑤)| [
cos 𝛼) 0
sin 𝛼) cos 𝛼)

\\

⎝

⎜
⎛
[
𝑥+
𝑦+
\

⋮
[
𝑥)
𝑦)
\
⎠

⎟
⎞
, 

(2.4)  

where 𝛼" ∶= tan,+(𝑤"
(ℰ)/𝑤"

($)) , and |𝑤"| [
cos 𝛼" 0
sin 𝛼" cos 𝛼"

\ 

is represented by 

|𝑤"| cos 𝛼" [
1 0

tan𝛼" 1\[
𝑥"
𝑦"
\ 	     (2.5) 

for any (1 ≤ 𝑘 ≤ 𝑛). Equation (2.5) is a transformation of the 
input (𝑥" 𝑦").  by a matrix [ 1 0

tan𝛼" 1\ followed by the 

multiplication by |𝑤"| cos 𝛼" . The transformation, 

represented by the matrix [ 1 0
tan𝛼" 1\ , corresponds to a 

motion called shearing. Shearing is the transformation of the  
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

vector (𝑥" 𝑦"). by scalar multiplying 𝑦" without moving 
𝑥" (Fig 1):  

    [ 1 0
tan𝛼" 1\[

𝑥"
𝑦"
\ = n

𝑥"
𝑥" tan𝛼" + 𝑦"o .   (2.6) 

The net input to the dual-NN is a linear transformation of 
shearing, scalar multiplication, and translation of the input dual 
(2-dimentional information) as shown in Fig 1. In other words, 
the weights are updated under the constraint with respect to the 
movement of shearing. 
 

III. BACKPROPAGATION LEARNING ALGORITHM 
In this section, we derive a backpropagation (BP) learning 

algorithm for a dual-NN. For simplicity, we assume that the 
network has three layers.  
 First, we formulate a three-layer dual-NN that has L input 
neurons, M hidden neurons and N output neurons. Let 𝑿 =
𝒙 + 𝜀𝒚 = [𝑥+, … , 𝑥/]. + 𝜀[𝑦+, … , 𝑦/]. denote the input to the 
dual-NN. We will use 𝑤01 = 𝑤01

($) + 𝜀𝑤01
(&)  for the weight 

between the input neuron 𝑖  and hidden neuron 𝑗 , 𝑣"0 =
𝑣"0
($) + 𝜀𝑣"0

(&) for the weight between the hidden neuron 𝑗 and 
output neuron 𝑘, 𝜃0 = 𝜃0

($) + 𝜀𝜃0
(&) for the bias of the hidden 

neuron 𝑗 , and 𝛾" = 𝛾"
($) + 𝜀𝛾"

(&)  for the bias of the output 
neuron 𝑘. The activation function of each neuron is defined in 
(2.1). The net input to the hidden neuron 𝑗 is 
 𝑈0 = 𝑈0

($) + 𝜀𝑈0
(&) 

=M𝑤01
($)𝑥1

/

1*+

+ 𝜃0
($) + 𝜀 SMO𝑤01

(&)𝑥1 +𝑤01
($)𝑦1P

/

1*+

+ 𝜃0
(&)T, 

(3.1) 
and its output is 

𝐻0 = 𝐻0
($) + 𝜀𝐻0

(&) = 𝑓(O𝑈0
($)P + 𝜀𝑓(O𝑈0

(&)P.  	(3.2) 
Then, the net input to the output neuron 𝑘 is 
𝑆" = 𝑆"

($) + 𝜀𝑆"
(&) 

 =M𝑣"0
($)𝐻0

($)
2

0*+

+ 𝛾"
($) 

+𝜀 SMO𝑣"0
(&)𝐻0

($) + 𝑣"0
($)𝐻0

(&)P
/

1*+

+ 𝛾"
(&)T, 

(3.3) 
and its output is 

𝑂" = 𝑂"
($) + 𝜀𝑂"

(&) = 𝑓(O𝑆"
($)P + 𝜀𝑓(O𝑆"

(&)P.  (3.4) 
 Next, we derive the backpropagation learning algorithm for 
the three-layer dual-NN described above (called dual-BP here). 
The dual-BP is essentially the same as the Complex-BP, a 
backpropagation learning algorithm for the complex-NN [4, 5]. 
First, we initialize the weights and biases with random numbers. 
Next, we propagate the input forward and calculate the error 
between the actual output 𝑶 = 𝑶($) + 𝜀𝑶(&) and the training 
data 𝑻 = 𝑻($) + 𝜀𝑻(&)  where, 𝑶(𝒓) = ~𝑂+

($), … , 𝑂4
($)�

.
, 

Figure 1. Images of shearing (top) and two-dimensional motion 
(bottom) for a dual signal 

Du 

Re 

Du

(𝑥! , 𝑥! tan 𝛼! + 𝑦!) 

Re 

𝛼!  
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𝑶(&) = [𝑂+
(&), … , 𝑂4

(&)]. , 𝑻(𝒓) = [𝑇+
($), … , 𝑇4

($)]. , and 𝑻(&) =
[𝑇+

(&), … , 𝑇4
(&)].. Let 𝛿" be the error between the actual output 

value 𝑂" = 𝑂"
($) + 𝜀𝑂"

(&) and the corresponding training data 
𝑇" = 𝑇"

($) + 𝜀𝑇"
(&)  of output neuron 𝑘 . That is, 𝛿" = 𝑇" −

𝑂" .	 We first considered the squared error (1 2⁄ )∑ |𝑇" −4
"*+

𝑂"|! as the error function to minimize. However, the absolute 
value of the dual number makes the real part disappear, that is, 
due to the property of the dual numbers: 𝜀! = 0, the error 
function becomes (1 2⁄ )∑ O𝛿"

($)P
!4

"*+ . Thus, we realized that 
the squared error is not suitable as the learning error function 
for the dual-BP. Therefore, we adopted here the Euclidean 
distance in the dual plane as the error function. That is, the error 
function 𝐸 is defined as 

𝐸 =
1
2M

‖𝑇" − 𝑂"‖=!
4

"*+

=
1
2M�𝛿"

($) + 𝜀𝛿"
(&)�

=

!
4

"*+

    		 

=
1
2MnO𝛿"

($)P
!
+ O𝛿"

(&)P
!
o ,

4

"*+

 (3.5) 

where ‖𝑧‖= = �𝑥! + 𝑦!, 𝑧 = 𝑥 + 𝜀𝑦 . Then, the error func-
tion E is partially differentiated with respect to each parameter 
to obtain the gradient of the parameter. We then multiply the 
gradient by a sufficiently small value 𝜂 > 0 (learning rate) to 
obtain the update amount, and update it using the following 
algorithm. 

	𝛾")>? = 𝛾"@AB − 𝜂∆𝛾" ,       (3.6) 

𝑣"0)>? = 𝑣"0@AB − 𝜂∆𝑣"0 ,      			(3.7) 

𝜃0)>? = 𝜃0@AB − 𝜂∆𝜃0 ,       	(3.8) 

𝑤01)>? = 𝑤01@AB − 𝜂∆𝑤01 .      			(3.9) 
Each gradient is respectively expressed as  

∆𝛾" =
𝜕𝐸
𝜕𝛾"

($) + 𝜀
𝜕𝐸
𝜕𝛾"

(&) 

= 𝑂"
($)O1 − 𝑂"

($)PO−2𝛿"
($)P + 𝜀 n𝑂"

(&)O1 − 𝑂"
(&)PO−𝛿"

(&)Po, 

(3.10) 

∆𝑣"0 =
𝜕𝐸
𝜕𝑣"0

($) + 𝜀
𝜕𝐸
𝜕𝑣"0

(&) 

 				 = O𝐻0
($)∆𝛾"

($) +𝐻0
(&)∆𝛾"

(&)P + 𝜀O𝐻0
($)∆𝛾"

(&)P,   	(3.11) 

∆𝜃0 =
𝜕𝐸
𝜕𝜃0

($) + 𝜀
𝜕𝐸
𝜕𝜃0

(&) 

= 𝐻0
($)O1 − 𝐻0

($)PMn𝑣"0
($)𝑂"

($)O1 − 𝑂"
($)PO−2𝛿"

($)P		
"

+ 𝑣"0
(&)𝑂"

(&)O1 − 𝑂"
(&)PO−𝛿"

(&)Po 

+𝜀 S𝐻0
(&)O1 − 𝐻0

(&)PMn𝑣"0
($)𝑂"

(&)O1 − 𝑂"
(&)PO−𝛿"

(&)Po
"

T, 

(3.12) 

∆𝑤01 =
𝜕𝐸
𝜕𝑤01

($) + 𝜀
𝜕𝐸
𝜕𝑤01

(&) 

= O𝑥1∆𝜃0
($) + 𝑦1∆𝜃0

(&)P + 𝜀O𝑥1∆𝜃0
(&)P.      (3.13) 

 

IV. LEARNING PERFORMANCE 
 In this section, we evaluate the learning performance of the 

dual-BP via computer simulations.  
 We implemented the dual-BP using Python. The initial 
values of each parameter such as weights and biases used for 
training were set with random numbers generated from the 
standard normal distribution. We considered the sum of the 
learning errors for each pattern to be the learning error for one 
epoch, and if the learning error for one epoch was less than 0.1, 
we judged that learning was complete. The maximum number 
of the number of learning epochs was set to 10,000 epochs 
(1,000 epochs only for the first learning pattern). The learning 
rate 𝜂 is varied from 0.1 to 1.0, and 50 trials are performed 
for each learning rate. 
 
Pattern ①	
 First, we used the training set in Table 1. The inputs are points 
aligned on a line parallel to the real-axis in the dual plane, and 
the outputs are parallel translations (shearing) by the value of 
the dual-axis. If the input is 𝑧 = 𝑥 + 𝜀𝑦, the dual-part of the 
corresponding output is (𝑥! + 𝑦) + 2 . For example, if the 
input is a point 𝑐 = 𝑎 + 𝜀0 on the real-axis, then the expected 
output is 𝑎 + 𝜀(𝑎! + 0 + 2) (Fig. 2).  
 The convergence rates for the real-NN, the complex-NN and 
the dual-NN are shown in Table 2. We compared the 
generalization error of the dual-NN with those of the real-NN 
and the complex-NN. The experimental results are shown in 
Fig 3. We can find from Fig 3 that the generalization error of 
the dual-NN is smaller than those of the real-NN and the 
complex-NN at the learning rates ranging within 0.1 and 0.6. 
All the generalization errors of the real-NN, complex-NN and 
dual-NN were large at the learning rates ranging within 0.7 and 
1.0. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Pattern No. Input pattern Output pattern 
1 −4 − 2𝜀 −4 + 16𝜀 
2 −3 − 2𝜀 −3 + 9𝜀 
3 −2 − 2𝜀 −2 + 4𝜀 
4 −1 − 2𝜀 −1 + 𝜀 
5 −2𝜀 0 
6 1 − 2𝜀 1 + 𝜀 
7 2 − 2𝜀 2 + 4𝜀 
8 3 − 2𝜀 3 + 9𝜀 
9 4 − 2𝜀 4 + 16𝜀 

Table 1．Learning patterns ① 
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Pattern ② 
 Next, we changed the training set from the one for learning 
quadratic functions to the one for learning sin functions. In the 
same way as the pattern ①, the points aligned on a line parallel 
to the real-axis in the dual plane are used as input to learn the 
fitting to the sin function. Specifically, when we input 𝑧 = 𝑥 +
𝜀𝑦, 𝑥 + 𝜀(𝑠𝑖𝑛5𝑥 + 𝑦 + 0.5) is output (Fig 4). The training set 
is shown in Table 3. 
 The experimental results show that the generalization error 
of the dual-NN is smaller than or nearly equal to those of the 
other two NNs at the learning rates 𝜂 = 0.1,… , 0.7, although 
the number of learning cycles of the dual-NN is somewhat 
larger than those of other two NNs (Fig 5). We excluded the 
experimental results for the learning rates ranging within 0.8 
and 1.0 from discussions because the convergence rates were 
extremely low. The convergence rate for the real-NN, the 
complex-NN and the dual-NN are shown in Table 4. In the  
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝜂 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Real 100 100 100 100 100 100 98 80 74 54 

Complex 98 100 100 100 100 98 98 80 64 54 

Dual 98 100 100 100 100 92 72 50 30 18 

Pattern No. Input pattern Output pattern 
1 −1.0 − 0.5𝜀 −1.0 + 0.96𝜀 
2 −0.8 − 0.5𝜀 −0.8 + 0.76𝜀 
3 −0.6 − 0.5𝜀 −0.6 − 0.14𝜀 
4 −0.4 − 0.5𝜀 −0.4 − 0.91𝜀 
5 −0.2 − 0.5𝜀 −0.2 − 0.84𝜀 
6 0.5𝜀 0 
7 0.2 − 0.5𝜀 0.2 + 0.84𝜀 
8 0.4 − 0.5𝜀 0.4 + 0.91𝜀 
9 0.6 − 0.5𝜀 0.6 + 0.14𝜀 

10 0.8 − 0.5𝜀 0.8 − 0.76𝜀 
11 1.0 − 0.5𝜀 1.0 − 0.96𝜀 

Figure 3．Average number of learning epochs in convergence (top) and 
average test error (bottom) for pattern ① 

Table 3．Learning patterns ②  

 

Figure 4．Learning patterns ②, input test patterns, output test patterns 
(i.e., expected outputs for the input test patterns). “predict” means the 

actual value output by the model learned the learning pattern ②for the 
“test input” 

Figure 2．Learning patterns ①, input test patterns, output test patterns 
(i.e., expected outputs for the input test patterns). “predict” means the 

actual value output by the model learned the learning pattern ① for the 
“test input” 

 -4     -3    -2     -1     0     1     2      3     4 

14 

18 

-2 
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10 

Table 2．The convergence rates (%) for the real-NN, the complex-NN   
and the dual-NN for pattern ① 
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dual-NN, the convergence rate is nearly 0% for learning rates 
𝜂 = 0.8, 0.9, 1.0, but this is not a drawback unique to the dual-
NN because the convergence rate of the real-NN is also nearly 
0%. 
 
Pattern ③ 
 Finally, we used a more complicated function: a function 
that superimposed several sin functions. Specifically, we 
considered a function that outputs 𝑥 + 𝜀(4 𝜋⁄ {sin 𝑥 +
(1 3⁄ ) sin 3𝑥 + (1 5⁄ ) sin 5𝑥 + (1 7⁄ ) sin 7𝑥} + 𝑦 + 0.5)  for 
an input point 𝑧 = 𝑥 + 𝜀𝑦	aligned on a line parallel to the real-
axis in the dual plane (Fig 6). The training set is shown in Table 
5. 

 Fig 7 shows that the generalization error of the dual-NN is 
smaller than those of the other two NNs at almost all learning 
rates. In the case of the learning pattern ③, the number of 
learning cycles of the dual-NN needed to converge was almost 
the same as those of the real-NN and the complex-NN. The 
possible reason for this is that the function is difficult for the 
real-NN and the complex-NN to learn. However, this needs to 
be further investigated. As for the convergence rate, they are 
shown in Table 6. There was no significant difference in the 
convergence rate. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

𝜂 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Real 100 100 100 100 98 70 32 0 0 0 

Complex 100 100 100 100 100 100 92 6 0 0 

Dual 100 100 100 100 100 90 80 4 0 0 

Pattern No. Input pattern Output pattern 
1 −1.0 − 0.5𝜀 −1.0 − 1.01𝜀 
2 −0.8 − 0.5𝜀 −0.8 − 0.89𝜀 
3 −0.6 − 0.5𝜀 −0.6 − 1.01𝜀 
4 −0.4 − 0.5𝜀 −0.4 − 1.18𝜀 
5 −0.2 − 0.5𝜀 −0.2 − 0.89𝜀 
6 0.5𝜀 0 
7 0.2 − 0.5𝜀 0.2 + 0.89𝜀 
8 0.4 − 0.5𝜀 0.4 + 1.18𝜀 
9 0.6 − 0.5𝜀 0.6 + 1.01𝜀 

10 0.8 − 0.5𝜀 0.8 − 0.89𝜀 
11 1.0 − 0.5𝜀 1.0 − 1.01𝜀 

Table 5．Learning patterns ③  

 

Figure 6．Learning patterns ③, input test patterns, output test patterns 
(i.e., expected outputs for the input test patterns). “predict” means the 

actual value output by the model learned the learning pattern ③	 for the 
“test input” 

Table 4．The convergence rates (%) for the real-NN, the complex-NN,  
and the dual-NN for pattern ② 

Figure 5．Average number of learning epochs in convergence (top) and 
average test error (bottom) for pattern ② 
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V．CONCLUSIONS 
We have formulated a feedforward dual-valued neural network, 
derived a dual-valued backpropagation learning algorithm for 
it, and investigated their fundamental properties. As a result, 
we have found that the parameters of the dual-NN are learned 
under the constraint of shear motion. Simulation results show 
that when the learning pattern is one that learns shear motion 
(e.g., when inputting points aligned on a real axis, the pattern 
produces an output that fits a certain quadratic or trigonometric 
function), the generalization performance is better than those 
of the real-NN and the complex-NN. 

In the future, we will study how to speed up the learning 
process. As other issues, we will extend the activation function 
ReLU, which is commonly used in NNs, to dual number to 

further stabilize the learning. We also plan to construct deep 
dual-NNs and study the differences in learning performance 
among the deep dual-NNs, deep real-NNs, and deep complex-
NNs [7].  
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𝜂 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Real 100 100 100 100 100 100 96 96 84 28 

Complex 100 100 100 100 100 100 98 94 68 22 

Dual 100 100 100 100 100 100 98 94 94 54 

Table 6．The convergence rates (%) for the real-NN, the complex-NN,  
and the dual-NN for pattern ③ 

Figure 7．Average number of learning epochs in convergence (top) and 
average test error (bottom) for pattern ③ 

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

192


