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Abstract—This paper discusses the separation of scattering
phase and propagation phase in radar systems. Recently we
proposed a novel radar imaging scheme using complex-valued
self-organizing map (CSOM) to deal with time-domain phase
profile of subsurface targets. Most of conventional radar imaging
schemes pays limited attention to phase information. However, we
consider that the phase values represent scattering mechanisms
while the amplitude peaks indicate scatterers’ distance. Then the
phase profile is widely useful in grouping for target recognition.
In this paper, we discuss the importance of the explicit separation
of the scattering phase from the propagation phase. We also
refer to the correspondence of this idea to the use of phasor-
quaternion self-organizing map (PQSOM) in our polarimetric
radar system. The separation is essential more and more in
advanced polarimetric-interferometric radar imaging systems in
the near future.

I. INTRODUCTION

Stepped-frequency continuous-wave (SFCW) scheme is one
of the standard observation configurations in ground penetrat-
ing radar (GPR) systems [1]–[4]. Obtained frequency-domain
scattering profile is Fourier transformed to a time domain data,
called A-scan, showing target distance as a pulse response [2],
[5]. By repeating this observation along a line on the earth sur-
face, we visualize the subsurface two-dimensionally with one-
dimensional space by one-dimensional time or depth. This is
the B-scan. We can also sweep the surface two-dimensionally
to obtain a three-dimensional under-ground image, namely C-
scan. They are widely used in a variety of application fields
such as void detection, pipe visualization and ruin survey [6]–
[9].

This paper intends to discuss the meaning and significance
of the phase information by focusing on the separation of
scattering phase and propagation phase. Most of conventional
systems ignore the phase characteristics in the time-domain
processing. However, the authors consider that the phase
information in the time domain is as meaningful as that
in the frequency domain. We often utilize phase spectra in
target grouping and recognition [10]–[12]. Some researchers
discussed this point [13], [14] and proposed the so-called
phase retrieval (PR) method.

Previously, the authors proposed an imaging scheme,
namely peak phase-profile complex-valued self-organizing
map (PP-CSOM) imaging, in which a complex-valued self-
organizing map (CSOM) deals with time-domain phase pro-
files (PP) for target grouping and visualization [15], [16]. In

this scheme, we find peaks in a time-domain amplitude profile,
then clip and move (shift) a peak to the time origin (t = 0)
to remove the phase rotation in the propagation, Fourier-
transform zero-shifted peak to obtain frequency-domain am-
plitude and phase profiles, which are fed to a CSOM for
grouping, and we finally obtain a visualized target in the
actual space domain [17]. The result reflects the scattering
mechanisms of targets such as plastic landmines [18].

The above process separates the scattering-mechanism
phase from the propagation phase to cast light on the targets,
resulting in a successful visualization even in tough tasks
rather than ranging. This treatment is similar to the separation
of polarization and propagation phase in polarimetric synthetic
aperture radar (PolSAR). Polarization is determined by the
phase difference and the amplitude ratio of two orthogonal
components of the electric fields. For a given polarization of
illumination, the target scattering mechanism determines the
polarization to be observed [19], [20]. The scattering phase
information is observable separately from the propagation
phase without any special separation process [21]. n this sense,
however, the polarization has a meaning similar to that of
the relative phase. The polarization-related phase is a relative
phase, i.e., the difference between those of two orthogonal
components, while the propagation phase is an absolute phase
working to both the components equally [22]. This thought
leads to phasor quaternion (PQ) neural networks (PQNN) [23].
The PQSOM GPR system based on this separation clearly
presented a better visualization [24], [25].

Though we pick up a SFCW system in this paper, note that
the discussion is applicable directly to traditional pulse radar
systems. In principle, their processing is identical because
the time-domain information of a pulse radar is equivalent
to that in a frequency-domain radar convertible by Fourier
transform. In physical implementation, however, SFCW is
much easier because it is free from high-peak pulses and,
consequently, from nonlinear distortion in electronics and dif-
ficulty in amplitude and phase control. SFCW has also a higher
signal-to-noise ratio (SNR) since it has larger transmission and
observation duration than a pulse radars, which are active only
in the pulse duration. These points are very influential to the
performance in particular when we focus on the peak phase
profiles.

This paper reviews the PPSOM method first to check the
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(a)

(b)
Fig. 1: (a) Conceptual illustration of SFCW GPR measurement setup and (b)

a photo of our experiment [15].

features and advantages. Then we discuss its relationship to
the PQSOM.

II. DYNAMICS OF PEAK PHASE-PROFILE (PP) AND CSOM
(PP-CSOM) PROCESSING

A. Peak Phase-Profile Extraction

We review the PP-CSOM method. Fig. 1 shows (a) the
conceptual illustration of the observation sweeping and (b) the
photo of our experiment of the PP-CSOM GPR system. The
details are given in Ref. [15], [17]. Fig. 2(a) shows the total
signal processing flow while (b) presents the signals at some
processing points. The processing is described as follows.

1) Obtain the complex-valued scattering data in the fre-
quency domain S21(fn) by using a vector network
analyzer (VNA).

2) Inversely Fourier transform S21(fn) to the time-domain
complex-valued scattering data. There we can observe

TABLE I: Variables and parameters used in the CSOM processing [15].

ĉ winner class
wĉ(t) weight of the winner class neuron ĉ ( =

reference vector)
wĉ±1(t) weight of the neurons next to the winner

neuron ( = reference vector)
k input feature vector (= frequency profiles of

the scattering coefficient)
t a number of learning of iteration

α(t) self-organizing coefficient of the winner neu-
ron

β(t) self-organizing coefficient of the neurons next
to the winner neuron (< α)

a single or multiple peaks (p = 1, 2, ..., p, ... ,P )
corresponding to a pulse response, which is shown in
Fig. 3 as an A-scan. The time t corresponds to the depth
or distance from the transmitting and receiving antennas
D.

3) Find major peaks. Clip respective peaks with a window,
e.g., Gaussian window.

4) Move a clipped peak to the time origin (t = 0) precisely,
and apply Fourier transform. The move (shift) removes
the propagation phase.

5) Repeat Step 3) and Step 4) for the peaks p, to
calculate the scatterers’ scattering coefficients kp =

[ kp(f1) kp(f2) · · · kp(fN ) ]
T where [·]T stands for

transpose. This profile kp is the feature vector repre-
senting the feature of a voxel.

6) Group the voxels based on their respective feature vec-
tors kp, explained below, by using a CSOM.

7) Designate colors to the voxels in the actual space based
on the neuron number (= class number) obtained by the
CSOM to visualize targets.

In Step 4), we employ zero-padding in the inverse Fourier
transform (IFFT) to increase the window length by ten times
to enhance the spatial resolution so high that we can obtain
the complex-valued scattering coefficient accurately enough.
Step 4) represents the scattering mechanism separately from
the propagation characteristics, and we feed this profile to the
CSOM as the feature vector.

In contrast, the conventional PR method calculates the
average as the feature value calculated as

θ̄p = arg

[
1

N

N∑
n=1

kp(fn)

]
= arg

[
1

N

N∑
n=1

rp(fn)e
jθp(fn)

]
(1)

where rp(fn) and θ(fn) are amplitude and phase at frequency
fn, which construct the feature vector k(fn) (explained be-
low). There, it was pointed out that the averaging causes the
loss of important information, namely the frequency profile,
of the scattering coefficient.

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

194



Measured scattering 

parameters

Time-domain 

response showing 

multiple pulses

IF
F

T

Zero-shifted and 

extracted  single 

pulse

Extract by 

Gaussian window 

+ shift to time zero

F
F

T

Frequency profile of scattering 

coefficients 
Cluster by 

CSOM
Grouped 

scatterers

Peak phase retrieval CSOM adaptive 

clustering

Frequency domain

Time domain

Visualization of 

target area

M
a

p

SOM space

Real space

VNA 

measurement

1

2 3 4

5 6

𝑠21 𝑓𝑛

(a)

P
e
a
k
 p

h
a
s
e

-p
ro

fi
le

 f
e
d

  
to

 C
S

O
M

IFFT

𝑝 = 1

𝑝 = 2

FFT

𝑝 = 1

𝑝 = 2

P
e
a
k
 s

h
if
t

V
N

A
m

e
a

s
u

re
m

e
n
t

𝑝 = 1

𝑝 = 2

𝑝 = 1

𝑝 = 2

𝑝 = 1

1

2

3

4

5

(b)
Fig. 2: (a) Total flow of the signal processing of PP-CSOM and (b) example signals observed at some points.
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(p = 1)

(p = 2)

Fig. 3: An A-scan example.

B. Complex-Valued Self-Organizing Map

In our method, we feed the high-dimensional feature vector
kp(fn), instead of the average, to the CSOM, which performs
robust visualization of high-dimensional data. CSOM is a
complex-valued framework of self-organizing map (SOM)
[26]. The input vector is kp expressed as

kp =


kp(f1)
kp(f2)

...
kp(fN )

 =


rp 1 exp(jθp 1)
rp 2 exp(jθp 2)

...
rp N exp(jθp N )

 (2)

where p is the suffix for peaks. In the proposed system, we use
CSOM to obtain a good generalization ability for the complex-
valued data constructed by amplitude and phase [27]–[29].

Table I lists the variables and parameters used in the CSOM.
To decide the winner, to which an input feature vector kp is
classified, we use complex-valued inner product determined as
[30] ∣∣∣∣kH

p · wc

||wc||

∣∣∣∣ =
∣∣∣∣∣

N∑
n=1

rkn
exp(j(θwcn

− θkn
))

∣∣∣∣∣ (3)

where (·)H and ||·|| mean the complex conjugate transpose
(Hermitian conjugate) and the norm of a vector. We use a ring-
CSOM having one-dimensional topology, which represents the
similarity among the frequency profiles in a one-dimensional
space without ends. The weight update rule is expressed as
[31]

wĉ(t+ 1) = wĉ(t) + α(t) (k −wĉ(t)) (4)
wĉ±1(t+ 1) = wĉ±1(t) + β(t) (k −wĉ±1(t)) (5)

where ĉ and ĉ± 1 denotes the winner and the neighbors.
We have only two neurons (groups) as the neighbors in the

ring-CSOM since the number of the total groups here is only 5
to 8. The self-organizing process realizes an adaptive grouping
depending on the fed data. At the same time, neighboring
two neurons becomes similar in their weights in accordance
with the input feature set. The self-organization dynamics is
determined by the self-organization parameters α and β. We
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Fig. 4: (a) Amplitude and (b) phase of a B-scan.

call this method in total as PP-CSOM (peak phase-profiling
and complex-valued self-organizing map).

III. RESULT

Fig. 1(b) includes a setup photo. We put mostly dry soil with
stones in a big plastic case, and bury a plastic landmine (mock,
PMN-2, about 12 cm diameter, 5 cm thickness) at about 1 cm
depth. We use taper slot antennas having a wide working
frequency range and a high directivity [32]. The number of
the frequency points is 101 in 2 to 10 GHz. We move the
antennas 30 times in x and y directions, respectively, with
1 cm interval to sweep a 30× 30 cm2 area.

Fig. 3 is an example of A-scan. We find two peaks at
D = 47 cm and 64 cm below the antennas. We also obtain a
corresponding phase data. Fig. 4 presents the power and phase
in a B-scan when we move the antennas in the x direction.
Fig. 4(a) shows the amplitude while (b) presents the phase of
the equivalent pulse response. In this experiment, there are two
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Fig. 5: Averaged phase values put at the first and second peak depths (bottom) and the original peak phase-profiles at some spatial points (top).

Fig. 6: Result of three dimensional grouping when considering the first and
second peaks in our proposed PP-CSOM method [15].

clear peaks in D direction, corresponding to almost the surface
of the soil and the bottom of the soil box. We find these peaks
are broad. The phase changes mostly along the depth D, but
with irregular changes at many local areas. It is interesting that
we find several phase singular points, where the phase value
shows non-zero rotation value but mostly ±2π value). This is
a feature specific to GPRs different from air/space radars.

The bottom color figure in Fig. 5 shows the averaged phase
calculated by (1) for the two depth peaks at each position.

Landmine 

Ground surface 

𝑝 = 1

Fig. 7: Conceptual illustration explaining the scattering mechanism including
multiple scattering resulting in frequency-dependent phase values.

The surface curve presents mostly violet color, resulting in
difficulty in landmine detection. That is, the conventional PR
method does not work effectively. However, the top three
profiles clearly depends on the landmine or absence thereof.
Our proposed PP-CSOM focuses on this difference.

We use the CSOM for the adaptive grouping of the peak
phase-profiles (PP). We move the antennas two-dimensionally
to obtain two peaks, p = 1 and 2, at each position (x, y). We
clip respective peaks and move them to the time origin t = 0,
apply Fourier transform, and obtain the frequency profile kp

to be fed to the CSOM. Here we prepare five classes for the
grouping.

Fig. 6 presents the result of the PP-CSOM grouping for the
two peaks at each location (x, y) sweeping over the obser-
vation area. We find a clear red area indicating a landmine.
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[23].

We can identify the landmine position with a consistent shape.
The result clearly demonstrates the high performance of the
PP-CSOM visualization method.

IV. PHASE CHANGES CAUSED BY SACTTERING

When we consider that the scattering occurs at sudden
changes in the permittivity and/or conductivity underground,
the phase change value should be 0 or π independent of
the observation frequency. However, when the electromagnetic
wave penetrates into a landmine and results in multiple scat-
tering, the frequency profile can be complex. Fig. 7 illustrates
the origin of the frequency-dependent scattering profile. In
addition, the present case also include the soil surface in the
multiple scattering. That is why we find a significance in the
use of the high-dimensional profile in the PP as it is, instead
of the average in the conventional PR. Therefore, it is also
very important to separate the scattering phase profile from
the propagation phase changes.

This idea is commonly shared with our another proposal,
namely, phasor-quaternion neural networks (PQNN) effec-
tively working in the singular-point removal in polarimetric-
interferometric synthetic aperture radar (PolInSAR) in the field
of satellite-borne/airborne SAR observations as illustrated in
Fig. 8 [23]. It is also shared in the polarimetric GPR, where
we use PQSOM [25]. There we deal with the scattering
polarization changes and the propagation phase explicitly by
the use of PQSOM [24]. In this sense, the polarization is the
relative phase.

In contrast, the propagation phase represents the distance
between the transmitter/receiver and the target. It can be
called the absolute phase. The PQNN deals with these two
entities (relative and absolute phase values) explicitly in a
separate manner. The essential idea is shared in PP-CSOM.
Accordingly, the separation of the relative scattering phase

from the absolute propagation phase holds a significance in
distinction and visualization of scatterers.

V. CONCLUSION

This paper investigated the essence of PP-CSOM processing
to find that the separation of scattering phase from the propa-
gation phase is essential in the visualization of scatterers. Most
of conventional radars did not pay attention to phase profile
in the time domain. However, the amplitude peaks show the
scatterers’ depths while the phase profiles represent scattering
mechanisms. The latter is highly informative in the distinction
and visualization of the scatters. We also discussed the fact that
this idea is commonly shared by the phasor-quaternion neural-
network (PQNN) processing, which is effective in polarimetric
radar imaging. The explicit separation of the relative scattering
phase and the absolute propagation phase will become more
and more essential in polarimetric-interferometric radar imag-
ing systems in the near future.
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[32] N. Jastram and D. S. Filipović, “Wideband millimeter-wave surface
micromachined tapered slot antenna,” IEEE Antennas and Wireless
Propagation Letters, vol. 13, pp. 285–288, 2014.

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

199


