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Abstract—Previously we proposed a ground penetrating radar
(GPR) system employing the phasor quaternion self-organizing
map (PQSOM) to deal with phasor quaternion (PQ) feature
vectors extracted from scattering matrices. It performs un-
supervised grouping to achieve visualization. Compared with
conventional complex-valued self-organizing maps (CSOM) and
quaternion self-organizing map (QSOM), PQSOM has better
grouping performance. In this paper, we investigate the origin
of the strength of PQSOM. We discuss the advantages of using
PQ vectors as feature vectors from a extracted data perspective,
and then analyze how update rules of PQSOM effectively use PQ
vectors to achieve better visualization. Our analysis is verified by
the experimental results.

I. INTRODUCTION

Ground penetrating radar (GPR)-based underground visual-

ization is a field with a wide range of demands and various ap-

plications. Visualization of anti-personnel plastic landmines is

a relatively difficult task as landmines are small, non-metallic

and prone to the influence of debris, rubble, etc. Sometimes

the visualization is performed for raw data by employing a

fixed signal processing [1]–[3]. Other cases adopt adaptive

methods such as neural networks to utilize the information

in the data effectively [4]–[6]. One of the effective methods

is to achieve landmine imaging through complex-valued self-

organizing map (CSOM), a self-organizing algorithm [7]–[9].

The CSOM [8] uses the spatial and frequency correlation of

scattering parameters for self-organization and grouping. The

experimental results show that for some difficult situations,

CSOM has problems such as unclear landmine boundaries and

landmine shape distortion.

Recently, the authors’ group has proposed a polarization

feature extraction method based on the scattering matrix [10],

[11]. We analyzed its effectiveness at the theoretical level,

and also applied it to the processing of synthetic aperture

radar (SAR) data to show its high performance. Another paper

has improved this feature extraction method by adding phase

information to define a new form called phasor quaternion

(PQ) [12]. Phasor quaternion neural network (PQNN) based

on PQ shows good performance in the residue removal task

of SAR data.

Based on all of the above, we proposed a PQ-based algo-

rithm called phasor quaternion self-organizing map (PQSOM)

[13], [14]. Through experiments, we found that PQSOM over-

comes the shortcomings of CSOM and has better performance

than not only CSOM but also quaternion self-organizing map

(QSOM). In this paper, we investigate the origin of the strength

of PQSOM. We discuss the advantages of using PQ vectors

as feature vectors from a extracted data perspective, and then

analyze how update rules of PQSOM effectively use PQ

vectors to achieve better visualization. Through experiments,

our conclusions are verified.

This paper is organized as follows. Section II briefly de-

scribes the structure of our system and the feature extraction

method of PQSOM. Section III reviews the dynamics of

PQSOM and discuss the origin of the strength of PQSOM.

Section IV summarizes our discussion and makes conclusions.

II. SYSTEM STRUCTURE AND FEATURE EXTRACTION

A. Overall System Structure

The structure of the PQSOM-based GPR system is de-

scribed as follows. First, we obtain multiple frequency scat-

tering matrices of each spatial measuring point as raw data.

Second, we extract feature vectors from the raw data for a

PQSOM to self-organize. After self-organization, we feed the

data to the PQSOM again for grouping the feature vectors,

and then plot the segmented image in the real space.

B. Feature Extraction

The feature extraction method of PQSOM follows the basic

idea of Ref. [12]. Simply speaking, the method consists of two

steps.

First, we derive Poincare vectors for each local window

with some incident waves assumed. To be more specific, for

a fixed local window and a fixed frequency, we have some

scattering matrices included in the window. Then, for an

assumed incident wave combined with those matrices, we can

get a Poincare vector. For PQSOM, we assume six different

incident waves of six polarization states: Horizontal (H),

Vertical (V), +45◦, −45◦, Left Circular (LC), Right Circular

(RC) for each local window. Hence, for a local window, we

get six Poincare vectors.

Each incident wave can be expressed by its unit Jones vector
[

Ei
H Ei

V

]T
(T: transpose) shown in Table I, where Ei

H and

Ei
V stand for horizontal and vertical components, respectively.

Then, for an incident wave, the scattered wave [Er
H Er

V]
T

is
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TABLE I
UNIT JONES VECTORS OF DIFFERENT POLARIZATION STATES

Incident
wave

Polarization state

H V +45◦ −45◦ LC RC






Ei

H

Ei

V













1

0













0

1













1√
2

1√
2













− 1√
2

1√
2













1√
2

j 1√
2













1√
2

−j 1√
2







obtained by
[

Er
H

Er
V

]

=

[

SHH SHV

SVH SVV

] [

Ei
H

Ei
V

]

. (1)

Further the Jones coherency matrix J is calculated as

J =

[

JHH JHV

JVH JVV

]

=

[〈

Er
HE

r∗

H

〉 〈

Er
HE

r∗

V

〉

〈

Er
VE

r∗

H

〉 〈

Er
VE

r∗

V

〉

]

(2)

where 〈·〉 indicates spatial average, ·∗ denotes the conjugate

of a complex number. From the Jones coherency matrix, the

averaged Stokes vector [〈g0〉 〈g1〉 〈g2〉 〈g3〉]
T

is calculated

as








〈g0〉
〈g1〉
〈g2〉
〈g3〉









=









JHH + JVV

JHH − JVV

JHV + JVH

j (JHV − JVH)









(3)

where j denotes the imaginary unit. The components 〈g0〉,
〈g1〉, 〈g2〉 and 〈g3〉 mean total power, degree of horizontal

polarization, degree of +45◦ polarization and degree of LC

polarization, respectively. The average Stoke vector indicates

the polarization state information of the scattered wave. It can

be expressed as a point on or in the unit sphere called Poincare

sphere. The position coordinate of the point is
(

〈g1〉

〈g0〉

〈g2〉

〈g0〉

〈g3〉

〈g0〉

)

. (4)

We call it Poincare vector.

Second, we combine the Poincare vector and phase infor-

mation of SHH to get a new form called phasor quaternion

defined as

p = pqpp :=

(

0
〈g1〉

〈g0〉

〈g2〉

〈g0〉

〈g3〉

〈g0〉

)

ejarg{SHH} (5)

where pq is the quaternion part representing polarization and

pp is the phasor part corresponding to the phase part. Phasor

quaternion was first introduced in phasor quaternion neural

network for removing artificial residues of SAR data [12].

III. PQSOM

A. Dynamics of PQSOM

Algorithm 1 shows the processing flow of PQSOM. At the

beginning, we initialize each weight vector. Then we feed a

input vector set to the PQSOM for several epochs. For an

input vector, we have to find the Best Match Unit (BMU)

at first. This is called competition stage. In other words, we

need to find a neuron whose weight vector is the closest to

the input vector. Then we update the weight vectors of BMU

and its neighbors. This is called adaptation stage. After self-

organization, we feed the input vector set to the PQSOM again

to group the input vectors and plot the segmented image to

show the result.

Algorithm 1: PQSOM Algorithm

Input: a set of input vectors {p(x, y)}, where

x ∈ {1, ..., X} and y ∈ {1, ..., Y }; class

number C; epoch number E.

Output: a set of classes of input vectors {c(x,y)}.

% Initialization:

randomly initialize each wc = wc(0)
% Self-organization:

for t = 1 to T = XY E do

% Competition:

find the best matching unit (BMU)

ĉ = argminc∈C d(p(t),wc(t))
% Adaptation:

update the weights of the BMU ĉ (wĉ) and its

neighbors
end

% Grouping:

group input vectors with self-organized PQSOM

c(x,y) = argminc∈C d(p(x, y),wc(T ))

In the adaptation stage, we update the weights of the BMU

and its neighbors of the Ring-PQSOM as follows. For the

quaternion part vector w
q
ĉ = [wq

ĉ km] and phase φĉ = [φĉ km]
in the phasor part vector w

p
ĉ(= [wp

ĉ km]) = exp(jφĉ) =
[exp(jφĉ km)] (1 ≤ k ≤ K, 1 ≤ m, d ≤ M) of the BMU,

we determine the update rule using quaternion part vector

pq(t) = [pq
km(t)] and phasor part vector pp(t) = [pp

km(t)]
of the t-th input vector p(t) as

w
q
ĉ km(t+ 1) = w

q
ĉ km(t)

+α(t)(pq
km(t)− w

q
ĉ km(t)) (6)

φĉ km(t+ 1) = φĉ km(t)− α(t)(
∑

d |p
q
kd(t)|)

· sin(φĉ km(t)− θkm(t)) (7)

α(t) = (1−
t

T
)α0 (8)

φĉ km(t) = arg{w
p
ĉ km(t)} (9)

θkm(t) = arg{p
p
km(t)} (10)

where α0 denotes learning coefficient for the BMU and T is

the total self-organization time.

For the BMU’s neighbors,

w
q
ĉ±1 km(t+ 1) = w

q
ĉ±1 km(t)

+β(t)(pq
km(t)− w

q
ĉ±1 km(t)) (11)

φĉ±1 km(t+ 1) = φĉ±1 km(t)− β(t)(
∑

d |p
q
kd(t)|)

· sin(φĉ±1 km(t)− θkm(t)) (12)

β(t) = (1−
t

T
)β0 (13)

φĉ±1 km(t) = arg{w
p
ĉ±1 km(t)} (14)
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Fig. 1. Phasor quaternions for incident waves of (a) H, (b) +45◦, as well as (c) LC at 8.6GHz, (d) H, (e) +45◦, (f) LC at 11.68GHz, respectively, where
the quaternion part of each PQ is plotted on or in the unit sphere (Poincare sphere), and the phase of phasor part is represented by color.

where β0(< α0) denotes learning coefficient for the neighbors.

B. Coordinated Change Feature

Unlike conventional CSOM and QSOM, PQSOM uses PQ

vectors as feature vectors. PQ takes both polarization state and

phase information into account, and considers them as a whole.

The polarization and phase have a coordinated change feature

shown in Figure 1. Figure 1 shows the phasor quaternions for

three polarized incident waves of H, +45◦, LC at 8.6GHz and

11.68GHz. The quaternion part of each PQ is plotted on or in

the unit sphere (Poincare sphere), and the phase of phasor part

is represented by color. First, we can get the following fact by

observing Figure 1. Regardless of the frequency or incident

wave, for those points with similar polarization, their phase

is also similar. According to the electromagnetic wave theory,

for the points in landmine area, the polarization states of the

scattered waves should be similar among them but different

from polarization states of points in the non-landmine area.

Based on the above facts, we can conclude that the phase

of points in the landmine area is similar and different from

that in non-landmine area. We call this feature coordinated

change. Intuitively speaking, when the polarization (quaternion

part pq) gradually changes, the phase (phasor part pp) will

gradually change along with it. For most of frequencies and

incident waves, this phenomenon is observed. For the rest, this

phenomenon is not so obvious, such as Figure 1 (b).

This observation implies that polarization and phase contain

related information. For a neural network (NN), its ability

can be enhanced by properly preparing different types of

information representing even for identical entities. SOM is a

type of NN. Hence, the self-organization ability of PQSOM is

enhanced by combining polarization with phase information

into PQ form as input. In addition, for each PQ vector, we

consider six different incident waves. This process also en-

hances the self-organization ability of PQSOM by introducing

a variety in the scattering feature representation. The grouping

results below support our thought.

C. Design of Update Rules

In order to make full use of the valid information of PQ,

the design of update rules of PQSOM is the key point. Since

phasor quaternion is a new type of number, not two separate

parts, we need to reflect its integrity. We get the idea from

CSOM to design update rules. For quaternion part, we update

it in the same way as CSOM without phase. For phasor part,

the update rule of CSOM is derived from the partial derivative

of the loss function [9]. We follow the same steps to derive the

update rule for PQSOM except for substituting the norm of

quaternion part for the amplitude of complex number. Then,

in the phasor part update rules (7) and (12)

φĉ km(t+ 1) = φĉ km(t)− α(t)(
∑

d |p
q
kd(t)|)

· sin(φĉ km(t)− θkm(t))

φĉ±1 km(t+ 1) = φĉ±1 km(t)− β(t)(
∑

d |p
q
kd(t)|)

· sin(φĉ±1 km(t)− θkm(t)),
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the norm of quaternion part
∑

d |p
q
kd(t)| is also considered.

This shows that, akin to CSOM, the norm of PQ can also

influence the phase update. Since this update method empha-

sizes the fact that PQ is an entity as a whole, the related useful

information between the quaternion part and the phasor part

can be strengthened during the phase update process, which in

turn makes the self-organization ability of PQSOM enhanced.

Hence, our design makes good use of the coordinated change

feature between polarization and phase shown in the extracted

data. Therefore, PQSOM should have better visualization

performance. From the experimental results, this design plays

its expected role.

D. Experimental Results

Figure 2 shows the grouping results of CSOM, QSOM,

and PQSOM. The boundary of buried landmine is shown as

dashed circle in the figure. Each color represents a class (i.e.,

a neuron). It is obvious that PQSOM has the best result.

The boundary of the possible landmine area is clear, and

the shape of the area is almost the same as real landmine

shape. The experimental results validate the previous analysis

and discussions. The use of PQ vectors as feature vectors

and the corresponding update method can indeed improve the

visualization performance of PQSOM.

We also compare two distance functions, namely, Euclidean

metric and inner product. From the results, inner product has

a higher performance since there is no possible landmine

area in the background, and the background grouping is more

uniform. Since PQSOM is an unsupervised learning algorithm,

here we do not identify which class the landmine belongs

to. However, we can adaptively identify the landmine class

by evaluating the total degree of conformity of Ring-SOM

weights. For details, please refer to Ref. [15]. In addition, the

lowest DoP of the raw data is about 0.8 in the experiment,

which means that for some frequencies and locations, the

scattered waves are partially polarized. The grouping results of

PQSOM imply that PQSOM also utilizes the DoP information

effectively. Therefore, PQSOM should be able to achieve good

grouping even for relatively low DoP data.

IV. CONCLUSIONS

Previously, we proposed the PQSOM and applied it to the

detection of anti-personnel plastic landmines. The visualiza-

tion results of PQSOM are better than conventional CSOM and

QSOM. In this paper, we discussed the origin of the strength of

PQSOM. Through observing the data, we found that the phase

and polarization information of the data have the coordinated

change feature. Based on this feature, the use of PQ feature

vectors can effectively enhance the self-organization ability of

PQSOM. Then we looked at the details of the update rules of

PQSOM. The design of phasor part update rules can effectively

utilize the coordinated change feature of PQ.

To sum up, there are three reasons that make PQSOM more

effective:

1 Polarization (quaternion part) and phase (phasor part) are

respective counterparts, which means that they contain

Fig. 2. Grouping results of CSOM for (a) SHH, (b) SHV, (c) SVH and (d)
SVV as raw data, QSOM with (e) Euclidean metric as distance function, as
well as PQSOM with (f) Euclidean metric and (g) inner product as distance
functions [13].

related useful information. At the feature extraction stage,

input vectors of PQSOM contain more information than

CSOM or QSOM does. Hence, PQSOM is more likely

to work better than QSOM and CSOM.

2 We do not simply considering phase as an additional

dimension of polarization by adding it to the quaternion

part to get a five-dimensional real vector. According

to the coordinated change feature between them, we

use the form of phasor quaternion to turn them into

a new number. Then in the self-organizing process,

the quaternion part is used in the phase update rules.

Through this design, we expect that the related useful

information they share can be strengthened, rather than

just let them update independently without influencing
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each other. Therefore, we can effectively enhance the

self-organization capability of PQSOM, and thus achieve

better visualization.

3 We designed the phase update rules by following the

successful experience of CSOM, which guarantees the

convergence of the algorithm and basic performance.

We validated our theoretical-level analysis through exper-

iments. Experimental results show that, compared with the

conventional CSOM and QSOM, the PQSOM has better

visualization performance. Our analysis also implies that PQ, a

new feature extraction approach, can be widely used in topics

related to electromagnetic waves. We will further improve

the theory of PQ-related algorithms and expand the scope of

application.
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