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Abstract—Nonnegative matrix factorization (NMF) is widely
used in the audio applications. In these applications, recently, the
cost functions based on the complex probability distribution and
the optimization algorithms have been developed. However, the
flexibility of these methods is limited because the cost functions
have only one or no hyper-parameter. Thus, in this paper, we
utilize a neural network to construct a generalized cost function
of the NMF. Moreover, we propose a novel neural network
architecture to estimate the NMF parameters. The proposed
neural network solves the NMF optimization problem of which
cost function is parameterized by the part of itself. We show
the proposed neural network can learn a statistical model by
applying it to the denoising and the signal separation tasks.

I. INTRODUCTION

Nonnegative matrix factorization (NMF) [1] is a popular
method for single-channel signal separation and audio denois-
ing [2]–[7]. In audio signal processing, the NMF is typically
applied to the power or amplitude spectrogram of the observed
signal. The spectrogram Y = [ymn] ∈ RM×N+ (R+ = [0,∞))
is approximated as the product Y ' WH , where W =
[wmk] ∈ RM×K+ is a basis matrix, which includes frequently
appearing spectral patterns, and H = [hkn] ∈ RK×N+ is an
activation matrix.
W and H can be obtained by minimizing a divergence

function, which measures reconstruction error between Y and
WH . To find a statistical interpretation of the divergence
function, recently, a number of the statistical models of the
NMF have been developed [8]–[14]. In these works, the
divergence function is derived from the complex probability
density function (PDF). In particular, some of the statistical
models improve the model flexibility by using the hyper-
parameter [10]–[12], [14]. However, their model flexibility
is still limited because they has only one hyper-parameter.
Therefore, constructing a statistical model of the NMF based
on a generalized PDF which includes the PDFs of the existing
models is an open problem.

In this paper, to construct a generalized PDF, we focus
on neural networks (NNs), which are well known as the
approximations of various nonlinear functions. If a statistical
model based on a PDF expressed by a NN can be constructed,
it should help the comprehensive evaluation of the NMF in
the audio applications. Thus, in this paper, we tackle two
questions: (a) using a NN, can we design a statistical model of
the NMF and an algorithm which optimizes the cost function;

Fig. 1. The block diagram of the proposed network architecture (top) to
estimate the NMF parameters (basis and activation matrices) from a given
observed spectrogram. Its sub-block (bottom) acts as the update rules of the
NMF which minimize the cost function parameterized by the NN.

(b) in a particular audio application, can we train the NN so
that the performance measure can be maximized.

To answer these questions, in this paper, we propose a
network architecture which represents the algorithm for the
NMF, named deep multiplicative update algorithm (DeMUA)
for the NMF. The overview of the DeMUA architecture is
illustrated in Fig. 1. In this architecture, the algorithm for
the NMF is regarded as a NN which has a recursive struc-
ture. Because the algorithm depends on the statistical model,
interestingly, the DeMUA can not only estimate the NMF
parameters from the observed spectrogram, but also give the
neural-based cost function of the NMF. Moreover, we propose
the training procedures for the DeMUA. While the DeMUA
estimates the NMF parameters so that the neural-based cost
function can be minimized, it is trained so that a performance
measure (e.g., source-to-distortion ratio (SDR) [15], [16]) can
be maximized.

The main contributions of this paper are: (a) a novel network
architecture which represents both the generalized statistical
model of the NMF and the optimization algorithm for the
NMF (Sect. III-B); (b) training procedures for the proposed
network architecture in the denoising and the separation tasks
(Sects. III-C and III-D, respectively); (c) experimental results
in audio denoising and supervised signal separation (Sect. IV).

II. RELATED WORK

Our work follows the existing statistical models of the
NMF based on the complex PDF [8]–[14]. The concept of
the complex PDF-based NMF has been introduced in [8].
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The statistical model in [8], called Gaussian-NMF, exploits
the complex Gaussian distribution as the PDF of the complex
observed spectrogram to justify the additivity of the power
spectra. In Gaussian-NMF, W and H are estimated by using
the multiplicative update algorithm so that the cost function
based on the Gaussian distribution can be minimized.

In order to find a better alternative to Gaussian-NMF and
to improve model flexibility, the complex non-Gaussian PDFs
have been exploited in [9]–[14]. In particular, the statistical
models based on the heavy-tailed distribution (e.g., the NMF
based on the complex Student’s t distribution (t-NMF [10])
and the complex generalized Gaussian distribution (GGD-
NMF [11])) have shown favorable ability in audio denois-
ing [11].

In [12], [14] as well as t-NMF and GGD-NMF, the
model flexibility is improved compared to Gaussian-NMF by
introducing the hyper-parameter. In this paper, we present
a generalized model including these statistical models and
propose a framework for tuning the complex PDF of the NMF.

There are several works on the NNs to obtain the NMF
parameters (e.g., [17], [18]). Whereas these works focus on
estimating the NMF parameters using the fixed cost function
(or update rules) of the NMF, we focus on how to design an
architecture which can be interpreted as both the update rules
and the cost function.

Since the main purpose of this paper is constructing the
generalized statistical model of the NMF, the comparison with
the state-of-the-art network architectures for the denoising
and the separation tasks (e.g., [19] and [20]) is not essential
to evaluate the proposed method. The proposed method is
compared to the conventional NMF-based methods in Sect. IV.

III. DEEP MULTIPLICATIVE UPDATE ALGORITHM FOR
NMF

In this section, we explain the proposed network architecture
which represents the statistical model and the multiplicative
update algorithm of the NMF. First, in Sect. III-A, we refor-
mulate the statistical model of the NMF using the complex
PDF. Second, in Sects. III-B, we introduce the architecture of
the DeMUA for the NMF. Third, we describe how to train
the architecture in the denoising and the separation tasks in
Sects. III-C and III-D, respectively.

A. NMF based on the complex PDF

Let yCmn be the complex spectrogram, and ymn = |yCmn|2
be the power spectrogram at the mth frequency bin and
the nth frame. The NMF approximates ymn using ŷmn =∑K
k=1 wmkhkn. In [8]–[14], the divergence function, which

measures the reconstruction error between ymn and ŷmn, is
derived using the complex PDF of yCmn which has the form

pC(yCmn; ŷmn) ∝ ŷ−1mnf(ymnŷ
−1
mn), (1)

where f(r) is nonnegative and non-increasing in (0,∞).
From (1), the negative log-PDF is given by

− log pC(yCmn; ŷmn)
c
= log ŷmn − log f(ymnŷ

−1
mn), (2)

where c
= is equality up to constant terms. For example, f(r) is

set to exp(−r) for Gaussian-NMF [8]. In this case, the diver-
gence function is reduced to the Itakura-Saito divergence [8].

The cost function of the complex PDF-based NMF is given
by

J (W ,H) =
∑
m,n

(
log ŷmn − log f(ymnŷ

−1
mn)

)
. (3)

We design the multiplicative update algorithm to minimize
J (W ,H) under nonnegativity constraints on the parameters.
The heuristic approach [9], [17] derives the update rules by
splitting the partial derivative of J (W ,H) with respect to
wmk (or hkn) into the positive and the negative parts. To derive
the update rule of any parameter ϑ ∈ {wmk, hkn}, we express
∂J (W ,H)

∂ϑ using two nonnegative terms: ∇[J ]+ϑ and ∇[J ]−ϑ
as

∂J (W ,H)

∂ϑ
= ∇[J ]+ϑ −∇[J ]−ϑ . (4)

The update rule of ϑ is given by

ϑ← ϑ
∇[J ]−ϑ
∇[J ]+ϑ

. (5)

From (5), the multiplicative update algorithm is given by
iterating the update rules:

wmk ← wmk

∑
n
ζmnymn

ŷ2mn
hkn∑

n hkn/ŷmn
(6)

hkn ← hkn

∑
m
ζmnymn

ŷ2mn
wmk∑

m wmk/ŷmn
, (7)

where

ζmn = −f
′(ymnŷ

−1
mn)

f(ymnŷ
−1
mn)

, (8)

and f ′ is the derivative of f . At each iteration, after (6), W
is normalized using

wmk ←
wmk∑M
m=1 wmk

. (9)

Equation (8) can be interpreted as the expectation of the
latent variable in the Gaussian scale mixture (GSM). The
complex PDFs in [8]–[10], [12]–[14] and the super-Gaussian
case of the GGD [11] are in the class of the GSM written as

pGSM(yCmn; ŷmn) =

∫ ∞
0

NC(yCmn; 0, z−1mnŷmn)p(dzmn), (10)

where NC(·;µ, σ2) is the complex Gaussian distribution with
mean µ and variance σ2, and p(zmn) is a PDF on (0,∞). In
the statistical model using (10), ζmn indicates the following
expectation:

Ep(zmn|yCmn)
[zmn] =

∫ ∞
0

zmnp(dzmn|yCmn). (11)
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Fig. 2. The block diagram of the update rules based on the NN. Given Y
and Ŷ , exp

(
Φθ(·)

)
is calculated for each element. At the tth iteration, the

update of W and H is done by (6) and (7). In addition, W is normalized
using (9).

B. Network architecture

As described in the previous subsection, (8) represents the
relation between the statistical model and the update rules.
We exploit (8) to design the NN which acts as the PDF and
the algorithm of the NMF. The basic idea of the proposed
architecture is to replace ζmn with the output of a NN.
Specifically, using a function Φθ : (0,∞) → R based on a
NN with a vector of trainable parameters θ, we calculate ζmn
as

ζ̃θmn = exp
(
Φθ(ymnŷ

−1
mn)

)
. (12)

This gives the interpretation of the update rules as the NN
illustrated in Fig. 2. This network acts as the DeMUA sub-
block in Fig. 1. At the tth iteration, the DeMUA sub-block
calculates the new basis and activation matrices (denoted by
W (t) and H(t), respectively) using (12) in addition to (6), (7),
and (9). To obtain the final estimate of the NMF parameters,
the sub-block in Fig. 2 is stacked as shown in Fig. 1 while
sharing θ.

The NN Φθ can be interpreted as the PDF in addition to a
part of the update rules. Given Φθ, by solving (8) with respect
to f , we can obtain f as

f̃θ(r) ∝ exp

(
−
∫

exp
(
Φθ(r)

)
dr

)
. (13)

From (1), f̃θ(|yCmn|2) is regarded as a complex PDF of yCmn.
The integral in (13) cannot always be evaluated analytically.
However, we have the heuristic update rules stated in (6) and
(7) which minimize the neural-based cost function:

J̃θ(W ,H) =
∑
m,n

(
log ŷmn − log f̃θ(ymnŷ

−1
mn)

)
. (14)

C. Training procedure in audio denoising

In the denoising task [11], [21], the noise is reduced
by applying the NMF to the noisy spectrogram. Since the
DeMUA computes the basis and the activation matrices in a
similar way to the conventional NMF algorithms, the DeMUA
can be straightforwardly applied to this task. To obtain the
network output as an estimate of the NMF parameters, the
DeMUA takes a random input as the initial value of the NMF
parameters and the spectrogram of the observed signal. Using
the estimate of the NMF parameters, an estimate of the clean

Algorithm 1 The forward propagation of audio denoising
1: Obtain the complex-valued spectrogram Y C = [yC

mn] and its
power spectrogram Y = [|yC

mn|2] of the observed signal.
2: Initialize the NMF parameters W (0) and H(0).
3: for t = 1, . . . , T do
4: Update W (t) and H(t) using (6) and (7), respectively.
5: Normalize W (t) using (9).
6: end for
7: Calculate the estimate of the clean spectrogram using (15).
8: Calculate the waveform of the estimated clean signal.

Algorithm 2 The forward propagation of supervised signal
separation

1: # Training stage
2: Obtain the power spectrogram Y l of the training signal for each

speaker l (l = 1, . . . , L).
3: for l = 1, . . . , L do
4: Initialize the NMF parameters W

(0)
l and H

(0)
l .

5: for t = 1, . . . , T1 do
6: Update W

(t)
l and H

(t)
l using (6) and (7), respectively.

7: Normalize W
(t)
l using (9).

8: end for
9: end for

10: Construct the trained basis matrix as W̃ = [W
(T )
1 , . . . ,W

(T )
L ].

11: # Separation stage
12: Obtain the complex-valued spectrogram XC = [xC

mn] and its
power spectrogram X = [|xC

mn|2] of the mixture signal.

13: Initialize the weight matrix Ũ
(0)>

= [U
(0)>

1 , . . . ,U
(0)>

L ].
14: for t = 1, . . . , T2 do
15: Given the power spectrogram X and the basis matrix W̃ ,

update Ũ
(t)

using (7).
16: end for
17: for l = 1, . . . , L do
18: Calculate the estimate of the spectrogram Ŝ

C
l of the lth

speaker using (17).
19: Calculate the waveform of Ŝ

C
l .

20: end for

spectrogram ŝCmn is computed as

ŝCmn =

√
ŷmn
|yCmn|

yCmn. (15)

The waveform of ŝCmn is obtained using the inverse short-
time Fourier transform (STFT). The forward propagation is
shown in Algorithm 1. The DeMUA can be trained so that
a loss function between the estimate and the corresponding
target waveform can be minimized. To obtain a PDF which
improves the performance, in this paper, we train the DeMUA
using the loss function based on the performance measure in
the denoising tasks. In particular, on the basis of the scale-
independent SDR (SI-SDR) [16], we minimize the following
loss function:

Ma(s, ŝθ) =
‖s‖2‖ŝθ‖2

(s>ŝθ)2
− 1, (16)

where s and ŝθ are the vectors of the target waveform and its
estimate, respectively, and ‖ · ‖ is the l2 norm.

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

207



Fig. 3. The architecture of Φθ used in the experiment. The number above
each layer indicates its output size. G represents the gated linear unit (GLU).
“ELU” indicates the exponential linear unit activation function.

D. Training procedure in supervised signal separation

The DeMUA can also be applied to the supervised signal
separation based on the NMF [2]. The forward propagation
in this application is shown in Algorithm 2. The separation
procedure consits of the training and the separation stages.
In the training stage, we train the basis matrix W l for
each speaker l (l = 1, . . . , L) using the training data. To
separate the mixture signal, in the separation stage, the weight
matrix Ũ

>
= [U>1 , . . . ,U

>
L ] is learned on the mixture

spectrogram XC while the set of the trained basis matrices
W̃ = [W 1, . . . ,WL] is fixed. We reconstruct the complex-
valued spectrogram Ŝ

C
l of the lth speaker using the Wiener

filter:

Ŝ
C
l = (W lU l)� (W̃ Ũ)�XC, (17)

where � and � are element-wise division and product, re-
spectively. We train the DeMUA by minimizing the average
SI-SDR-based loss function as follows:

Mb({sl, ŝlθ}) =
1

L

L∑
l=1

‖sl‖2‖ŝlθ‖2

(s>l ŝlθ)2
− 1, (18)

where sl and ŝlθ are the target waveform and its estimate of
the lth speaker, respectively.

IV. EXPERIMENTS

We evaluated the DeMUA in audio denoising [11], [21] and
supervised signal separation [2]. In our experimetns, we used
three architectures for Φθ. The two of them regarded as the
multiplicative update algorithms for t-NMF [10] and GGD-
NMF [11]. Specifically, for these method, we constructed Φ
as follows:

t-NMF: Φtθ1(rmn) = − log

(
eθ1 + 2rmn
eθ1 + 2

)
(19)

GGD-NMF: ΦGGD
θ2 (rmn) =

eθ2 − 2

2
log rmn (20)

where rmn = ymnŷ
−1
mn and θ1, θ2 ∈ R are the trainable

parameters. Note that the hyper-parameters of t-NMF and
GGD-NMF are ν = eθ1 and β = eθ2 , respectively. As a
generalized statistical model, we designed the network Φθ
using the gated linear unit (GLU) [22]. The Φθ used in our
experiments is illustrated in Fig. 3.

A. Audio denoising

In the audio denoising task, the spectrogram of the source
is corrupted by an impulsive noise. The impulsive noise
simulates a musical noise, which is a common artifact caused
by spectral subtraction algorithms [11]. The power and the

phase spectrograms of the impulsive noise were drawn from
the log-normal distribution with scale 4 and the uniform
distribution, respectively. The waveform of the synthetic noise
was added to the source signal at signal-to-noise ratio (SNR)
of −10 dB. For source signals, we extracted 12 record-
ings played on electric guitar from the IDMT-SMT-GUITAR
database [23]. We divided the recordings into two sets: SID1-
1 and SID1-2, which consist of AR_Lick[1-6]_KN.wav
and AR_Lick[7-12]_KN.wav, respectively. Each of the
signals was resampled at 8 kHz. We trained the DeMUA using
the 6 sources in SID1-1 and 5 i.i.d. random initial values for
W and H . The noise signal was drawn at each iteration.
The size of the dataset is similar to that used in [11], [21].
Our dataset is small but enough to evaluate the NMF-based
denoising method.

To obtain the power spectrogram, we performed the STFT
with 128 ms hamming window and 32 ms hop size. In this
experiment, the number of bases was set to K = 30.

The estimates of W and H were obtained from the output
of the 300th stacks. The network parameters were updated with
the Adam optimizer [24] and a batch size of 10. To train Φtθ1
and ΦGGD

θ2
, the learning rate 10−2 was used. We initialized

t-NMF and GGD-NMF using eθ1 = 4 and eθ2 = 1.2,
respectively. To calculate the gradient of the parameters, the
backpropagation was truncated by the last 100 stacks. The
gradient clipping [25] with threshold 1 was used for the
training. To train Φθ, we used the learning rate 10−4 and the
truncation level 30.

At the test time, we obtained the estimated sources using
SID1-1 and SID1-2. Each NMF algorithm was performed on
two datasets: one consists of SID1-1, 5 i.i.d. random initial
values for W and H , and 10 i.i.d. noise signals, another
contains SID1-2 instead of SID1-1. The initial values of the
NMF and the noise signals were shared between the datasets
but were different from those used at the training time. To
evaluate the denoising performance, we used the SI-SDR
improvement.

As the results of the denoising experiment, the evolution of
the SI-SDR improvement depending on the iteration number
of the multiplicative update algorithm is shown in Fig. 4. In
this figure, the SI-SDR improvements obtained by using each
architecture were averaged within each test set. Moreover,
the numerical results are shown in Table I. In Fig. 4 and
Table I, the evaluation results at initialization time are also
shown. From Fig. 4, we can see the effective update rules were
obtained by training the DeMUA. In addition, the denoising
performance can be improved by generalizing the statistical
model using the NN-based architecture Φθ.

In this experiment, we obtained ν ' 0.73 and β ' 0.14
as the estimates of the hyper-parameters of t-NMF and GGD-
NMF, respectively. This suggests that heavier-tailed distribu-
tion shows higher SI-SDR improvements because ŷmn can
be prevented from fitting to the noise by using the algorithm
based on the heavy-tailed distribution. At initialization time,
the SI-SDRs decrease after about 50th iteration in Fig. 4. On
the other hand, this performance degradation can be prevented
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Fig. 4. Evolution of the average SI-SDR improvement depending on the
iteration number of the multiplicative update algorithm in audio denoising.
“NN-based” is the result using Fig. 3. “SID1-1” was used for training. The
black and the gray lines show the results at initialization time.

TABLE I
THE NUMERICAL RESULTS OF AUDIO DENOISING IN TERMS OF THE

AVERAGE SI-SDR IMPROVEMENT DB AT T = 300, 500.

Trained
Source SID1-1 SID1-2
Number of iterations T 300 500 300 500
t-NMF (Eq. (19), ν ' 0.73) 5.37 5.46 7.62 7.61
GGD-NMF (Eq. (20), β ' 0.14) 4.93 4.75 6.42 6.19
NN-based (Fig. 3) 5.73 6.09 7.64 7.69
Untrained
Source SID1-1 SID1-2
Number of iterations T 300 500 300 500
t-NMF (Eq. (19), ν ' 4) 2.86 2.37 4.63 4.17
GGD-NMF (Eq. (20), β ' 1.2) −0.34 −0.56 0.55 0.38
NN-based (Fig. 3) −3.67 −4.04 −2.83 −3.09

Fig. 5. The log-PDFs with respect to |yCmn| estimated in audio denoising.
The log-PDF of the Gaussian distribution is also shown.

by training the DeMUA while considering the denoising
performance.

In Fig. 5, we show the log-PDF of Φθ which is calculated
from the trained network using (13). The estimated log-PDF
is more close to the t distribution than the GGD. This result is
reasonable because Φθ shows similar performance to t-NMF
with ν ' 0.73 in Fig. 4.

Fig. 6. Evolution of the average SI-SDR improvement depending on the
iteration number of the multiplicative update algorithm in supervised signal
separation. “NN-based” is the result using Fig. 3. “SID2-1” was used for
training. The black and the gray lines show the results at initialization time.

TABLE II
THE NUMERICAL RESULTS OF SUPERVISED SIGNAL SEPARATION IN TERMS

OF THE AVERAGE SI-SDR IMPROVEMENT DB AT T2 = 50, 100.

Trained
Source SID2-1 SID2-2
Number of iterations T2 50 100 50 100
t-NMF (Eq. (19), ν ' 4.72) 3.99 3.98 5.03 5.03
GGD-NMF (Eq. (20), β ' 0.45) 4.25 4.28 4.92 4.94
NN-based (Fig. 3) 4.24 4.27 5.10 5.19
Untrained
Source SID2-1 SID2-2
Number of iterations T2 50 100 50 100
t-NMF (Eq. (19), ν ' 1) 3.97 4.00 4.97 4.98
GGD-NMF (Eq. (20), β ' 0.1) 3.48 3.69 4.84 5.09
NN-based (Fig. 3) 3.75 3.75 4.78 4.77

Fig. 7. The log-PDFs with respect to |yCmn| estimated in supervised signal
separation. The log-PDF of the Gaussian distribution is also shown.

B. Supervised signal separation

In this experiment, we separated a mixture signal into
two source signals. We used 20 pairs of the female and
the male speakers resampled at 8 kHz from the Librispeech
database [26]. We constructed SID2-1 and SID2-2, which
consit of 10 speaker pairs, respectively. The number of pairs
of each dataset is similar to that in [2]. At the training and the
separation stages in Algorithm 2, the same speaker was used
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to obtain Y l and X . The lengths of the signals at the training
and the separation stages were 20 s and 5 s, respectively. To
obtain W̃ , we used the number of bases K = 30 per speaker
and T1 = 200. At the separation stage, T2 was set to T2 = 100.

We trained the networks using SID2-1 and 5 i.i.d. random
initial values for W l, H l, and U l. The configuration of
the optimizer was same as the previous subsection. For t-
NMF and GGD-NMF, we initialized using eθ1 = 1 and
eθ2 = 0.1. To train Φtθ1 and ΦGGD

θ2
, the truncation levels of

the backpropagation were 100 and 50 for the training and the
separation stages, respectively. On the other hand, to train Φθ,
we set those to 10 for both two stages. The threshold of the
gradient clipping was set to 0.01. We evaluated the separation
performance using SID2-1, SID2-2, and 5 i.i.d. random initial
values for the NMF parameters.

In Fig. 6 and Table II, we show the evolution of the SI-
SDR improvement and the numerical results, respectively.
Table II shows that GGD-NMF overfits on SID2-1, and
the performance of t-NMF degrades compared to the initial
condition although the parameter ϑ1 was trained. However,
the effective update rules were obtained by training the NN-
based architecture as shown in Fig. 6.

Remarkably, even though the statistical model was randomly
generated, the NN-based architecture shows about 4.77 dB for
SID2-2 as shown in the black line of Fig. 6(b). This suggests
that the separation algorithm depends less on the statistical
model, and more on the low-rank approximation model of the
NMF.

We show the log-PDF of Φθ in Fig. 7. Φθ represents the
PDF with a peak as sharp as the GGD with β ' 0.45 and
a thinner tail than the t distribution with ν ' 4.72. Whereas
fitting to the observed matrix is prevented by the heavy tail in
the denoising task, we guess Φθ in this task reconstructs the
observed matrix accurately using its thinner tail to enhance
the low-rank approximation ability.

V. CONCLUSIONS

In this paper, we proposed the network architecture, called
DeMUA for the NMF, which can not only solve the optimiza-
tion problem of the NMF, but also represent the PDF used in
the statistical model of the NMF. Moreover, we evaluated the
proposed framework on the denoising and the separation tasks.
The experiment results showed that the effective statistical
models are obtained by training the proposed architecture
using the performance-based cost function, and the generalized
statistical models represented by the NN improve the denoising
and the separation performances. Future work includes inves-
tigation of a network architecture appropriate to represent the
PDF.
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